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Life’s Operating Instructions

● In 1953, James Watson and Francis Crick
introduced an elegant double-helical model for the
structure of deoxyribonucleic acid, or DNA

● Hereditary information is encoded in DNA and
reproduced in all cells of the body

● This DNA program directs the development of
biochemical, anatomical, physiological, and
(to some extent) behavioral traits
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● DNA is copied during DNA replication, and cells
can repair their DNA
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Concept 16.1: DNA is the genetic material

● Early in the 20th century, the identification of the
molecules of inheritance loomed as a major
challenge to biologists
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The Search for the Genetic Material: Scientific
Inquiry

● When T. H. Morgan’s group showed that genes are
located on chromosomes, the two components of
chromosomes—DNA and protein—became
candidates for the genetic material

● The role of DNA in heredity was first discovered
by studying bacteria and the viruses that
infect them
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Evidence That DNA Can Transform Bacteria

● The discovery of the genetic role of DNA began with
research by Frederick Griffith in 1928

● Griffith worked with two strains of a bacterium, one
pathogenic and one harmless
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● When he mixed heat-killed remains of the
pathogenic strain with living cells of the harmless
strain, some living cells became pathogenic

● He called this phenomenon transformation, now
defined as a change in genotype and phenotype due
to assimilation of foreign DNA
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● Later work by Oswald Avery, Maclyn McCarty, and
Colin MacLeod identified the transforming substance
as DNA

● Many biologists remained skeptical, mainly because
little was known about DNA
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Evidence That Viral DNA Can Program Cells

● More evidence for DNA as the genetic material
came from studies of viruses that infect bacteria

● Such viruses, called bacteriophages (or phages),
are widely used in molecular genetics research

● A virus is DNA (sometimes RNA) enclosed by a
protective coat, often simply protein
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Animation: Phage T2 Reproductive Cycle
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● In 1952, Alfred Hershey and Martha Chase showed
that DNA is the genetic material of a phage known
as T2

● They designed an experiment showing that only one
of the two components of T2 (DNA or protein) enters
an E. coli cell during infection

● They concluded that the injected DNA of the phage
provides the genetic information
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Animation: Hershey-Chase Experiment
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Additional Evidence That DNA Is the Genetic
Material

● DNA is a polymer of nucleotides, each consisting of
a nitrogenous base, a sugar, and a phosphate group

● The nitrogenous bases can be adenine (A), thymine
(T), guanine (G), or cytosine (C)

● In 1950, Erwin Chargaff reported that DNA
composition varies from one species to the next

● This evidence of diversity made DNA a more
credible candidate for the genetic material
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● Two findings became known as Chargaff’s rules
● The base composition of DNA varies between species
● In any species the number of A and T bases is equal

and the number of G and C bases is equal

● The basis for these rules was not understood until
the discovery of the double helix
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Animation: DNA and RNA Structure
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Building a Structural Model of DNA: Scientific
Inquiry

● After DNA was accepted as the genetic material, the
challenge was to determine how its structure
accounts for its role in heredity

● Maurice Wilkins and Rosalind Franklin were using a
technique called X-ray crystallography to study
molecular structure

● Franklin produced a picture of the DNA molecule
using this technique
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● Later work by Oswald Avery, Maclyn McCarty, and
Colin MacLeod identified the transforming substance
as DNA
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● Two findings became known as Chargaff’s rules
● The base composition of DNA varies between species
● In any species the number of A and T bases is equal

and the number of G and C bases is equal

● The basis for these rules was not understood until
the discovery of the double helix
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● When he mixed heat-killed remains of the
pathogenic strain with living cells of the harmless
strain, some living cells became pathogenic

● He called this phenomenon transformation, now
defined as a change in genotype and phenotype due
to assimilation of foreign DNA
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● Later work by Oswald Avery, Maclyn McCarty, and
Colin MacLeod identified the transforming substance
as DNA

● Many biologists remained skeptical, mainly because
little was known about DNA
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Material

● DNA is a polymer of nucleotides, each consisting of
a nitrogenous base, a sugar, and a phosphate group

● The nitrogenous bases can be adenine (A), thymine
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● In 1950, Erwin Chargaff reported that DNA
composition varies from one species to the next

● This evidence of diversity made DNA a more
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● Two findings became known as Chargaff’s rules
● The base composition of DNA varies between species
● In any species the number of A and T bases is equal

and the number of G and C bases is equal

● The basis for these rules was not understood until
the discovery of the double helix
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● When he mixed heat-killed remains of the
pathogenic strain with living cells of the harmless
strain, some living cells became pathogenic
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defined as a change in genotype and phenotype due
to assimilation of foreign DNA
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as DNA
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little was known about DNA
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● Two findings became known as Chargaff’s rules
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Additional Evidence That DNA Is the Genetic
Material

● DNA is a polymer of nucleotides, each consisting of
a nitrogenous base, a sugar, and a phosphate group

● The nitrogenous bases can be adenine (A), thymine
(T), guanine (G), or cytosine (C)

● In 1950, Erwin Chargaff reported that DNA
composition varies from one species to the next

● This evidence of diversity made DNA a more
credible candidate for the genetic material
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● Two findings became known as Chargaff’s rules
● The base composition of DNA varies between species
● In any species the number of A and T bases is equal

and the number of G and C bases is equal

● The basis for these rules was not understood until
the discovery of the double helix
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Animation: DNA and RNA Structure
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Building a Structural Model of DNA: Scientific
Inquiry

● After DNA was accepted as the genetic material, the
challenge was to determine how its structure
accounts for its role in heredity

● Maurice Wilkins and Rosalind Franklin were using a
technique called X-ray crystallography to study
molecular structure

● Franklin produced a picture of the DNA molecule
using this technique
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Life’s Operating Instructions

● In 1953, James Watson and Francis Crick
introduced an elegant double-helical model for the
structure of deoxyribonucleic acid, or DNA

● Hereditary information is encoded in DNA and
reproduced in all cells of the body

● This DNA program directs the development of
biochemical, anatomical, physiological, and
(to some extent) behavioral traits
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● DNA is copied during DNA replication, and cells
can repair their DNA
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Concept 16.1: DNA is the genetic material

● Early in the 20th century, the identification of the
molecules of inheritance loomed as a major
challenge to biologists
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The Search for the Genetic Material: Scientific
Inquiry

● When T. H. Morgan’s group showed that genes are
located on chromosomes, the two components of
chromosomes—DNA and protein—became
candidates for the genetic material

● The role of DNA in heredity was first discovered
by studying bacteria and the viruses that
infect them
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Evidence That DNA Can Transform Bacteria

● The discovery of the genetic role of DNA began with
research by Frederick Griffith in 1928

● Griffith worked with two strains of a bacterium, one
pathogenic and one harmless
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● When he mixed heat-killed remains of the
pathogenic strain with living cells of the harmless
strain, some living cells became pathogenic

● He called this phenomenon transformation, now
defined as a change in genotype and phenotype due
to assimilation of foreign DNA
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● Later work by Oswald Avery, Maclyn McCarty, and
Colin MacLeod identified the transforming substance
as DNA

● Many biologists remained skeptical, mainly because
little was known about DNA
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Evidence That Viral DNA Can Program Cells

● More evidence for DNA as the genetic material
came from studies of viruses that infect bacteria

● Such viruses, called bacteriophages (or phages),
are widely used in molecular genetics research

● A virus is DNA (sometimes RNA) enclosed by a
protective coat, often simply protein
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Animation: Phage T2 Reproductive Cycle
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● In 1952, Alfred Hershey and Martha Chase showed
that DNA is the genetic material of a phage known
as T2

● They designed an experiment showing that only one
of the two components of T2 (DNA or protein) enters
an E. coli cell during infection

● They concluded that the injected DNA of the phage
provides the genetic information
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Additional Evidence That DNA Is the Genetic
Material

● DNA is a polymer of nucleotides, each consisting of
a nitrogenous base, a sugar, and a phosphate group

● The nitrogenous bases can be adenine (A), thymine
(T), guanine (G), or cytosine (C)

● In 1950, Erwin Chargaff reported that DNA
composition varies from one species to the next

● This evidence of diversity made DNA a more
credible candidate for the genetic material
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● Two findings became known as Chargaff’s rules
● The base composition of DNA varies between species
● In any species the number of A and T bases is equal

and the number of G and C bases is equal

● The basis for these rules was not understood until
the discovery of the double helix
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Building a Structural Model of DNA: Scientific
Inquiry

● After DNA was accepted as the genetic material, the
challenge was to determine how its structure
accounts for its role in heredity

● Maurice Wilkins and Rosalind Franklin were using a
technique called X-ray crystallography to study
molecular structure

● Franklin produced a picture of the DNA molecule
using this technique
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● In 1953, James Watson and Francis Crick
introduced an elegant double-helical model for the
structure of deoxyribonucleic acid, or DNA

● Hereditary information is encoded in DNA and
reproduced in all cells of the body

● This DNA program directs the development of
biochemical, anatomical, physiological, and
(to some extent) behavioral traits
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● DNA is copied during DNA replication, and cells
can repair their DNA
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Concept 16.1: DNA is the genetic material

● Early in the 20th century, the identification of the
molecules of inheritance loomed as a major
challenge to biologists
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The Search for the Genetic Material: Scientific
Inquiry

● When T. H. Morgan’s group showed that genes are
located on chromosomes, the two components of
chromosomes—DNA and protein—became
candidates for the genetic material

● The role of DNA in heredity was first discovered
by studying bacteria and the viruses that
infect them
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Evidence That DNA Can Transform Bacteria

● The discovery of the genetic role of DNA began with
research by Frederick Griffith in 1928

● Griffith worked with two strains of a bacterium, one
pathogenic and one harmless
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● When he mixed heat-killed remains of the
pathogenic strain with living cells of the harmless
strain, some living cells became pathogenic

● He called this phenomenon transformation, now
defined as a change in genotype and phenotype due
to assimilation of foreign DNA
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● Later work by Oswald Avery, Maclyn McCarty, and
Colin MacLeod identified the transforming substance
as DNA

● Many biologists remained skeptical, mainly because
little was known about DNA
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Evidence That Viral DNA Can Program Cells

● More evidence for DNA as the genetic material
came from studies of viruses that infect bacteria

● Such viruses, called bacteriophages (or phages),
are widely used in molecular genetics research

● A virus is DNA (sometimes RNA) enclosed by a
protective coat, often simply protein
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Animation: Phage T2 Reproductive Cycle
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● In 1952, Alfred Hershey and Martha Chase showed
that DNA is the genetic material of a phage known
as T2

● They designed an experiment showing that only one
of the two components of T2 (DNA or protein) enters
an E. coli cell during infection

● They concluded that the injected DNA of the phage
provides the genetic information
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Additional Evidence That DNA Is the Genetic
Material

● DNA is a polymer of nucleotides, each consisting of
a nitrogenous base, a sugar, and a phosphate group

● The nitrogenous bases can be adenine (A), thymine
(T), guanine (G), or cytosine (C)

● In 1950, Erwin Chargaff reported that DNA
composition varies from one species to the next

● This evidence of diversity made DNA a more
credible candidate for the genetic material
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● Two findings became known as Chargaff’s rules
● The base composition of DNA varies between species
● In any species the number of A and T bases is equal

and the number of G and C bases is equal

● The basis for these rules was not understood until
the discovery of the double helix
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Building a Structural Model of DNA: Scientific
Inquiry

● After DNA was accepted as the genetic material, the
challenge was to determine how its structure
accounts for its role in heredity

● Maurice Wilkins and Rosalind Franklin were using a
technique called X-ray crystallography to study
molecular structure

● Franklin produced a picture of the DNA molecule
using this technique
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● In 1953, James Watson and Francis Crick
introduced an elegant double-helical model for the
structure of deoxyribonucleic acid, or DNA

● Hereditary information is encoded in DNA and
reproduced in all cells of the body

● This DNA program directs the development of
biochemical, anatomical, physiological, and
(to some extent) behavioral traits
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● DNA is copied during DNA replication, and cells
can repair their DNA
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Concept 16.1: DNA is the genetic material

● Early in the 20th century, the identification of the
molecules of inheritance loomed as a major
challenge to biologists
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The Search for the Genetic Material: Scientific
Inquiry

● When T. H. Morgan’s group showed that genes are
located on chromosomes, the two components of
chromosomes—DNA and protein—became
candidates for the genetic material

● The role of DNA in heredity was first discovered
by studying bacteria and the viruses that
infect them
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Evidence That DNA Can Transform Bacteria

● The discovery of the genetic role of DNA began with
research by Frederick Griffith in 1928

● Griffith worked with two strains of a bacterium, one
pathogenic and one harmless
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● When he mixed heat-killed remains of the
pathogenic strain with living cells of the harmless
strain, some living cells became pathogenic

● He called this phenomenon transformation, now
defined as a change in genotype and phenotype due
to assimilation of foreign DNA
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● Later work by Oswald Avery, Maclyn McCarty, and
Colin MacLeod identified the transforming substance
as DNA

● Many biologists remained skeptical, mainly because
little was known about DNA
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Evidence That Viral DNA Can Program Cells

● More evidence for DNA as the genetic material
came from studies of viruses that infect bacteria

● Such viruses, called bacteriophages (or phages),
are widely used in molecular genetics research

● A virus is DNA (sometimes RNA) enclosed by a
protective coat, often simply protein
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● In 1952, Alfred Hershey and Martha Chase showed
that DNA is the genetic material of a phage known
as T2

● They designed an experiment showing that only one
of the two components of T2 (DNA or protein) enters
an E. coli cell during infection

● They concluded that the injected DNA of the phage
provides the genetic information

 

© 2018 Pearson Education Ltd.

Figure 16.4

Labeled phages
infect cells.

Agitation frees
outside phage parts
from cells.

Centrifuged cells
form a pellet.

Measured the
radioactivity in
the pellet and
the liquid.

Experimen
t

Empty
protein shellRadioactiv

e
protein

Radioactivity
(phage protein)
found in liquid

Phage

Bacterial
cell

Batch 1: Radioactive
sulfur (35S) in phage
protein

DNA

Phage
DNA

Centrifuge

Radioactiv
eDNA

Pellet

Batch 2: Radioactive
phosphorus (32P) in
phage DNA

Centrifuge

Pellet
Radioactivity
(phage DNA)
found in pellet

1 2 3 4

© 2018 Pearson Education Ltd.

Figure 16.4a

Experimen
t Labeled phages

infect cells.
Agitation frees
outside phage
parts from
cells.

Empty
protei
n
shell

Radioactive
protein

Centrifuged
cells form
a pellet.

Measured the
radioactivity in
the pellet and
the liquid.

Radioactivity
(phage protein)
found in liquid

Phage

Bacterial
cell

Batch
1:Radioactive sulfur
(35S) in phage
protein

DN
A Phage

DN
ACentrifuge

Pelle
t

1 2 3 4

© 2018 Pearson Education Ltd.

Figure 16.4b

Experimen
t Radioactive

DN
A

Batch
2:Radioactive
phosphorus
(32P)
in phage DNA Centrifuge

Pelle
t

Radioactivity
(phage DNA)
found in pellet

© 2018 Pearson Education Ltd.

Animation: Hershey-Chase Experiment

© 2018 Pearson Education Ltd.

Additional Evidence That DNA Is the Genetic
Material

● DNA is a polymer of nucleotides, each consisting of
a nitrogenous base, a sugar, and a phosphate group

● The nitrogenous bases can be adenine (A), thymine
(T), guanine (G), or cytosine (C)

● In 1950, Erwin Chargaff reported that DNA
composition varies from one species to the next

● This evidence of diversity made DNA a more
credible candidate for the genetic material
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● Two findings became known as Chargaff’s rules
● The base composition of DNA varies between species
● In any species the number of A and T bases is equal

and the number of G and C bases is equal

● The basis for these rules was not understood until
the discovery of the double helix
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Animation: DNA and RNA Structure
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Building a Structural Model of DNA: Scientific
Inquiry

● After DNA was accepted as the genetic material, the
challenge was to determine how its structure
accounts for its role in heredity

● Maurice Wilkins and Rosalind Franklin were using a
technique called X-ray crystallography to study
molecular structure

● Franklin produced a picture of the DNA molecule
using this technique
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● Franklin’s X-ray crystallographic images of DNA
enabled Watson to deduce that DNA was helical

● The X-ray images also enabled Watson to deduce
the width of the helix and the spacing of the
nitrogenous bases

● The pattern in the photo suggested that the DNA
molecule was made up of two strands, forming a
double helix
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Animation: DNA Double Helix
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● Watson and Crick built models of a double helix to
conform to the X-rays and chemistry of DNA

● Franklin had concluded that there were two outer
sugar-phosphate backbones, with the nitrogenous
bases paired in the molecule’s interior

● Watson built a model in which the backbones were
antiparallel (their subunits run in opposite
directions)
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● At first, Watson and Crick thought the bases paired
like with like (A with A, and so on), but such pairings
did not result in a uniform width

● Instead, pairing a purine (A or G) with a pyrimidine
(C or T) resulted in a uniform width consistent with
the X-ray data
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Figure 16.UN02
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● Watson and Crick reasoned that the pairing was
more specific, dictated by the base structures

● They determined that adenine (A) paired only with
thymine (T), and guanine (G) paired only with
cytosine (C)

● The Watson-Crick model explains Chargaff’s rules:
in any organism the amount of A = T, and the amount
of G = C
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Concept 16.2: Many proteins work together in DNA
replication and repair

● The relationship between structure and function is
manifest in the double helix

● Watson and Crick noted that the specific base
pairing suggested a possible copying mechanism for
genetic material
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The Basic Principle: Base Pairing to a Template
Strand

● Since the two strands of DNA are complementary,
each strand acts as a template for building a new
strand in replication

● In DNA replication, the parent molecule unwinds,
and two new daughter strands are built based on
base-pairing rules
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● Watson and Crick’s semiconservative model of
replication predicts that when a double helix
replicates, each daughter molecule will have one old
strand (derived or “conserved” from the parent
molecule) and one newly made strand

● Competing models were the conservative model (the
two parent strands rejoin) and the dispersive model
(each strand is a mix of old and new)
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● Experiments by Matthew Meselson and Franklin
Stahl supported the semiconservative model
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● Franklin’s X-ray crystallographic images of DNA
enabled Watson to deduce that DNA was helical

● The X-ray images also enabled Watson to deduce
the width of the helix and the spacing of the
nitrogenous bases

● The pattern in the photo suggested that the DNA
molecule was made up of two strands, forming a
double helix

 

© 2018 Pearson Education Ltd.

Loading…

Figure 16.7a

Structural Images
5′
end

Bases
0.34 nm
apart

3′
endDNA

nucleotide Sugar-phosphate
backbone

Sugar T A

One full
turn
every
10 base
pairs
(3.4 nm)

G C

C G

A T

3′
end

Diameter 2 nm 5′
end

© 2018 Pearson Education Ltd.

Figure 16.7aa

Bases
0.34
nm
apart

One full
turn
every
10 base
pairs
(3.4 nm)

Diameter 2 nm
© 2018 Pearson Education Ltd.

Figure 16.7ab
5′ end 3′ end

DNA
nucleotide Sugar-phosphate

backbone

Suga
r

T A

G C

C G

A T

3′ end

5′ end
© 2018 Pearson Education Ltd.

Figure 16.7b

Simplified Images
5
′T A

G
C

C
G

A

T
C
G

C

A

G

T
A T

G
C

T

A

Nitrogenous
bases

Sugar-
phosphate
backbone

5
′

T

G

C

A

C

G

T

3
′

5
′

T

G

C

A

A

C

G

T

3
′

5
′

5′ 3′

3
′

5
′

A

5
′

3
′

5
′

3′
 5′

3
′

3
′

3
′ 3

′

5
′

© 2018 Pearson Education Ltd.

Figure 16.7ba

Simplified Images

5
′
T

3
′

A

G

C

C

G

A

T
C
G

G
C

T

A

Nitrogenous
bases

Sugar-
phosphate
backbone

C

A

G

T
A T

3
′

5
′© 2018 Pearson Education Ltd.

Figure 16.7bb

T

G

C

A

C

G

T

T

G

C

A

A

C

G

T
A

5
′

3
′

5
′

3
′

5
′

3
′

5
′

3
′

3
′

5
′

3
′

5
′

3
′

5
′

3
′

5
′

© 2018 Pearson Education Ltd.

Animation: DNA Double Helix
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Video: Stick Model of DNA
(Deoxyribonucleic Acid)
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Video: Surface Model of DNA
(Deoxyribonucleic Acid)
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● Watson and Crick built models of a double helix to
conform to the X-rays and chemistry of DNA

● Franklin had concluded that there were two outer
sugar-phosphate backbones, with the nitrogenous
bases paired in the molecule’s interior

● Watson built a model in which the backbones were
antiparallel (their subunits run in opposite
directions)
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● At first, Watson and Crick thought the bases paired
like with like (A with A, and so on), but such pairings
did not result in a uniform width

● Instead, pairing a purine (A or G) with a pyrimidine
(C or T) resulted in a uniform width consistent with
the X-ray data
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Figure 16.UN02
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Purine + pyrimidine: width
consistent with X-ray data
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● Watson and Crick reasoned that the pairing was
more specific, dictated by the base structures

● They determined that adenine (A) paired only with
thymine (T), and guanine (G) paired only with
cytosine (C)

● The Watson-Crick model explains Chargaff’s rules:
in any organism the amount of A = T, and the amount
of G = C
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Concept 16.2: Many proteins work together in DNA
replication and repair

● The relationship between structure and function is
manifest in the double helix

● Watson and Crick noted that the specific base
pairing suggested a possible copying mechanism for
genetic material
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The Basic Principle: Base Pairing to a Template
Strand

● Since the two strands of DNA are complementary,
each strand acts as a template for building a new
strand in replication

● In DNA replication, the parent molecule unwinds,
and two new daughter strands are built based on
base-pairing rules
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● Watson and Crick’s semiconservative model of
replication predicts that when a double helix
replicates, each daughter molecule will have one old
strand (derived or “conserved” from the parent
molecule) and one newly made strand

● Competing models were the conservative model (the
two parent strands rejoin) and the dispersive model
(each strand is a mix of old and new)
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● Experiments by Matthew Meselson and Franklin
Stahl supported the semiconservative model
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● Franklin’s X-ray crystallographic images of DNA
enabled Watson to deduce that DNA was helical

● The X-ray images also enabled Watson to deduce
the width of the helix and the spacing of the
nitrogenous bases

● The pattern in the photo suggested that the DNA
molecule was made up of two strands, forming a
double helix
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Animation: DNA Double Helix
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Video: Stick Model of DNA
(Deoxyribonucleic Acid)
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Video: Surface Model of DNA
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● Watson and Crick built models of a double helix to
conform to the X-rays and chemistry of DNA

● Franklin had concluded that there were two outer
sugar-phosphate backbones, with the nitrogenous
bases paired in the molecule’s interior

● Watson built a model in which the backbones were
antiparallel (their subunits run in opposite
directions)
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● At first, Watson and Crick thought the bases paired
like with like (A with A, and so on), but such pairings
did not result in a uniform width

● Instead, pairing a purine (A or G) with a pyrimidine
(C or T) resulted in a uniform width consistent with
the X-ray data
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Figure 16.UN02
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● Watson and Crick reasoned that the pairing was
more specific, dictated by the base structures

● They determined that adenine (A) paired only with
thymine (T), and guanine (G) paired only with
cytosine (C)

● The Watson-Crick model explains Chargaff’s rules:
in any organism the amount of A = T, and the amount
of G = C
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Concept 16.2: Many proteins work together in DNA
replication and repair

● The relationship between structure and function is
manifest in the double helix

● Watson and Crick noted that the specific base
pairing suggested a possible copying mechanism for
genetic material
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The Basic Principle: Base Pairing to a Template
Strand

● Since the two strands of DNA are complementary,
each strand acts as a template for building a new
strand in replication

● In DNA replication, the parent molecule unwinds,
and two new daughter strands are built based on
base-pairing rules
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● Watson and Crick’s semiconservative model of
replication predicts that when a double helix
replicates, each daughter molecule will have one old
strand (derived or “conserved” from the parent
molecule) and one newly made strand

● Competing models were the conservative model (the
two parent strands rejoin) and the dispersive model
(each strand is a mix of old and new)
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● Experiments by Matthew Meselson and Franklin
Stahl supported the semiconservative model
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● Franklin’s X-ray crystallographic images of DNA
enabled Watson to deduce that DNA was helical

● The X-ray images also enabled Watson to deduce
the width of the helix and the spacing of the
nitrogenous bases

● The pattern in the photo suggested that the DNA
molecule was made up of two strands, forming a
double helix
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Animation: DNA Double Helix
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Video: Stick Model of DNA
(Deoxyribonucleic Acid)
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Video: Surface Model of DNA
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● Watson and Crick built models of a double helix to
conform to the X-rays and chemistry of DNA

● Franklin had concluded that there were two outer
sugar-phosphate backbones, with the nitrogenous
bases paired in the molecule’s interior

● Watson built a model in which the backbones were
antiparallel (their subunits run in opposite
directions)
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● At first, Watson and Crick thought the bases paired
like with like (A with A, and so on), but such pairings
did not result in a uniform width

● Instead, pairing a purine (A or G) with a pyrimidine
(C or T) resulted in a uniform width consistent with
the X-ray data
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● Watson and Crick reasoned that the pairing was
more specific, dictated by the base structures

● They determined that adenine (A) paired only with
thymine (T), and guanine (G) paired only with
cytosine (C)

● The Watson-Crick model explains Chargaff’s rules:
in any organism the amount of A = T, and the amount
of G = C
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Concept 16.2: Many proteins work together in DNA
replication and repair

● The relationship between structure and function is
manifest in the double helix

● Watson and Crick noted that the specific base
pairing suggested a possible copying mechanism for
genetic material
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The Basic Principle: Base Pairing to a Template
Strand

● Since the two strands of DNA are complementary,
each strand acts as a template for building a new
strand in replication

● In DNA replication, the parent molecule unwinds,
and two new daughter strands are built based on
base-pairing rules
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● Watson and Crick’s semiconservative model of
replication predicts that when a double helix
replicates, each daughter molecule will have one old
strand (derived or “conserved” from the parent
molecule) and one newly made strand

● Competing models were the conservative model (the
two parent strands rejoin) and the dispersive model
(each strand is a mix of old and new)
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● Experiments by Matthew Meselson and Franklin
Stahl supported the semiconservative model
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● Franklin’s X-ray crystallographic images of DNA
enabled Watson to deduce that DNA was helical

● The X-ray images also enabled Watson to deduce
the width of the helix and the spacing of the
nitrogenous bases

● The pattern in the photo suggested that the DNA
molecule was made up of two strands, forming a
double helix
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Animation: DNA Double Helix

© 2018 Pearson Education Ltd.

Video: Stick Model of DNA
(Deoxyribonucleic Acid)
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● Watson and Crick built models of a double helix to
conform to the X-rays and chemistry of DNA

● Franklin had concluded that there were two outer
sugar-phosphate backbones, with the nitrogenous
bases paired in the molecule’s interior

● Watson built a model in which the backbones were
antiparallel (their subunits run in opposite
directions)
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● At first, Watson and Crick thought the bases paired
like with like (A with A, and so on), but such pairings
did not result in a uniform width

● Instead, pairing a purine (A or G) with a pyrimidine
(C or T) resulted in a uniform width consistent with
the X-ray data
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Figure 16.UN02

Purine + purine: too wide

Pyrimidine + pyrimidine: too narrow

Purine + pyrimidine: width
consistent with X-ray data
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● Watson and Crick reasoned that the pairing was
more specific, dictated by the base structures

● They determined that adenine (A) paired only with
thymine (T), and guanine (G) paired only with
cytosine (C)

● The Watson-Crick model explains Chargaff’s rules:
in any organism the amount of A = T, and the amount
of G = C
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Concept 16.2: Many proteins work together in DNA
replication and repair

● The relationship between structure and function is
manifest in the double helix

● Watson and Crick noted that the specific base
pairing suggested a possible copying mechanism for
genetic material
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The Basic Principle: Base Pairing to a Template
Strand

● Since the two strands of DNA are complementary,
each strand acts as a template for building a new
strand in replication

● In DNA replication, the parent molecule unwinds,
and two new daughter strands are built based on
base-pairing rules
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● Watson and Crick’s semiconservative model of
replication predicts that when a double helix
replicates, each daughter molecule will have one old
strand (derived or “conserved” from the parent
molecule) and one newly made strand

● Competing models were the conservative model (the
two parent strands rejoin) and the dispersive model
(each strand is a mix of old and new)
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● Experiments by Matthew Meselson and Franklin
Stahl supported the semiconservative model
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● Franklin’s X-ray crystallographic images of DNA
enabled Watson to deduce that DNA was helical

● The X-ray images also enabled Watson to deduce
the width of the helix and the spacing of the
nitrogenous bases

● The pattern in the photo suggested that the DNA
molecule was made up of two strands, forming a
double helix
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Animation: DNA Double Helix
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Video: Stick Model of DNA
(Deoxyribonucleic Acid)
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Video: Surface Model of DNA
(Deoxyribonucleic Acid)
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● Watson and Crick built models of a double helix to
conform to the X-rays and chemistry of DNA

● Franklin had concluded that there were two outer
sugar-phosphate backbones, with the nitrogenous
bases paired in the molecule’s interior

● Watson built a model in which the backbones were
antiparallel (their subunits run in opposite
directions)
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● At first, Watson and Crick thought the bases paired
like with like (A with A, and so on), but such pairings
did not result in a uniform width

● Instead, pairing a purine (A or G) with a pyrimidine
(C or T) resulted in a uniform width consistent with
the X-ray data
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Figure 16.UN02

Purine + purine: too wide

Pyrimidine + pyrimidine: too narrow

Purine + pyrimidine: width
consistent with X-ray data
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● Watson and Crick reasoned that the pairing was
more specific, dictated by the base structures

● They determined that adenine (A) paired only with
thymine (T), and guanine (G) paired only with
cytosine (C)

● The Watson-Crick model explains Chargaff’s rules:
in any organism the amount of A = T, and the amount
of G = C
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Concept 16.2: Many proteins work together in DNA
replication and repair

● The relationship between structure and function is
manifest in the double helix

● Watson and Crick noted that the specific base
pairing suggested a possible copying mechanism for
genetic material
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The Basic Principle: Base Pairing to a Template
Strand

● Since the two strands of DNA are complementary,
each strand acts as a template for building a new
strand in replication

● In DNA replication, the parent molecule unwinds,
and two new daughter strands are built based on
base-pairing rules
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● Watson and Crick’s semiconservative model of
replication predicts that when a double helix
replicates, each daughter molecule will have one old
strand (derived or “conserved” from the parent
molecule) and one newly made strand

● Competing models were the conservative model (the
two parent strands rejoin) and the dispersive model
(each strand is a mix of old and new)
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● Experiments by Matthew Meselson and Franklin
Stahl supported the semiconservative model
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● Franklin’s X-ray crystallographic images of DNA
enabled Watson to deduce that DNA was helical

● The X-ray images also enabled Watson to deduce
the width of the helix and the spacing of the
nitrogenous bases

● The pattern in the photo suggested that the DNA
molecule was made up of two strands, forming a
double helix
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Animation: DNA Double Helix
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Video: Stick Model of DNA
(Deoxyribonucleic Acid)
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Video: Surface Model of DNA
(Deoxyribonucleic Acid)
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● Watson and Crick built models of a double helix to
conform to the X-rays and chemistry of DNA

● Franklin had concluded that there were two outer
sugar-phosphate backbones, with the nitrogenous
bases paired in the molecule’s interior

● Watson built a model in which the backbones were
antiparallel (their subunits run in opposite
directions)
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● At first, Watson and Crick thought the bases paired
like with like (A with A, and so on), but such pairings
did not result in a uniform width

● Instead, pairing a purine (A or G) with a pyrimidine
(C or T) resulted in a uniform width consistent with
the X-ray data
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Figure 16.UN02

Purine + purine: too wide
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Purine + pyrimidine: width
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● Watson and Crick reasoned that the pairing was
more specific, dictated by the base structures

● They determined that adenine (A) paired only with
thymine (T), and guanine (G) paired only with
cytosine (C)

● The Watson-Crick model explains Chargaff’s rules:
in any organism the amount of A = T, and the amount
of G = C
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Concept 16.2: Many proteins work together in DNA
replication and repair

● The relationship between structure and function is
manifest in the double helix

● Watson and Crick noted that the specific base
pairing suggested a possible copying mechanism for
genetic material
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The Basic Principle: Base Pairing to a Template
Strand

● Since the two strands of DNA are complementary,
each strand acts as a template for building a new
strand in replication

● In DNA replication, the parent molecule unwinds,
and two new daughter strands are built based on
base-pairing rules
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● Watson and Crick’s semiconservative model of
replication predicts that when a double helix
replicates, each daughter molecule will have one old
strand (derived or “conserved” from the parent
molecule) and one newly made strand

● Competing models were the conservative model (the
two parent strands rejoin) and the dispersive model
(each strand is a mix of old and new)
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● Experiments by Matthew Meselson and Franklin
Stahl supported the semiconservative model
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● Franklin’s X-ray crystallographic images of DNA
enabled Watson to deduce that DNA was helical

● The X-ray images also enabled Watson to deduce
the width of the helix and the spacing of the
nitrogenous bases

● The pattern in the photo suggested that the DNA
molecule was made up of two strands, forming a
double helix
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Animation: DNA Double Helix
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Video: Stick Model of DNA
(Deoxyribonucleic Acid)
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Video: Surface Model of DNA
(Deoxyribonucleic Acid)
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● Watson and Crick built models of a double helix to
conform to the X-rays and chemistry of DNA

● Franklin had concluded that there were two outer
sugar-phosphate backbones, with the nitrogenous
bases paired in the molecule’s interior

● Watson built a model in which the backbones were
antiparallel (their subunits run in opposite
directions)
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● At first, Watson and Crick thought the bases paired
like with like (A with A, and so on), but such pairings
did not result in a uniform width

● Instead, pairing a purine (A or G) with a pyrimidine
(C or T) resulted in a uniform width consistent with
the X-ray data
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● Watson and Crick reasoned that the pairing was
more specific, dictated by the base structures

● They determined that adenine (A) paired only with
thymine (T), and guanine (G) paired only with
cytosine (C)

● The Watson-Crick model explains Chargaff’s rules:
in any organism the amount of A = T, and the amount
of G = C
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Concept 16.2: Many proteins work together in DNA
replication and repair

● The relationship between structure and function is
manifest in the double helix

● Watson and Crick noted that the specific base
pairing suggested a possible copying mechanism for
genetic material
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The Basic Principle: Base Pairing to a Template
Strand

● Since the two strands of DNA are complementary,
each strand acts as a template for building a new
strand in replication

● In DNA replication, the parent molecule unwinds,
and two new daughter strands are built based on
base-pairing rules
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Figure 16.9_3
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● Watson and Crick’s semiconservative model of
replication predicts that when a double helix
replicates, each daughter molecule will have one old
strand (derived or “conserved” from the parent
molecule) and one newly made strand

● Competing models were the conservative model (the
two parent strands rejoin) and the dispersive model
(each strand is a mix of old and new)
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● Experiments by Matthew Meselson and Franklin
Stahl supported the semiconservative model
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● Franklin’s X-ray crystallographic images of DNA
enabled Watson to deduce that DNA was helical

● The X-ray images also enabled Watson to deduce
the width of the helix and the spacing of the
nitrogenous bases

● The pattern in the photo suggested that the DNA
molecule was made up of two strands, forming a
double helix
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Animation: DNA Double Helix
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Video: Stick Model of DNA
(Deoxyribonucleic Acid)
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Video: Surface Model of DNA
(Deoxyribonucleic Acid)
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● Watson and Crick built models of a double helix to
conform to the X-rays and chemistry of DNA

● Franklin had concluded that there were two outer
sugar-phosphate backbones, with the nitrogenous
bases paired in the molecule’s interior

● Watson built a model in which the backbones were
antiparallel (their subunits run in opposite
directions)
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● At first, Watson and Crick thought the bases paired
like with like (A with A, and so on), but such pairings
did not result in a uniform width

● Instead, pairing a purine (A or G) with a pyrimidine
(C or T) resulted in a uniform width consistent with
the X-ray data
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Figure 16.UN02
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● Watson and Crick reasoned that the pairing was
more specific, dictated by the base structures

● They determined that adenine (A) paired only with
thymine (T), and guanine (G) paired only with
cytosine (C)

● The Watson-Crick model explains Chargaff’s rules:
in any organism the amount of A = T, and the amount
of G = C
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Concept 16.2: Many proteins work together in DNA
replication and repair

● The relationship between structure and function is
manifest in the double helix

● Watson and Crick noted that the specific base
pairing suggested a possible copying mechanism for
genetic material
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The Basic Principle: Base Pairing to a Template
Strand

● Since the two strands of DNA are complementary,
each strand acts as a template for building a new
strand in replication

● In DNA replication, the parent molecule unwinds,
and two new daughter strands are built based on
base-pairing rules
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● Watson and Crick’s semiconservative model of
replication predicts that when a double helix
replicates, each daughter molecule will have one old
strand (derived or “conserved” from the parent
molecule) and one newly made strand

● Competing models were the conservative model (the
two parent strands rejoin) and the dispersive model
(each strand is a mix of old and new)
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● Experiments by Matthew Meselson and Franklin
Stahl supported the semiconservative model
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● Franklin’s X-ray crystallographic images of DNA
enabled Watson to deduce that DNA was helical

● The X-ray images also enabled Watson to deduce
the width of the helix and the spacing of the
nitrogenous bases

● The pattern in the photo suggested that the DNA
molecule was made up of two strands, forming a
double helix
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Animation: DNA Double Helix
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Video: Stick Model of DNA
(Deoxyribonucleic Acid)
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Video: Surface Model of DNA
(Deoxyribonucleic Acid)
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● Watson and Crick built models of a double helix to
conform to the X-rays and chemistry of DNA

● Franklin had concluded that there were two outer
sugar-phosphate backbones, with the nitrogenous
bases paired in the molecule’s interior

● Watson built a model in which the backbones were
antiparallel (their subunits run in opposite
directions)
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● At first, Watson and Crick thought the bases paired
like with like (A with A, and so on), but such pairings
did not result in a uniform width

● Instead, pairing a purine (A or G) with a pyrimidine
(C or T) resulted in a uniform width consistent with
the X-ray data
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Figure 16.UN02
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● Watson and Crick reasoned that the pairing was
more specific, dictated by the base structures

● They determined that adenine (A) paired only with
thymine (T), and guanine (G) paired only with
cytosine (C)

● The Watson-Crick model explains Chargaff’s rules:
in any organism the amount of A = T, and the amount
of G = C
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Concept 16.2: Many proteins work together in DNA
replication and repair

● The relationship between structure and function is
manifest in the double helix

● Watson and Crick noted that the specific base
pairing suggested a possible copying mechanism for
genetic material
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The Basic Principle: Base Pairing to a Template
Strand

● Since the two strands of DNA are complementary,
each strand acts as a template for building a new
strand in replication

● In DNA replication, the parent molecule unwinds,
and two new daughter strands are built based on
base-pairing rules
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● Watson and Crick’s semiconservative model of
replication predicts that when a double helix
replicates, each daughter molecule will have one old
strand (derived or “conserved” from the parent
molecule) and one newly made strand

● Competing models were the conservative model (the
two parent strands rejoin) and the dispersive model
(each strand is a mix of old and new)
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● Experiments by Matthew Meselson and Franklin
Stahl supported the semiconservative model
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● Franklin’s X-ray crystallographic images of DNA
enabled Watson to deduce that DNA was helical

● The X-ray images also enabled Watson to deduce
the width of the helix and the spacing of the
nitrogenous bases

● The pattern in the photo suggested that the DNA
molecule was made up of two strands, forming a
double helix
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Animation: DNA Double Helix
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Video: Stick Model of DNA
(Deoxyribonucleic Acid)
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Video: Surface Model of DNA
(Deoxyribonucleic Acid)
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● Watson and Crick built models of a double helix to
conform to the X-rays and chemistry of DNA

● Franklin had concluded that there were two outer
sugar-phosphate backbones, with the nitrogenous
bases paired in the molecule’s interior

● Watson built a model in which the backbones were
antiparallel (their subunits run in opposite
directions)
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● At first, Watson and Crick thought the bases paired
like with like (A with A, and so on), but such pairings
did not result in a uniform width

● Instead, pairing a purine (A or G) with a pyrimidine
(C or T) resulted in a uniform width consistent with
the X-ray data
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Figure 16.UN02
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● Watson and Crick reasoned that the pairing was
more specific, dictated by the base structures

● They determined that adenine (A) paired only with
thymine (T), and guanine (G) paired only with
cytosine (C)

● The Watson-Crick model explains Chargaff’s rules:
in any organism the amount of A = T, and the amount
of G = C
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Concept 16.2: Many proteins work together in DNA
replication and repair

● The relationship between structure and function is
manifest in the double helix

● Watson and Crick noted that the specific base
pairing suggested a possible copying mechanism for
genetic material
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The Basic Principle: Base Pairing to a Template
Strand

● Since the two strands of DNA are complementary,
each strand acts as a template for building a new
strand in replication

● In DNA replication, the parent molecule unwinds,
and two new daughter strands are built based on
base-pairing rules
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Figure 16.9_3
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● Watson and Crick’s semiconservative model of
replication predicts that when a double helix
replicates, each daughter molecule will have one old
strand (derived or “conserved” from the parent
molecule) and one newly made strand

● Competing models were the conservative model (the
two parent strands rejoin) and the dispersive model
(each strand is a mix of old and new)
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● Experiments by Matthew Meselson and Franklin
Stahl supported the semiconservative model
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Figure 16.11b
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● Franklin’s X-ray crystallographic images of DNA
enabled Watson to deduce that DNA was helical

● The X-ray images also enabled Watson to deduce
the width of the helix and the spacing of the
nitrogenous bases

● The pattern in the photo suggested that the DNA
molecule was made up of two strands, forming a
double helix
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Animation: DNA Double Helix
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Video: Stick Model of DNA
(Deoxyribonucleic Acid)
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Video: Surface Model of DNA
(Deoxyribonucleic Acid)
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● Watson and Crick built models of a double helix to
conform to the X-rays and chemistry of DNA

● Franklin had concluded that there were two outer
sugar-phosphate backbones, with the nitrogenous
bases paired in the molecule’s interior

● Watson built a model in which the backbones were
antiparallel (their subunits run in opposite
directions)

 

© 2018 Pearson Education Ltd.

● At first, Watson and Crick thought the bases paired
like with like (A with A, and so on), but such pairings
did not result in a uniform width

● Instead, pairing a purine (A or G) with a pyrimidine
(C or T) resulted in a uniform width consistent with
the X-ray data
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Figure 16.UN02
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● Watson and Crick reasoned that the pairing was
more specific, dictated by the base structures

● They determined that adenine (A) paired only with
thymine (T), and guanine (G) paired only with
cytosine (C)

● The Watson-Crick model explains Chargaff’s rules:
in any organism the amount of A = T, and the amount
of G = C
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Concept 16.2: Many proteins work together in DNA
replication and repair

● The relationship between structure and function is
manifest in the double helix

● Watson and Crick noted that the specific base
pairing suggested a possible copying mechanism for
genetic material
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The Basic Principle: Base Pairing to a Template
Strand

● Since the two strands of DNA are complementary,
each strand acts as a template for building a new
strand in replication

● In DNA replication, the parent molecule unwinds,
and two new daughter strands are built based on
base-pairing rules
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● Watson and Crick’s semiconservative model of
replication predicts that when a double helix
replicates, each daughter molecule will have one old
strand (derived or “conserved” from the parent
molecule) and one newly made strand

● Competing models were the conservative model (the
two parent strands rejoin) and the dispersive model
(each strand is a mix of old and new)
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● Experiments by Matthew Meselson and Franklin
Stahl supported the semiconservative model
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● Franklin’s X-ray crystallographic images of DNA
enabled Watson to deduce that DNA was helical

● The X-ray images also enabled Watson to deduce
the width of the helix and the spacing of the
nitrogenous bases

● The pattern in the photo suggested that the DNA
molecule was made up of two strands, forming a
double helix
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Animation: DNA Double Helix
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Video: Stick Model of DNA
(Deoxyribonucleic Acid)
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Video: Surface Model of DNA
(Deoxyribonucleic Acid)
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● Watson and Crick built models of a double helix to
conform to the X-rays and chemistry of DNA

● Franklin had concluded that there were two outer
sugar-phosphate backbones, with the nitrogenous
bases paired in the molecule’s interior

● Watson built a model in which the backbones were
antiparallel (their subunits run in opposite
directions)
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● At first, Watson and Crick thought the bases paired
like with like (A with A, and so on), but such pairings
did not result in a uniform width

● Instead, pairing a purine (A or G) with a pyrimidine
(C or T) resulted in a uniform width consistent with
the X-ray data
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Figure 16.UN02

Purine + purine: too wide

Pyrimidine + pyrimidine: too narrow

Purine + pyrimidine: width
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● Watson and Crick reasoned that the pairing was
more specific, dictated by the base structures

● They determined that adenine (A) paired only with
thymine (T), and guanine (G) paired only with
cytosine (C)

● The Watson-Crick model explains Chargaff’s rules:
in any organism the amount of A = T, and the amount
of G = C
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Concept 16.2: Many proteins work together in DNA
replication and repair

● The relationship between structure and function is
manifest in the double helix

● Watson and Crick noted that the specific base
pairing suggested a possible copying mechanism for
genetic material
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The Basic Principle: Base Pairing to a Template
Strand

● Since the two strands of DNA are complementary,
each strand acts as a template for building a new
strand in replication

● In DNA replication, the parent molecule unwinds,
and two new daughter strands are built based on
base-pairing rules
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● Watson and Crick’s semiconservative model of
replication predicts that when a double helix
replicates, each daughter molecule will have one old
strand (derived or “conserved” from the parent
molecule) and one newly made strand

● Competing models were the conservative model (the
two parent strands rejoin) and the dispersive model
(each strand is a mix of old and new)
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● Experiments by Matthew Meselson and Franklin
Stahl supported the semiconservative model
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● Franklin’s X-ray crystallographic images of DNA
enabled Watson to deduce that DNA was helical

● The X-ray images also enabled Watson to deduce
the width of the helix and the spacing of the
nitrogenous bases

● The pattern in the photo suggested that the DNA
molecule was made up of two strands, forming a
double helix
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Animation: DNA Double Helix
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Video: Stick Model of DNA
(Deoxyribonucleic Acid)
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Video: Surface Model of DNA
(Deoxyribonucleic Acid)
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● Watson and Crick built models of a double helix to
conform to the X-rays and chemistry of DNA

● Franklin had concluded that there were two outer
sugar-phosphate backbones, with the nitrogenous
bases paired in the molecule’s interior

● Watson built a model in which the backbones were
antiparallel (their subunits run in opposite
directions)
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● At first, Watson and Crick thought the bases paired
like with like (A with A, and so on), but such pairings
did not result in a uniform width

● Instead, pairing a purine (A or G) with a pyrimidine
(C or T) resulted in a uniform width consistent with
the X-ray data
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Figure 16.UN02
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● Watson and Crick reasoned that the pairing was
more specific, dictated by the base structures

● They determined that adenine (A) paired only with
thymine (T), and guanine (G) paired only with
cytosine (C)

● The Watson-Crick model explains Chargaff’s rules:
in any organism the amount of A = T, and the amount
of G = C
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Concept 16.2: Many proteins work together in DNA
replication and repair

● The relationship between structure and function is
manifest in the double helix

● Watson and Crick noted that the specific base
pairing suggested a possible copying mechanism for
genetic material
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The Basic Principle: Base Pairing to a Template
Strand

● Since the two strands of DNA are complementary,
each strand acts as a template for building a new
strand in replication

● In DNA replication, the parent molecule unwinds,
and two new daughter strands are built based on
base-pairing rules
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● Watson and Crick’s semiconservative model of
replication predicts that when a double helix
replicates, each daughter molecule will have one old
strand (derived or “conserved” from the parent
molecule) and one newly made strand

● Competing models were the conservative model (the
two parent strands rejoin) and the dispersive model
(each strand is a mix of old and new)
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● Experiments by Matthew Meselson and Franklin
Stahl supported the semiconservative model
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● Franklin’s X-ray crystallographic images of DNA
enabled Watson to deduce that DNA was helical

● The X-ray images also enabled Watson to deduce
the width of the helix and the spacing of the
nitrogenous bases

● The pattern in the photo suggested that the DNA
molecule was made up of two strands, forming a
double helix
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Animation: DNA Double Helix
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Video: Stick Model of DNA
(Deoxyribonucleic Acid)
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Video: Surface Model of DNA
(Deoxyribonucleic Acid)
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● Watson and Crick built models of a double helix to
conform to the X-rays and chemistry of DNA

● Franklin had concluded that there were two outer
sugar-phosphate backbones, with the nitrogenous
bases paired in the molecule’s interior

● Watson built a model in which the backbones were
antiparallel (their subunits run in opposite
directions)
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● At first, Watson and Crick thought the bases paired
like with like (A with A, and so on), but such pairings
did not result in a uniform width

● Instead, pairing a purine (A or G) with a pyrimidine
(C or T) resulted in a uniform width consistent with
the X-ray data
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Figure 16.UN02

Purine + purine: too wide

Pyrimidine + pyrimidine: too narrow

Purine + pyrimidine: width
consistent with X-ray data
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● Watson and Crick reasoned that the pairing was
more specific, dictated by the base structures

● They determined that adenine (A) paired only with
thymine (T), and guanine (G) paired only with
cytosine (C)

● The Watson-Crick model explains Chargaff’s rules:
in any organism the amount of A = T, and the amount
of G = C
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Concept 16.2: Many proteins work together in DNA
replication and repair

● The relationship between structure and function is
manifest in the double helix

● Watson and Crick noted that the specific base
pairing suggested a possible copying mechanism for
genetic material
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The Basic Principle: Base Pairing to a Template
Strand

● Since the two strands of DNA are complementary,
each strand acts as a template for building a new
strand in replication

● In DNA replication, the parent molecule unwinds,
and two new daughter strands are built based on
base-pairing rules
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Figure 16.9_2
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Figure 16.9_3
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● Watson and Crick’s semiconservative model of
replication predicts that when a double helix
replicates, each daughter molecule will have one old
strand (derived or “conserved” from the parent
molecule) and one newly made strand

● Competing models were the conservative model (the
two parent strands rejoin) and the dispersive model
(each strand is a mix of old and new)
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● Experiments by Matthew Meselson and Franklin
Stahl supported the semiconservative model
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● Franklin’s X-ray crystallographic images of DNA
enabled Watson to deduce that DNA was helical

● The X-ray images also enabled Watson to deduce
the width of the helix and the spacing of the
nitrogenous bases

● The pattern in the photo suggested that the DNA
molecule was made up of two strands, forming a
double helix
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Animation: DNA Double Helix
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Video: Stick Model of DNA
(Deoxyribonucleic Acid)
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Video: Surface Model of DNA
(Deoxyribonucleic Acid)
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● Watson and Crick built models of a double helix to
conform to the X-rays and chemistry of DNA

● Franklin had concluded that there were two outer
sugar-phosphate backbones, with the nitrogenous
bases paired in the molecule’s interior

● Watson built a model in which the backbones were
antiparallel (their subunits run in opposite
directions)
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● At first, Watson and Crick thought the bases paired
like with like (A with A, and so on), but such pairings
did not result in a uniform width

● Instead, pairing a purine (A or G) with a pyrimidine
(C or T) resulted in a uniform width consistent with
the X-ray data
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● Watson and Crick reasoned that the pairing was
more specific, dictated by the base structures

● They determined that adenine (A) paired only with
thymine (T), and guanine (G) paired only with
cytosine (C)

● The Watson-Crick model explains Chargaff’s rules:
in any organism the amount of A = T, and the amount
of G = C
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Concept 16.2: Many proteins work together in DNA
replication and repair

● The relationship between structure and function is
manifest in the double helix

● Watson and Crick noted that the specific base
pairing suggested a possible copying mechanism for
genetic material
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The Basic Principle: Base Pairing to a Template
Strand

● Since the two strands of DNA are complementary,
each strand acts as a template for building a new
strand in replication

● In DNA replication, the parent molecule unwinds,
and two new daughter strands are built based on
base-pairing rules
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Figure 16.9_3
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● Watson and Crick’s semiconservative model of
replication predicts that when a double helix
replicates, each daughter molecule will have one old
strand (derived or “conserved” from the parent
molecule) and one newly made strand

● Competing models were the conservative model (the
two parent strands rejoin) and the dispersive model
(each strand is a mix of old and new)
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● Experiments by Matthew Meselson and Franklin
Stahl supported the semiconservative model
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DNA Replication: A Closer Look

● The copying of DNA is remarkable in its speed and
accuracy

● More than a dozen enzymes and other proteins
participate in DNA replication
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Getting Started

● Replication begins at particular sites called origins
of replication, where the two DNA strands are
separated, opening up a replication “bubble”

● A eukaryotic chromosome may have hundreds or
even thousands of origins of replication

● Replication proceeds in both directions from each
origin, until the entire molecule is copied
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(a) Origin of replication in an E. coli cell

Origin of
replication

Double-
strande
dDNA
molecule

Two daughter
DNA
molecules

Parental (template) strand
Daughter (new)
strand

Replicatio
n

fork
Replicatio
n
bubble

(b) Origins of replication in a eukaryotic cell

Origin of
replication

Parental
(template) strand

Double-
strandedDNA molecule

Daughter
(new)
strand

Bubbl
e

Replication fork

Two daughter DNA molecules

0.
5
µ
m

0.
25
µ
m

© 2018 Pearson Education Ltd.

Figure 16.12a
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Figure 16.12b
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Animation: Origins of Replication
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● At the end of each replication bubble is a
replication fork, a Y-shaped region where new DNA
strands are elongating

● Helicases are enzymes that untwist the double helix
at the replication forks

● Single-strand binding proteins bind to and
stabilize single-stranded DNA

● Topoisomerase relieves the strain of twisting of the
double helix by breaking, swiveling, and rejoining
DNA strands
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Synthesizing a New DNA Strand

● DNA polymerases require a primer to which they can
add nucleotides

● The initial nucleotide strand is a short RNA primer
● This is synthesized by the enzyme primase
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● Primase can start an RNA chain from scratch and
adds RNA nucleotides one at a time using the
parental DNA as a template

● The primer is short (5–10 nucleotides long), and the
3′ end serves as the starting point for the new DNA
strand
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● Enzymes called DNA polymerases catalyze the
synthesis of new DNA at a replication fork

● Most DNA polymerases require a primer and a DNA
template strand

● The rate of elongation is about 500 nucleotides per
second in bacteria and 50 per second in human cells
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● Each nucleotide that is added to a growing DNA
strand is a nucleoside triphosphate

● dATP supplies adenine to DNA and is similar to the
ATP of energy metabolism

● The difference is in their sugars: dATP has
deoxyribose while ATP has ribose

● As each monomer joins the DNA strand, via a
dehydration reaction, it loses two phosphate groups
as a molecule of pyrophosphate  
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Antiparallel Elongation

● The antiparallel structure of the double helix affects
replication

● DNA polymerases add nucleotides only to the free 3′
end of a growing strand; therefore, a new DNA
strand can elongate only in the 5′ to 3′ direction
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● Along one template strand of DNA, the DNA
polymerase synthesizes a leading strand
continuously, moving toward the replication fork
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Animation: Leading Strand
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● To elongate the other new strand, called the lagging
strand, DNA polymerase must work in the direction
away from the replication fork

● The lagging strand is synthesized as a series of
segments called Okazaki fragments, which are
joined together by DNA ligase
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DNA Replication: A Closer Look

● The copying of DNA is remarkable in its speed and
accuracy

● More than a dozen enzymes and other proteins
participate in DNA replication
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Getting Started

● Replication begins at particular sites called origins
of replication, where the two DNA strands are
separated, opening up a replication “bubble”

● A eukaryotic chromosome may have hundreds or
even thousands of origins of replication

● Replication proceeds in both directions from each
origin, until the entire molecule is copied
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Figure 16.12a
(a) Origin of replication in an E. coli cell
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Figure 16.12b
(b) Origins of replication in a eukaryotic cell
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Animation: Origins of Replication

© 2018 Pearson Education Ltd.

● At the end of each replication bubble is a
replication fork, a Y-shaped region where new DNA
strands are elongating

● Helicases are enzymes that untwist the double helix
at the replication forks

● Single-strand binding proteins bind to and
stabilize single-stranded DNA

● Topoisomerase relieves the strain of twisting of the
double helix by breaking, swiveling, and rejoining
DNA strands
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Synthesizing a New DNA Strand

● DNA polymerases require a primer to which they can
add nucleotides

● The initial nucleotide strand is a short RNA primer
● This is synthesized by the enzyme primase
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● Primase can start an RNA chain from scratch and
adds RNA nucleotides one at a time using the
parental DNA as a template

● The primer is short (5–10 nucleotides long), and the
3′ end serves as the starting point for the new DNA
strand
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● Enzymes called DNA polymerases catalyze the
synthesis of new DNA at a replication fork

● Most DNA polymerases require a primer and a DNA
template strand

● The rate of elongation is about 500 nucleotides per
second in bacteria and 50 per second in human cells
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● Each nucleotide that is added to a growing DNA
strand is a nucleoside triphosphate

● dATP supplies adenine to DNA and is similar to the
ATP of energy metabolism

● The difference is in their sugars: dATP has
deoxyribose while ATP has ribose

● As each monomer joins the DNA strand, via a
dehydration reaction, it loses two phosphate groups
as a molecule of pyrophosphate  
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Antiparallel Elongation

● The antiparallel structure of the double helix affects
replication

● DNA polymerases add nucleotides only to the free 3′
end of a growing strand; therefore, a new DNA
strand can elongate only in the 5′ to 3′ direction
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● Along one template strand of DNA, the DNA
polymerase synthesizes a leading strand
continuously, moving toward the replication fork
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Animation: Leading Strand
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● To elongate the other new strand, called the lagging
strand, DNA polymerase must work in the direction
away from the replication fork

● The lagging strand is synthesized as a series of
segments called Okazaki fragments, which are
joined together by DNA ligase
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DNA Replication: A Closer Look

● The copying of DNA is remarkable in its speed and
accuracy

● More than a dozen enzymes and other proteins
participate in DNA replication
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Getting Started

● Replication begins at particular sites called origins
of replication, where the two DNA strands are
separated, opening up a replication “bubble”

● A eukaryotic chromosome may have hundreds or
even thousands of origins of replication

● Replication proceeds in both directions from each
origin, until the entire molecule is copied
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Figure 16.12
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Origin of
replication

Double-
strande
dDNA
molecule

Two daughter
DNA
molecules

Parental (template) strand
Daughter (new)
strand

Replicatio
n

fork
Replicatio
n
bubble

(b) Origins of replication in a eukaryotic cell

Origin of
replication

Parental
(template) strand

Double-
strandedDNA molecule

Daughter
(new)
strand

Bubbl
e

Replication fork

Two daughter DNA molecules

0.
5
µ
m

0.
25
µ
m

© 2018 Pearson Education Ltd.

Figure 16.12a
(a) Origin of replication in an E. coli cell

Origin of
replicatio
n

Double-
stranded
DNA
molecul
e
Two daughter
DNA molecules

Parental (template) strand
Daughter (new)
strand

Replication
fork

Replication
bubble

0.
5
µ
m© 2018 Pearson Education Ltd.

Figure 16.12aa

0.
5
µ
m

© 2018 Pearson Education Ltd.

Figure 16.12b
(b) Origins of replication in a eukaryotic cell
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Animation: Origins of Replication
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● At the end of each replication bubble is a
replication fork, a Y-shaped region where new DNA
strands are elongating

● Helicases are enzymes that untwist the double helix
at the replication forks

● Single-strand binding proteins bind to and
stabilize single-stranded DNA

● Topoisomerase relieves the strain of twisting of the
double helix by breaking, swiveling, and rejoining
DNA strands
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Synthesizing a New DNA Strand

● DNA polymerases require a primer to which they can
add nucleotides

● The initial nucleotide strand is a short RNA primer
● This is synthesized by the enzyme primase
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● Primase can start an RNA chain from scratch and
adds RNA nucleotides one at a time using the
parental DNA as a template

● The primer is short (5–10 nucleotides long), and the
3′ end serves as the starting point for the new DNA
strand
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● Enzymes called DNA polymerases catalyze the
synthesis of new DNA at a replication fork

● Most DNA polymerases require a primer and a DNA
template strand

● The rate of elongation is about 500 nucleotides per
second in bacteria and 50 per second in human cells
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● Each nucleotide that is added to a growing DNA
strand is a nucleoside triphosphate

● dATP supplies adenine to DNA and is similar to the
ATP of energy metabolism

● The difference is in their sugars: dATP has
deoxyribose while ATP has ribose

● As each monomer joins the DNA strand, via a
dehydration reaction, it loses two phosphate groups
as a molecule of pyrophosphate  
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Antiparallel Elongation

● The antiparallel structure of the double helix affects
replication

● DNA polymerases add nucleotides only to the free 3′
end of a growing strand; therefore, a new DNA
strand can elongate only in the 5′ to 3′ direction
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● Along one template strand of DNA, the DNA
polymerase synthesizes a leading strand
continuously, moving toward the replication fork
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Animation: Leading Strand
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● To elongate the other new strand, called the lagging
strand, DNA polymerase must work in the direction
away from the replication fork

● The lagging strand is synthesized as a series of
segments called Okazaki fragments, which are
joined together by DNA ligase
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DNA Replication: A Closer Look

● The copying of DNA is remarkable in its speed and
accuracy

● More than a dozen enzymes and other proteins
participate in DNA replication
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Getting Started

● Replication begins at particular sites called origins
of replication, where the two DNA strands are
separated, opening up a replication “bubble”

● A eukaryotic chromosome may have hundreds or
even thousands of origins of replication

● Replication proceeds in both directions from each
origin, until the entire molecule is copied
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Figure 16.12

(a) Origin of replication in an E. coli cell
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Figure 16.12a
(a) Origin of replication in an E. coli cell
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Figure 16.12b
(b) Origins of replication in a eukaryotic cell
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Animation: Origins of Replication
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● At the end of each replication bubble is a
replication fork, a Y-shaped region where new DNA
strands are elongating

● Helicases are enzymes that untwist the double helix
at the replication forks

● Single-strand binding proteins bind to and
stabilize single-stranded DNA

● Topoisomerase relieves the strain of twisting of the
double helix by breaking, swiveling, and rejoining
DNA strands
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Figure 16.13
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Synthesizing a New DNA Strand

● DNA polymerases require a primer to which they can
add nucleotides

● The initial nucleotide strand is a short RNA primer
● This is synthesized by the enzyme primase
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● Primase can start an RNA chain from scratch and
adds RNA nucleotides one at a time using the
parental DNA as a template

● The primer is short (5–10 nucleotides long), and the
3′ end serves as the starting point for the new DNA
strand
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● Enzymes called DNA polymerases catalyze the
synthesis of new DNA at a replication fork

● Most DNA polymerases require a primer and a DNA
template strand

● The rate of elongation is about 500 nucleotides per
second in bacteria and 50 per second in human cells
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● Each nucleotide that is added to a growing DNA
strand is a nucleoside triphosphate

● dATP supplies adenine to DNA and is similar to the
ATP of energy metabolism

● The difference is in their sugars: dATP has
deoxyribose while ATP has ribose

● As each monomer joins the DNA strand, via a
dehydration reaction, it loses two phosphate groups
as a molecule of pyrophosphate  
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Antiparallel Elongation

● The antiparallel structure of the double helix affects
replication

● DNA polymerases add nucleotides only to the free 3′
end of a growing strand; therefore, a new DNA
strand can elongate only in the 5′ to 3′ direction
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● Along one template strand of DNA, the DNA
polymerase synthesizes a leading strand
continuously, moving toward the replication fork
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Animation: Leading Strand
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● To elongate the other new strand, called the lagging
strand, DNA polymerase must work in the direction
away from the replication fork

● The lagging strand is synthesized as a series of
segments called Okazaki fragments, which are
joined together by DNA ligase
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DNA Replication: A Closer Look

● The copying of DNA is remarkable in its speed and
accuracy

● More than a dozen enzymes and other proteins
participate in DNA replication
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Getting Started

● Replication begins at particular sites called origins
of replication, where the two DNA strands are
separated, opening up a replication “bubble”

● A eukaryotic chromosome may have hundreds or
even thousands of origins of replication

● Replication proceeds in both directions from each
origin, until the entire molecule is copied
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Figure 16.12

(a) Origin of replication in an E. coli cell
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Figure 16.12a
(a) Origin of replication in an E. coli cell
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Figure 16.12b
(b) Origins of replication in a eukaryotic cell
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Animation: Origins of Replication
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● At the end of each replication bubble is a
replication fork, a Y-shaped region where new DNA
strands are elongating

● Helicases are enzymes that untwist the double helix
at the replication forks

● Single-strand binding proteins bind to and
stabilize single-stranded DNA

● Topoisomerase relieves the strain of twisting of the
double helix by breaking, swiveling, and rejoining
DNA strands
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Synthesizing a New DNA Strand

● DNA polymerases require a primer to which they can
add nucleotides

● The initial nucleotide strand is a short RNA primer
● This is synthesized by the enzyme primase
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● Primase can start an RNA chain from scratch and
adds RNA nucleotides one at a time using the
parental DNA as a template

● The primer is short (5–10 nucleotides long), and the
3′ end serves as the starting point for the new DNA
strand
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● Enzymes called DNA polymerases catalyze the
synthesis of new DNA at a replication fork

● Most DNA polymerases require a primer and a DNA
template strand

● The rate of elongation is about 500 nucleotides per
second in bacteria and 50 per second in human cells
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● Each nucleotide that is added to a growing DNA
strand is a nucleoside triphosphate

● dATP supplies adenine to DNA and is similar to the
ATP of energy metabolism

● The difference is in their sugars: dATP has
deoxyribose while ATP has ribose

● As each monomer joins the DNA strand, via a
dehydration reaction, it loses two phosphate groups
as a molecule of pyrophosphate  

© 2018 Pearson Education Ltd.

Figure 16.14
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Antiparallel Elongation

● The antiparallel structure of the double helix affects
replication

● DNA polymerases add nucleotides only to the free 3′
end of a growing strand; therefore, a new DNA
strand can elongate only in the 5′ to 3′ direction
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Figure 16.15b
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● Along one template strand of DNA, the DNA
polymerase synthesizes a leading strand
continuously, moving toward the replication fork
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Animation: Leading Strand
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● To elongate the other new strand, called the lagging
strand, DNA polymerase must work in the direction
away from the replication fork

● The lagging strand is synthesized as a series of
segments called Okazaki fragments, which are
joined together by DNA ligase
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DNA Replication: A Closer Look

● The copying of DNA is remarkable in its speed and
accuracy

● More than a dozen enzymes and other proteins
participate in DNA replication
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Getting Started

● Replication begins at particular sites called origins
of replication, where the two DNA strands are
separated, opening up a replication “bubble”

● A eukaryotic chromosome may have hundreds or
even thousands of origins of replication

● Replication proceeds in both directions from each
origin, until the entire molecule is copied

 

© 2018 Pearson Education Ltd.

Figure 16.12

(a) Origin of replication in an E. coli cell
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Figure 16.12a
(a) Origin of replication in an E. coli cell
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Figure 16.12b
(b) Origins of replication in a eukaryotic cell
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Animation: Origins of Replication
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● At the end of each replication bubble is a
replication fork, a Y-shaped region where new DNA
strands are elongating

● Helicases are enzymes that untwist the double helix
at the replication forks

● Single-strand binding proteins bind to and
stabilize single-stranded DNA

● Topoisomerase relieves the strain of twisting of the
double helix by breaking, swiveling, and rejoining
DNA strands
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Synthesizing a New DNA Strand

● DNA polymerases require a primer to which they can
add nucleotides

● The initial nucleotide strand is a short RNA primer
● This is synthesized by the enzyme primase

 

© 2018 Pearson Education Ltd.

● Primase can start an RNA chain from scratch and
adds RNA nucleotides one at a time using the
parental DNA as a template

● The primer is short (5–10 nucleotides long), and the
3′ end serves as the starting point for the new DNA
strand
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● Enzymes called DNA polymerases catalyze the
synthesis of new DNA at a replication fork

● Most DNA polymerases require a primer and a DNA
template strand

● The rate of elongation is about 500 nucleotides per
second in bacteria and 50 per second in human cells
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● Each nucleotide that is added to a growing DNA
strand is a nucleoside triphosphate

● dATP supplies adenine to DNA and is similar to the
ATP of energy metabolism

● The difference is in their sugars: dATP has
deoxyribose while ATP has ribose

● As each monomer joins the DNA strand, via a
dehydration reaction, it loses two phosphate groups
as a molecule of pyrophosphate  
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Antiparallel Elongation

● The antiparallel structure of the double helix affects
replication

● DNA polymerases add nucleotides only to the free 3′
end of a growing strand; therefore, a new DNA
strand can elongate only in the 5′ to 3′ direction
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● Along one template strand of DNA, the DNA
polymerase synthesizes a leading strand
continuously, moving toward the replication fork
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Animation: Leading Strand
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● To elongate the other new strand, called the lagging
strand, DNA polymerase must work in the direction
away from the replication fork

● The lagging strand is synthesized as a series of
segments called Okazaki fragments, which are
joined together by DNA ligase
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DNA Replication: A Closer Look

● The copying of DNA is remarkable in its speed and
accuracy

● More than a dozen enzymes and other proteins
participate in DNA replication
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Getting Started

● Replication begins at particular sites called origins
of replication, where the two DNA strands are
separated, opening up a replication “bubble”

● A eukaryotic chromosome may have hundreds or
even thousands of origins of replication

● Replication proceeds in both directions from each
origin, until the entire molecule is copied
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Figure 16.12

(a) Origin of replication in an E. coli cell
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Figure 16.12a
(a) Origin of replication in an E. coli cell
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Figure 16.12b
(b) Origins of replication in a eukaryotic cell
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Animation: Origins of Replication
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● At the end of each replication bubble is a
replication fork, a Y-shaped region where new DNA
strands are elongating

● Helicases are enzymes that untwist the double helix
at the replication forks

● Single-strand binding proteins bind to and
stabilize single-stranded DNA

● Topoisomerase relieves the strain of twisting of the
double helix by breaking, swiveling, and rejoining
DNA strands
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Figure 16.13
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Synthesizing a New DNA Strand

● DNA polymerases require a primer to which they can
add nucleotides

● The initial nucleotide strand is a short RNA primer
● This is synthesized by the enzyme primase
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● Primase can start an RNA chain from scratch and
adds RNA nucleotides one at a time using the
parental DNA as a template

● The primer is short (5–10 nucleotides long), and the
3′ end serves as the starting point for the new DNA
strand
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● Enzymes called DNA polymerases catalyze the
synthesis of new DNA at a replication fork

● Most DNA polymerases require a primer and a DNA
template strand

● The rate of elongation is about 500 nucleotides per
second in bacteria and 50 per second in human cells
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● Each nucleotide that is added to a growing DNA
strand is a nucleoside triphosphate

● dATP supplies adenine to DNA and is similar to the
ATP of energy metabolism

● The difference is in their sugars: dATP has
deoxyribose while ATP has ribose

● As each monomer joins the DNA strand, via a
dehydration reaction, it loses two phosphate groups
as a molecule of pyrophosphate  
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Antiparallel Elongation

● The antiparallel structure of the double helix affects
replication

● DNA polymerases add nucleotides only to the free 3′
end of a growing strand; therefore, a new DNA
strand can elongate only in the 5′ to 3′ direction
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● Along one template strand of DNA, the DNA
polymerase synthesizes a leading strand
continuously, moving toward the replication fork
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Animation: Leading Strand
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● To elongate the other new strand, called the lagging
strand, DNA polymerase must work in the direction
away from the replication fork

● The lagging strand is synthesized as a series of
segments called Okazaki fragments, which are
joined together by DNA ligase
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DNA Replication: A Closer Look

● The copying of DNA is remarkable in its speed and
accuracy

● More than a dozen enzymes and other proteins
participate in DNA replication
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Getting Started

● Replication begins at particular sites called origins
of replication, where the two DNA strands are
separated, opening up a replication “bubble”

● A eukaryotic chromosome may have hundreds or
even thousands of origins of replication

● Replication proceeds in both directions from each
origin, until the entire molecule is copied
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Figure 16.12

(a) Origin of replication in an E. coli cell
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Figure 16.12a
(a) Origin of replication in an E. coli cell
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Figure 16.12b
(b) Origins of replication in a eukaryotic cell
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Animation: Origins of Replication
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● At the end of each replication bubble is a
replication fork, a Y-shaped region where new DNA
strands are elongating

● Helicases are enzymes that untwist the double helix
at the replication forks

● Single-strand binding proteins bind to and
stabilize single-stranded DNA

● Topoisomerase relieves the strain of twisting of the
double helix by breaking, swiveling, and rejoining
DNA strands
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Figure 16.13
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Synthesizing a New DNA Strand

● DNA polymerases require a primer to which they can
add nucleotides

● The initial nucleotide strand is a short RNA primer
● This is synthesized by the enzyme primase
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● Primase can start an RNA chain from scratch and
adds RNA nucleotides one at a time using the
parental DNA as a template

● The primer is short (5–10 nucleotides long), and the
3′ end serves as the starting point for the new DNA
strand

 

© 2018 Pearson Education Ltd.

● Enzymes called DNA polymerases catalyze the
synthesis of new DNA at a replication fork

● Most DNA polymerases require a primer and a DNA
template strand

● The rate of elongation is about 500 nucleotides per
second in bacteria and 50 per second in human cells
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● Each nucleotide that is added to a growing DNA
strand is a nucleoside triphosphate

● dATP supplies adenine to DNA and is similar to the
ATP of energy metabolism

● The difference is in their sugars: dATP has
deoxyribose while ATP has ribose

● As each monomer joins the DNA strand, via a
dehydration reaction, it loses two phosphate groups
as a molecule of pyrophosphate  
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Antiparallel Elongation

● The antiparallel structure of the double helix affects
replication

● DNA polymerases add nucleotides only to the free 3′
end of a growing strand; therefore, a new DNA
strand can elongate only in the 5′ to 3′ direction
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Figure 16.15b
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● Along one template strand of DNA, the DNA
polymerase synthesizes a leading strand
continuously, moving toward the replication fork
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Animation: Leading Strand
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● To elongate the other new strand, called the lagging
strand, DNA polymerase must work in the direction
away from the replication fork

● The lagging strand is synthesized as a series of
segments called Okazaki fragments, which are
joined together by DNA ligase

 

© 2018 Pearson Education Ltd.

Figure 16.16

Leadin
g
strand

Overvie
wOrigin of replication

Lagging
strand

Laggin
g
strand

Leadin
g
strand

Overall directions
of replication

RNA primer
for fragment
2 Okazaki

fragment 2

Templat
e
strand

RNA primer
for fragment

1

Okazaki
fragment 1

Overall direction of replication

Origin of
replication

Primer for
leading
strand

Primase makes
RNA primer.  

DNA pol III
makes Okazaki
fragment 1.

Fragment
2
is primed.

DNA ligase forms
bonds between
DNA fragments.

DNA pol I
replaces
RNA
with DNA.

DNA pol III
detaches. The

lagging
strand is
complete.

2
1

2

1

1

2
1

1

2
1

5
′3

′3
′

5
′

3
′ 5

′ 5
′

5
′ 3

′
5
′

3
′5
′

3
′5
′

3
′

3
′

5
′

3
′5
′

3
′

3
′

3
′5
′

5
′

5
′

3
′5
′

3
′

1

2

3

6

5

7

4

© 2018 Pearson Education Ltd.

Figure 16.16a

Overview
Origin of replication

Leading
strand

Lagging strand
2 1

Lagging
strand

Leading
strand

Overall directions
of replication

© 2018 Pearson Education Ltd.

Figure 16.16b_1

Primase makes
RNA primer.  Origin of

replicatio
n

Template
strand

3
′

5
′

3
′ 5

′
3
′5
′

1 Primer
for
leading
strand

© 2018 Pearson Education Ltd.

Figure 16.16b_2

Primase makes
RNA primer.  Origin of

replicatio
n

DNA pol III
makes Okazaki
fragment 1.

Template
strand

RNA primer
for fragment 1

3
′

3
′

5
′

3
′ 5

′
3
′5
′

5
′ 1 3

′
5
′

3
′5
′

1

2

Primer
for
leading
strand

© 2018 Pearson Education Ltd.

Figure 16.16b_3

Origin of
replicatio
n

Template
strand

3
′

5
′

3
′ 5 3

′5

1 Primase makes
RNA primer.  

Primer
for
leading
strand

↳ 5- 3.



model

© 2018 Pearson Education Ltd.

DNA Replication: A Closer Look

● The copying of DNA is remarkable in its speed and
accuracy

● More than a dozen enzymes and other proteins
participate in DNA replication
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Getting Started

● Replication begins at particular sites called origins
of replication, where the two DNA strands are
separated, opening up a replication “bubble”

● A eukaryotic chromosome may have hundreds or
even thousands of origins of replication

● Replication proceeds in both directions from each
origin, until the entire molecule is copied
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Figure 16.12

(a) Origin of replication in an E. coli cell
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Figure 16.12a
(a) Origin of replication in an E. coli cell
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Figure 16.12b
(b) Origins of replication in a eukaryotic cell
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Animation: Origins of Replication
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● At the end of each replication bubble is a
replication fork, a Y-shaped region where new DNA
strands are elongating

● Helicases are enzymes that untwist the double helix
at the replication forks

● Single-strand binding proteins bind to and
stabilize single-stranded DNA

● Topoisomerase relieves the strain of twisting of the
double helix by breaking, swiveling, and rejoining
DNA strands
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Synthesizing a New DNA Strand

● DNA polymerases require a primer to which they can
add nucleotides

● The initial nucleotide strand is a short RNA primer
● This is synthesized by the enzyme primase
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● Primase can start an RNA chain from scratch and
adds RNA nucleotides one at a time using the
parental DNA as a template

● The primer is short (5–10 nucleotides long), and the
3′ end serves as the starting point for the new DNA
strand
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● Enzymes called DNA polymerases catalyze the
synthesis of new DNA at a replication fork

● Most DNA polymerases require a primer and a DNA
template strand

● The rate of elongation is about 500 nucleotides per
second in bacteria and 50 per second in human cells
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● Each nucleotide that is added to a growing DNA
strand is a nucleoside triphosphate

● dATP supplies adenine to DNA and is similar to the
ATP of energy metabolism

● The difference is in their sugars: dATP has
deoxyribose while ATP has ribose

● As each monomer joins the DNA strand, via a
dehydration reaction, it loses two phosphate groups
as a molecule of pyrophosphate  
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Antiparallel Elongation

● The antiparallel structure of the double helix affects
replication

● DNA polymerases add nucleotides only to the free 3′
end of a growing strand; therefore, a new DNA
strand can elongate only in the 5′ to 3′ direction
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● Along one template strand of DNA, the DNA
polymerase synthesizes a leading strand
continuously, moving toward the replication fork
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Animation: Leading Strand
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● To elongate the other new strand, called the lagging
strand, DNA polymerase must work in the direction
away from the replication fork

● The lagging strand is synthesized as a series of
segments called Okazaki fragments, which are
joined together by DNA ligase
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DNA Replication: A Closer Look

● The copying of DNA is remarkable in its speed and
accuracy

● More than a dozen enzymes and other proteins
participate in DNA replication
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Getting Started

● Replication begins at particular sites called origins
of replication, where the two DNA strands are
separated, opening up a replication “bubble”

● A eukaryotic chromosome may have hundreds or
even thousands of origins of replication

● Replication proceeds in both directions from each
origin, until the entire molecule is copied

 

© 2018 Pearson Education Ltd.

Figure 16.12

(a) Origin of replication in an E. coli cell
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Figure 16.12a
(a) Origin of replication in an E. coli cell
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Figure 16.12b
(b) Origins of replication in a eukaryotic cell
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Animation: Origins of Replication
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● At the end of each replication bubble is a
replication fork, a Y-shaped region where new DNA
strands are elongating

● Helicases are enzymes that untwist the double helix
at the replication forks

● Single-strand binding proteins bind to and
stabilize single-stranded DNA

● Topoisomerase relieves the strain of twisting of the
double helix by breaking, swiveling, and rejoining
DNA strands
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Figure 16.13
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Synthesizing a New DNA Strand

● DNA polymerases require a primer to which they can
add nucleotides

● The initial nucleotide strand is a short RNA primer
● This is synthesized by the enzyme primase
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● Primase can start an RNA chain from scratch and
adds RNA nucleotides one at a time using the
parental DNA as a template

● The primer is short (5–10 nucleotides long), and the
3′ end serves as the starting point for the new DNA
strand
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● Enzymes called DNA polymerases catalyze the
synthesis of new DNA at a replication fork

● Most DNA polymerases require a primer and a DNA
template strand

● The rate of elongation is about 500 nucleotides per
second in bacteria and 50 per second in human cells
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● Each nucleotide that is added to a growing DNA
strand is a nucleoside triphosphate

● dATP supplies adenine to DNA and is similar to the
ATP of energy metabolism

● The difference is in their sugars: dATP has
deoxyribose while ATP has ribose

● As each monomer joins the DNA strand, via a
dehydration reaction, it loses two phosphate groups
as a molecule of pyrophosphate  
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Antiparallel Elongation

● The antiparallel structure of the double helix affects
replication

● DNA polymerases add nucleotides only to the free 3′
end of a growing strand; therefore, a new DNA
strand can elongate only in the 5′ to 3′ direction
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● Along one template strand of DNA, the DNA
polymerase synthesizes a leading strand
continuously, moving toward the replication fork
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Animation: Leading Strand
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● To elongate the other new strand, called the lagging
strand, DNA polymerase must work in the direction
away from the replication fork

● The lagging strand is synthesized as a series of
segments called Okazaki fragments, which are
joined together by DNA ligase
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Figure 16.16
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DNA Replication: A Closer Look

● The copying of DNA is remarkable in its speed and
accuracy

● More than a dozen enzymes and other proteins
participate in DNA replication
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Getting Started

● Replication begins at particular sites called origins
of replication, where the two DNA strands are
separated, opening up a replication “bubble”

● A eukaryotic chromosome may have hundreds or
even thousands of origins of replication

● Replication proceeds in both directions from each
origin, until the entire molecule is copied
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Figure 16.12

(a) Origin of replication in an E. coli cell
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Figure 16.12a
(a) Origin of replication in an E. coli cell
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Figure 16.12b
(b) Origins of replication in a eukaryotic cell
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Animation: Origins of Replication
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● At the end of each replication bubble is a
replication fork, a Y-shaped region where new DNA
strands are elongating

● Helicases are enzymes that untwist the double helix
at the replication forks

● Single-strand binding proteins bind to and
stabilize single-stranded DNA

● Topoisomerase relieves the strain of twisting of the
double helix by breaking, swiveling, and rejoining
DNA strands
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Figure 16.13
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Synthesizing a New DNA Strand

● DNA polymerases require a primer to which they can
add nucleotides

● The initial nucleotide strand is a short RNA primer
● This is synthesized by the enzyme primase
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● Primase can start an RNA chain from scratch and
adds RNA nucleotides one at a time using the
parental DNA as a template

● The primer is short (5–10 nucleotides long), and the
3′ end serves as the starting point for the new DNA
strand
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● Enzymes called DNA polymerases catalyze the
synthesis of new DNA at a replication fork

● Most DNA polymerases require a primer and a DNA
template strand

● The rate of elongation is about 500 nucleotides per
second in bacteria and 50 per second in human cells
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● Each nucleotide that is added to a growing DNA
strand is a nucleoside triphosphate

● dATP supplies adenine to DNA and is similar to the
ATP of energy metabolism

● The difference is in their sugars: dATP has
deoxyribose while ATP has ribose

● As each monomer joins the DNA strand, via a
dehydration reaction, it loses two phosphate groups
as a molecule of pyrophosphate  
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Antiparallel Elongation

● The antiparallel structure of the double helix affects
replication

● DNA polymerases add nucleotides only to the free 3′
end of a growing strand; therefore, a new DNA
strand can elongate only in the 5′ to 3′ direction
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● Along one template strand of DNA, the DNA
polymerase synthesizes a leading strand
continuously, moving toward the replication fork
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Animation: Leading Strand
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● To elongate the other new strand, called the lagging
strand, DNA polymerase must work in the direction
away from the replication fork

● The lagging strand is synthesized as a series of
segments called Okazaki fragments, which are
joined together by DNA ligase
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DNA Replication: A Closer Look

● The copying of DNA is remarkable in its speed and
accuracy

● More than a dozen enzymes and other proteins
participate in DNA replication
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Getting Started

● Replication begins at particular sites called origins
of replication, where the two DNA strands are
separated, opening up a replication “bubble”

● A eukaryotic chromosome may have hundreds or
even thousands of origins of replication

● Replication proceeds in both directions from each
origin, until the entire molecule is copied
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Figure 16.12

(a) Origin of replication in an E. coli cell
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Figure 16.12a
(a) Origin of replication in an E. coli cell
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Figure 16.12b
(b) Origins of replication in a eukaryotic cell
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Animation: Origins of Replication
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● At the end of each replication bubble is a
replication fork, a Y-shaped region where new DNA
strands are elongating

● Helicases are enzymes that untwist the double helix
at the replication forks

● Single-strand binding proteins bind to and
stabilize single-stranded DNA

● Topoisomerase relieves the strain of twisting of the
double helix by breaking, swiveling, and rejoining
DNA strands
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Figure 16.13
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Synthesizing a New DNA Strand

● DNA polymerases require a primer to which they can
add nucleotides

● The initial nucleotide strand is a short RNA primer
● This is synthesized by the enzyme primase
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● Primase can start an RNA chain from scratch and
adds RNA nucleotides one at a time using the
parental DNA as a template

● The primer is short (5–10 nucleotides long), and the
3′ end serves as the starting point for the new DNA
strand
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● Enzymes called DNA polymerases catalyze the
synthesis of new DNA at a replication fork

● Most DNA polymerases require a primer and a DNA
template strand

● The rate of elongation is about 500 nucleotides per
second in bacteria and 50 per second in human cells
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● Each nucleotide that is added to a growing DNA
strand is a nucleoside triphosphate

● dATP supplies adenine to DNA and is similar to the
ATP of energy metabolism

● The difference is in their sugars: dATP has
deoxyribose while ATP has ribose

● As each monomer joins the DNA strand, via a
dehydration reaction, it loses two phosphate groups
as a molecule of pyrophosphate  
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Antiparallel Elongation

● The antiparallel structure of the double helix affects
replication

● DNA polymerases add nucleotides only to the free 3′
end of a growing strand; therefore, a new DNA
strand can elongate only in the 5′ to 3′ direction
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● Along one template strand of DNA, the DNA
polymerase synthesizes a leading strand
continuously, moving toward the replication fork
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Animation: Leading Strand
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● To elongate the other new strand, called the lagging
strand, DNA polymerase must work in the direction
away from the replication fork

● The lagging strand is synthesized as a series of
segments called Okazaki fragments, which are
joined together by DNA ligase
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DNA Replication: A Closer Look

● The copying of DNA is remarkable in its speed and
accuracy

● More than a dozen enzymes and other proteins
participate in DNA replication
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Getting Started

● Replication begins at particular sites called origins
of replication, where the two DNA strands are
separated, opening up a replication “bubble”

● A eukaryotic chromosome may have hundreds or
even thousands of origins of replication

● Replication proceeds in both directions from each
origin, until the entire molecule is copied
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Figure 16.12

(a) Origin of replication in an E. coli cell
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Figure 16.12a
(a) Origin of replication in an E. coli cell
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Figure 16.12b
(b) Origins of replication in a eukaryotic cell
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Animation: Origins of Replication

© 2018 Pearson Education Ltd.

● At the end of each replication bubble is a
replication fork, a Y-shaped region where new DNA
strands are elongating

● Helicases are enzymes that untwist the double helix
at the replication forks

● Single-strand binding proteins bind to and
stabilize single-stranded DNA

● Topoisomerase relieves the strain of twisting of the
double helix by breaking, swiveling, and rejoining
DNA strands
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Synthesizing a New DNA Strand

● DNA polymerases require a primer to which they can
add nucleotides

● The initial nucleotide strand is a short RNA primer
● This is synthesized by the enzyme primase
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● Primase can start an RNA chain from scratch and
adds RNA nucleotides one at a time using the
parental DNA as a template

● The primer is short (5–10 nucleotides long), and the
3′ end serves as the starting point for the new DNA
strand
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● Enzymes called DNA polymerases catalyze the
synthesis of new DNA at a replication fork

● Most DNA polymerases require a primer and a DNA
template strand

● The rate of elongation is about 500 nucleotides per
second in bacteria and 50 per second in human cells
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● Each nucleotide that is added to a growing DNA
strand is a nucleoside triphosphate

● dATP supplies adenine to DNA and is similar to the
ATP of energy metabolism

● The difference is in their sugars: dATP has
deoxyribose while ATP has ribose

● As each monomer joins the DNA strand, via a
dehydration reaction, it loses two phosphate groups
as a molecule of pyrophosphate  
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Antiparallel Elongation

● The antiparallel structure of the double helix affects
replication

● DNA polymerases add nucleotides only to the free 3′
end of a growing strand; therefore, a new DNA
strand can elongate only in the 5′ to 3′ direction
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● Along one template strand of DNA, the DNA
polymerase synthesizes a leading strand
continuously, moving toward the replication fork
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Animation: Leading Strand
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● To elongate the other new strand, called the lagging
strand, DNA polymerase must work in the direction
away from the replication fork

● The lagging strand is synthesized as a series of
segments called Okazaki fragments, which are
joined together by DNA ligase
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Animation: Lagging Strand
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Animation: DNA Replication Overview
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Animation: DNA Replication Review
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The DNA Replication Complex

● The proteins that participate in DNA replication form
a large complex, a “DNA replication machine”

● The DNA replication machine may be stationary
during the replication process

● Recent studies support a model in which DNA
polymerase molecules “reel in” parental DNA and
extrude newly made daughter DNA molecules

● The exact mechanism is not yet resolved
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Proofreading and Repairing DNA

● DNA polymerases proofread newly made DNA,
replacing any incorrect nucleotides

● In mismatch repair of DNA, repair enzymes correct
errors in base pairing

● DNA can be damaged by exposure to harmful
chemical or physical agents such as cigarette smoke
and X-rays; it can also undergo spontaneous
changes

● In nucleotide excision repair, a nuclease cuts out
and replaces damaged stretches of DNA
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Evolutionary Significance of Altered DNA
Nucleotides

● The error rate after proofreading and repair is low
but not zero

● Sequence changes may become permanent and
can be passed on to the next generation

● These changes (mutations) are the source of the
genetic variation upon which natural selection
operates and are ultimately responsible for the
appearance of new species
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Replicating the Ends of DNA Molecules

● Limitations of DNA polymerase create problems for
the linear DNA of eukaryotic chromosomes

● The usual replication machinery provides no way to
complete the 5′ ends, so repeated rounds of
replication produce shorter DNA molecules with
uneven ends

● This is not a problem for prokaryotes, most of which
have circular chromosomes
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● Eukaryotic chromosomal DNA molecules have
special nucleotide sequences at their ends called
telomeres

● Telomeres do not prevent the shortening of DNA
molecules, but they do postpone the erosion of
genes near the ends of DNA molecules

● It has been proposed that the shortening of
telomeres is connected to aging
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Animation: Lagging Strand
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Animation: DNA Replication Overview
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Animation: DNA Replication Review
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Figure 16.17c
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The DNA Replication Complex

● The proteins that participate in DNA replication form
a large complex, a “DNA replication machine”

● The DNA replication machine may be stationary
during the replication process

● Recent studies support a model in which DNA
polymerase molecules “reel in” parental DNA and
extrude newly made daughter DNA molecules

● The exact mechanism is not yet resolved
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Proofreading and Repairing DNA

● DNA polymerases proofread newly made DNA,
replacing any incorrect nucleotides

● In mismatch repair of DNA, repair enzymes correct
errors in base pairing

● DNA can be damaged by exposure to harmful
chemical or physical agents such as cigarette smoke
and X-rays; it can also undergo spontaneous
changes

● In nucleotide excision repair, a nuclease cuts out
and replaces damaged stretches of DNA
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Evolutionary Significance of Altered DNA
Nucleotides

● The error rate after proofreading and repair is low
but not zero

● Sequence changes may become permanent and
can be passed on to the next generation

● These changes (mutations) are the source of the
genetic variation upon which natural selection
operates and are ultimately responsible for the
appearance of new species
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Replicating the Ends of DNA Molecules

● Limitations of DNA polymerase create problems for
the linear DNA of eukaryotic chromosomes

● The usual replication machinery provides no way to
complete the 5′ ends, so repeated rounds of
replication produce shorter DNA molecules with
uneven ends

● This is not a problem for prokaryotes, most of which
have circular chromosomes
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● Eukaryotic chromosomal DNA molecules have
special nucleotide sequences at their ends called
telomeres

● Telomeres do not prevent the shortening of DNA
molecules, but they do postpone the erosion of
genes near the ends of DNA molecules

● It has been proposed that the shortening of
telomeres is connected to aging
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The DNA Replication Complex

● The proteins that participate in DNA replication form
a large complex, a “DNA replication machine”

● The DNA replication machine may be stationary
during the replication process

● Recent studies support a model in which DNA
polymerase molecules “reel in” parental DNA and
extrude newly made daughter DNA molecules

● The exact mechanism is not yet resolved
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Proofreading and Repairing DNA

● DNA polymerases proofread newly made DNA,
replacing any incorrect nucleotides

● In mismatch repair of DNA, repair enzymes correct
errors in base pairing

● DNA can be damaged by exposure to harmful
chemical or physical agents such as cigarette smoke
and X-rays; it can also undergo spontaneous
changes

● In nucleotide excision repair, a nuclease cuts out
and replaces damaged stretches of DNA

 

© 2018 Pearson Education Ltd.

Figure 16.19_1

Nucleas
e

5
′
3
′

5
′
3
′

3
′
5
′

3
′
5
′

© 2018 Pearson Education Ltd.

Figure 16.19_2

Nucleas
e

DNA
polymeras
e

5
′
3
′

5
′
3
′

5
′
3
′

3
′
5
′

3
′
5
′

3
′
5
′

© 2018 Pearson Education Ltd.

Figure 16.19_3

Nucleas
e

DNA
polymeras
e

DNA
ligas
e

5
′
3
′

5
′
3
′

5
′
3
′

5
′
3
′

3
′
5
′

3
′
5
′

3
′
5
′

3
′
5
′© 2018 Pearson Education Ltd.

Evolutionary Significance of Altered DNA
Nucleotides

● The error rate after proofreading and repair is low
but not zero

● Sequence changes may become permanent and
can be passed on to the next generation

● These changes (mutations) are the source of the
genetic variation upon which natural selection
operates and are ultimately responsible for the
appearance of new species
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Replicating the Ends of DNA Molecules

● Limitations of DNA polymerase create problems for
the linear DNA of eukaryotic chromosomes

● The usual replication machinery provides no way to
complete the 5′ ends, so repeated rounds of
replication produce shorter DNA molecules with
uneven ends

● This is not a problem for prokaryotes, most of which
have circular chromosomes
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● Eukaryotic chromosomal DNA molecules have
special nucleotide sequences at their ends called
telomeres

● Telomeres do not prevent the shortening of DNA
molecules, but they do postpone the erosion of
genes near the ends of DNA molecules

● It has been proposed that the shortening of
telomeres is connected to aging
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The DNA Replication Complex

● The proteins that participate in DNA replication form
a large complex, a “DNA replication machine”

● The DNA replication machine may be stationary
during the replication process

● Recent studies support a model in which DNA
polymerase molecules “reel in” parental DNA and
extrude newly made daughter DNA molecules

● The exact mechanism is not yet resolved
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Proofreading and Repairing DNA

● DNA polymerases proofread newly made DNA,
replacing any incorrect nucleotides

● In mismatch repair of DNA, repair enzymes correct
errors in base pairing

● DNA can be damaged by exposure to harmful
chemical or physical agents such as cigarette smoke
and X-rays; it can also undergo spontaneous
changes

● In nucleotide excision repair, a nuclease cuts out
and replaces damaged stretches of DNA
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Evolutionary Significance of Altered DNA
Nucleotides

● The error rate after proofreading and repair is low
but not zero

● Sequence changes may become permanent and
can be passed on to the next generation

● These changes (mutations) are the source of the
genetic variation upon which natural selection
operates and are ultimately responsible for the
appearance of new species
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Replicating the Ends of DNA Molecules

● Limitations of DNA polymerase create problems for
the linear DNA of eukaryotic chromosomes

● The usual replication machinery provides no way to
complete the 5′ ends, so repeated rounds of
replication produce shorter DNA molecules with
uneven ends

● This is not a problem for prokaryotes, most of which
have circular chromosomes
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● Eukaryotic chromosomal DNA molecules have
special nucleotide sequences at their ends called
telomeres

● Telomeres do not prevent the shortening of DNA
molecules, but they do postpone the erosion of
genes near the ends of DNA molecules

● It has been proposed that the shortening of
telomeres is connected to aging
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The DNA Replication Complex

● The proteins that participate in DNA replication form
a large complex, a “DNA replication machine”

● The DNA replication machine may be stationary
during the replication process

● Recent studies support a model in which DNA
polymerase molecules “reel in” parental DNA and
extrude newly made daughter DNA molecules

● The exact mechanism is not yet resolved
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Proofreading and Repairing DNA

● DNA polymerases proofread newly made DNA,
replacing any incorrect nucleotides

● In mismatch repair of DNA, repair enzymes correct
errors in base pairing

● DNA can be damaged by exposure to harmful
chemical or physical agents such as cigarette smoke
and X-rays; it can also undergo spontaneous
changes

● In nucleotide excision repair, a nuclease cuts out
and replaces damaged stretches of DNA
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Evolutionary Significance of Altered DNA
Nucleotides

● The error rate after proofreading and repair is low
but not zero

● Sequence changes may become permanent and
can be passed on to the next generation

● These changes (mutations) are the source of the
genetic variation upon which natural selection
operates and are ultimately responsible for the
appearance of new species
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Replicating the Ends of DNA Molecules

● Limitations of DNA polymerase create problems for
the linear DNA of eukaryotic chromosomes

● The usual replication machinery provides no way to
complete the 5′ ends, so repeated rounds of
replication produce shorter DNA molecules with
uneven ends

● This is not a problem for prokaryotes, most of which
have circular chromosomes
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● Eukaryotic chromosomal DNA molecules have
special nucleotide sequences at their ends called
telomeres

● Telomeres do not prevent the shortening of DNA
molecules, but they do postpone the erosion of
genes near the ends of DNA molecules

● It has been proposed that the shortening of
telomeres is connected to aging
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