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ife’s Operating Instructions

e |n 1953, James Watson and Francis Crick
introduced an elegant double-helical model for the
structure of deoxyribonucleic acid, or DNA

e Hereditary information is encoded in DNA and
reproduced in all cells of the body

e This DNA program directs the development of
biochemical, anatomical, physiological, and
(to some extent) behavioral traits

e DNA is copied during DNA replication, and cells
can repair their DNA
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dditional Evidence That DNA Is the Genetic
Material

e DNAis a polymer of nucleotides, each consisting of
a nitrogenous base, a sugar, and a phosphate group

e The nitrogenous bases can be adenine (A), thymine
(T), guanine (G), or cytosine (C)

e |In 1950, Erwin Chargaff reported that DNA
composition varies from one species to the next

e This evidence of diversity made DNA a more
credible candidate for the genetic material
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e Two findings became known as Chargaff's rules
e The base composition ot DNA varies between species

e In any species the number of Aand T bases is equal
and the number of G and C bases is equal

e The basis for these rules was not understood until
the discovery of the double helix
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Figure 16.5
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uilding a Structural Model of DNA: Scientific
Inquiry
o After DNA was accepted as the genetic material, the

challenge was to determine how its structure
accounts for its role in heredity

e Maurice Wilkins and Rosalind Franklin were using a
technique called X-ray crystallography to study
molecular structure

e Franklin produced a picture of the DNA molecule
using this technique
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Figure 16.6b
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e Franklin’s X-ray crystallographic images of DNA
enabled Watson to deduce that DNA was helical

e The X-ray images also enabled Watson to deduce
the width of the helix and the spacing of the
nitrogenous bases

e The pattern in the photo suggested that the DNA
molecule was made up of two strands, forming a
double helix
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Figure 16.7a
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Figure 16.7b
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e \Watson and Crick built models of a double helix to
conform to the X-rays and chemistry of DNA

e Franklin had concluded that there were two outer
sugar-phosphate backbones, with the nitrogenous
bases pairqd In the molecule’s interior

e \Watson built a model in which the backbones were
antiparallel (their subunits run in opposite
directions)
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e At first, Watson and Crick thought the bases paired
like with like (A with A, and so on), but such pairings
did not result in a uniform width

e Instead, pairing a purine (A or G) with a pyrimidine
(C or T) resulted in a uniform width consistent with
the X-ray data
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Figure 16.UNO2
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e Watson and Crick reasoned that the pairing was
more specific, dictated by the base structures

e They determined that adenine (A) paired only with
thymine (T), and guanine (G) paired only with
cytosine (C)

e The Watson-Crick model explains Chargaff’s rules:
in any organism the amount of A= T, and the amount

of G=C
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Figure 16.8
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oncept 16.2: Many proteins work together in DNA
replication and repair

e The relationship between structure and function is
manifest in the double helix

e Watson and Crick noted that the specific base
pairing suggested a possible copying mechanism for

genetic material
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he Basic Principle: Base Pairing to a Template
Strand

e Since the two strands of DNA are complementary,
each strand acts as a template for building a new
strand in replication

e |In DNA replication, the parent molecule unwinds,
and two new daughter strands are built based on
base-pairing rules
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Figure 16.9 3

5 (3 3 § 3
~
3 3 5 5 3 5
(a) Parental (b) Separation of (c) Formation of new
molecule parental strands strands complementary

into templates to template strands

© 2018 Pearson Education Ltd.



e Watson and Crick’'s semiconservative model of
replication predicts that when a double helix
replicates, each daughter molecule will have one old
strand (derived or “conserved” from the parent
molecule) and one newly made strand

e Competing models were the conservative model (the
two parent strands rejoin) and the dispersive model
(each strand is a mix of old and new)
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Figure 16.10
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NA Replication: A Closer Look

e The copying of DNA is remarkable in its speed and
accuracy e.q. E.oli = 3-\(6 Milow pavs. guu:s reglioked i < Ay

owe Voo s ome

e More than a dozen enzymes and other proteins
participate in DNA replication
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etting Started
Specific SN
" —
e Replication begins at particular sites called origins
of replication, where the two DNA strands are

separated, opening up a replication “bubble”

(e) A eukaryotic chromosome may have hundreds or
even thousands of origins of replication Sguiing of

()Tb RN .

e Replication proceeds in both directions ffom each
origin, until the entire molecule is copied
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Figure 16.12a
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Figure 16.12b

(b) Origins of replication in a eukaryotic cell | linear _DN AJ
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e At the end of each replication bubble is a
replication fork, a Y-shaﬁed region where new DNA

strands are elongating

e Helicases are enzymes that untwist the double helix
at the replication forks

e Single-strand binding proteins bind to and
stabilize single-stranded DNA pored by elicahes-

e Topoisomerase relieves the strain of twisting of the
double helix by breaking, swiveling, and rejoining
DNA strands
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R/ Figure 16.14 Some of the proteins involved in the

initiation of DNA replication. The same proteins function at both
replication forks in a replication bubble. For simplicity, only the !eft-
hand fork is shown, and the DNA bases are drawn much larger in
relation to the proteins than they are in reality.
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ynthesizing a New DNA Strand
AN

e DNA polymerases\require a primeLto which they can
add nucleotides ~

P Eu}DNA Sequmer ]
o Thewtial nucleotide strand is a short RNA primer
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AN

e Primase can start-an RNA chain from scratch and
adds RNA nucleotides one at a time| using the
parental DNA as a template %5 "——> =2

e The pximer is short (5—10 nucleotides long), and the
3' end serves as the starting point for the new DNA
strand

© 2018 Pearson Education Ltd.



AN

e Enzymes called BNA polymerases catalyze the
synthesis of new DNA at a replication fork

e Most DNA polymerases require a primer and a DNA
template strand

e The rate of elongation is about 500 nucleotides per
second in bacteria and 50 per second in human cells
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AN
e Each nucleotide-that is added to a growing DNA

strand is a nucleoside triphosphate

e dATR supplies adenine to DNA and is similar to the
ATP of energy metabolism

e The difference is in their sugars: dATP has] &3
deoxyribose while ATP hasiribose

e As each monomer joins the DNA strand, via a
Qdehydration reaction, it loses two phosphate groups

as a molecule of pyrophosphate B —(p
l
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V Figure 16.15 Addition of a nucleotide to a DNA strapq
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ntiparallel Elongation

~——

e The antiparallel structure of the double helix affects
s dos Yo Pir stractwre

replication

o DNA polymerése?add nucleotides only to the free 3’

end of a growing strand; therefore, a new DNA
strand can elongate only in the 5" to 3' direction
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strand, DNA polymerase must work in the direction

e To elongate the other new strand, called %e lagging
away from the replication fork [ Ageiust

el('co/x,j _

e The lagging strand is synthesized as a series of
segments called Okazaki fragments, which are
joined together by DNA ligase
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he DNA Replication Complex

e The proteins that participate in DNA replication form
a large complex, a “DNA replication machine”

e The DNA replication machine may be stationary
during the replication process

e Recent studies support a model in which DNA
polymerase molecules “reel in” parental DNA and
extrude newly made daughter DNA molecules

e The exact mechanism is not yet resolved
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V Figure 16.19 The “trombone” model of the DNA
replication complex. In this proposed model, two molecules
of DNA polymerase Il work together in a complex, one on each
strand, with helicase and other proteins. The lagging strand
template DNA loops through the complex, resembling the slide
of a trombone.
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Table 16.1a

Table 16.1
Functions

Protein

Helicase 3’

Single-strand binding
protein 5'% 3’

Topoisomerase

Primase
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Bacterial DNA Replication Proteins and Their

Function

Unwinds parental double helix at
replication forks

Binds to and stabilizes single-
stranded DNA until it is used as a
template

Relieves overwinding strain ahead
of replication forks by breaking,
swiveling, and rejoining DNA
strands

Synthesizes an RNA primer at 5’
end of leading strand and at 5’
end of each Okazaki fragment

of lagging strand



Table 16.1b

Table 16.1 Bacterial DNA Replication Proteins and Their
Functions

Protein

DNA pol III

DNA pol I

/ -3 3,

3'W &

DNA ligase

L

o
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Function

Using parental DNA as a template,
synthesizes new DNA strand by
adding nucleotides to an RNA
primer or a pre-existing DNA strand

Removes RNA nucleotides of primer
from 5’ end and replaces them with
DNA nucleotides added to 3’ end
of adjacent fragment

Joins Okazaki fragments of lagging
strand; on leading strand, joins 3’
end of DNA that replaces primer to
rest of leading strand DNA



roofreading and Repairing DNA | m O
g oo e
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e DNA polymerases Fproofreac? newly made DNA,
replacing any incprrect nucleotides _, wwuen Polymsrns

: : | )
e In mismatch repair of DNA, repair enzymes correct
errors in base pairing | if wet cowected by proofrading]

e DNA can be damaged by exposure to harmful
chemical Whysical agents such as cigarette smoke
and X-rays; it can also undergo spontaneous
changes

e In nucleotide excision repair, a nuclease cuts out
and replaces damaged stretches of DNA
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Figure 16.19_1

V Figure 16.20 N de e gcision repair of DNA damage.
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