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he Molecules of Life

e All living things are made up of four classes of large
biological molecules: carbohydrates, Iipi%%/,proteins,

and nucleic acidgj s
Lk
e Macromolecules are large molecules and are

complex

e Large biological molecules have unique properties
that arise from the |orderly arrangement|of their
atoms

© 2018 Pearson Education Ltd.






Figure 5.1a

The scientist in the foreground is using
3-D glasses to help her visualize the

structure of the protein displayed on her
screen.
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oncept 5.1: Macromolecules are polymers, built
from monomers

e Apolymer is a long molecule consisting of many

similar building blocks 7 o7 wecissonily— 1domtical
e The repeating units that serve as building blocks are
called monomers

. Carbohydrates protems and nucleic acids are
polymers &

© Lipids are (W) Qelgmer
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he Synthesis and Breakdown of Polymers

e Enzymes are specialized macromolecules that
speed up chemical reactions such as those that
make or break down polymers

e Adehydration reaction occurs when two
monomers bond together through the loss of a
water molecule

e Polymers are disassembled to monomers by
hydrolysis, a reaction that is essentially the reverse
of the dehydration reaction
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Figure 5.2
(a) Dehydration reaction: synthesizing a polymer

Short polymer Unlinked

_ monomer
Dehydration removes a water
molecule, forming a new bond.

0@90

Longer polymer

(b) Hydrolysis: breaking down a polymer

Hydrolysis adds a water /— @

molecule, breaking a bond.
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he Diversity of Polymers

e A cell has thousands of different macromolecules

e ‘Macromolecules vary among cells of an organism,
vary more within a species, and vary even more
between species

e A huge variety of polymers can be built from a small
set of monomers
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oncept 5.2: Carbohydrates serve as fugl) and
. . . \
building materlal@
e Carbohydrates include sugars and the polymers of
sugars
e The simplest carbohydrates are monosaccharides,

or simple sugars  ———_

e Carbohydrate macromolecules are |polysaccharides,

polymers composed of many sugar building blocks
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» Monosaccharides have molecular formulas )
that are usually multiples of |CH20 e«m@f\m’b Covma\on

e Glucose (C6H1200) is the most common
monosaccharide

o ‘Monosaccharides are classified by [JL.AMAJ%
o

e The location of the carbonyl group (as aldose 5 "
or ketose) | KeoW Sugor

e The number of carbons in the carbon skeleton
—— y

RCWUaa& sz‘OVVl 3 ‘bc } a/q;'o'w\_s “C“.
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Figure 5.3
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Figure 5.3a
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Figure 5.3b

Aldose Ketose
(Aldehyde Sugar) (Ketone Sugar)
Pentoses: five-carbon sugars
(C5H1005)
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Figure 5.3c
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e Though often drawn as linear skeletons, injaqueous
solutions|many sugars form rings &

e Monosaccharides serve as a major fuel for cells and
as raw material for building molecules

&0 YQ/(V‘Z‘} ore wmeve loble s WJWW
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Figure 5.4
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e Adisaccharide is formed when a dehydration
reaction joins two monosaccharides

e This covalent bond is called a glycosidic linkage

\rkjé\vo % HU o xy\
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Figure 5.5

i LA
(a) Dehydration reaction in the Isynthesis of maltose © W
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olysaccharides

e Polysaccharides, the polymers of sugars, have

storage®and structuraé)roles

e The architecture and functio#@of a polysaccharide
are determined by its sugar monomers and the
positions of its glycosidic linkages

@ @_sz’f\swk Disaccharide epomple:
J_ackost, (mie sogar) o glucote + galockvse
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torage Polysaccharides

e (Starch, a storage polysaccharide of plants, consists
of glucose monomers _ .. ., swall pert el

— T ...
e Plants store surplus starch as granules within
chloroplasts and other plastids

e The simplest form of starch is amylose
m\wUWLM)
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Figure 5.6

Storage structures (plastids)
containing starch granules Amylose (unbranched)
in a potato tuber cell
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Figure 5.6a

Amylose Glucose
(unbranched) monomer
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Storage structures (plastids)
containing starch granules
in a potato tuber cell
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Figure 5.6b

Glycogen
(extensively branched)

.. &5 Glycogen granules

- sesis, - stored in muscie
&2 . tissue v

© 2018 Pearson Education Ltd.



Figure 5.6¢

Cellulose microfikrils \os
in a plant cell wzil CeIIuI e molecule (unbranched)
Microfibril o~ o0~ : /‘7 Hydrogen bonds
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(c) Cellulose
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Figure 5.6d

Plant cell, —
surrounded 10
by cell wall pm
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IR amlike Stowch)
Nok ey iy €

] M ] ] ]
e {Glycogen is a storage polysaccharide in animals
e Glycogen is stored mainly in liver and muscle cells

e |Hydrolysis|of glycogen in theMells?eleases
glucose when the demand for sugar increases
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tructural Polysaccharldes Yo Compemndt
A w / —Rrs— -\N\ﬁb:\' N VAV M Ya}N\E a\,y"HA,

e The polysaccharide‘cellulose’is a major component
of the tough wall of plant cells

e 'Like starch, cellulose is a polymer of glucose, but
the glycosidic linkages differ /- 1wpocieond

e The difference is based on‘two ring forms for
glucose: alpha (o) and beta ()

@ The Lauaw Strudiar® %W

oty not O@W
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Figure 5.7

\C/
CH20H | CH20H
H
H A O H H (|: ° H 4 O
HO—
4 OH H 1 — (|: H — 4 (o) 1 ——
HO H—C—OH HO H
H OH H—C—OH H OH
o Glucose H—(::—OH p Glucose
H

(a) a and p glucose ring structures

CH20H CH20H CH20H CH20OH
o) o) (o) o)
oH XN < oH OH N OH
HO o O o OH
OH OH OH OH

(b) Starch: 1—4 linkage of o glucose monomers

OXrOW S CH,0H CH,0H

vl Cor

Ly @S @

C%/ O”wa CH20H OH CH20H
odoms

(c) Cellulose: 1-4 linkage of § glucose monomers
© 2018 Pearson Education Ltd.

corre S‘Fcﬂdi"g

Y Y Y

ﬁ\\*ca(vuxiiwfj

W



Figure 5.7a
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Figure 5.7b
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Starch (a configuration) is largely helical

Cellulose molecules (B configuration) are straight
and unbranched

Some hydroxyl groups on the monomers of cellulose
can hydrogen-bond with hydroxyls of parallel
cellulose molecules

Q\\ : ' ' /V\ icvo
H . (&Wdima, [ ':, : S"\'\\o‘r\\s
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e Enzymes that digest starch by hydrolyzing o
linkages can’t hydrolyze B linkages in cellulose

e Theccellulose inhuman food passes through the
digestive tract as “insoluble fiber”

e Some microbes use enzymes to digest cellulose

e Many herbivores, from cows to termites, have
symbiotic relationships with these microbes
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e CChitin; another structural polysaccharide, is found in
the exoskeleton of arthropods

e Chitin also provides structural support for the cell
walls of many fungi
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oncept 5.3: Lipids are a diverse group of
hydrophobic molecules

o Lipids are the one class of large biological
molecules that/does not include true polymers

e The unifying feature of lipids is that they mix poorly,
iIf at all, with water

e Lipids consist mostly of hydrocarbon regions

e The most biologically important:lipids are fats,®
hospholipids, and steroids
PHESPIEIRE, &

&) ek s o\ pids o "—"“—°““‘°ULA\ e
‘ anlier ©
‘ 1N CMPH”
Crom A titlL ‘é'wwu s » C,a'/l?‘o‘aﬂo!ro-kﬂ-s
AL \?5 Proteans

. )
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ats

e Fats are constructed from two types of smaller
molecules: glycerolcgnd fatty acid@

e "Glycerol is a three-carbon alcohol with a hydroxy!
group attached to each carbon

e A fatty acid consists of arcarboxyl grouprattached to
a Iong carbon skeleton

M‘U,,U,g/ 16 or 12 Corloon abews .
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Figure 5.9

Fatty acid
(in this case, palmitic acid)

(a) One of three dehydration reactions in the synthesis of a fat

(b) Fat molecule (triacylglycerol)
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Figure 5.9a
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Figure 5.9b
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T—\

Fats separate from water because water molecules
hydrogen-bond to each other and exclude the fats

In a fat, three fatty acids are joined to glycerol
by an ester linkage, creating a triacylglycerol,
or triglyceride

The fatty acids in a fat can be all the same or of

two or three different kinds O
@ ® Loda ol possitle ot

S < mEm

QQ(/-A ED-’*A)A;A E—A
g —A S — QAR |8, —%
F —A G — a8 | D —
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O

-
e (Fatty acids vary in length (number of carbons) and in

the number and Iocatlons of double bonds

o Sat\lﬂ'za%gd fatty acids have the maximum number of
hydrogen atoms possible and no double bonds

o Unsaturated fatty acids have one or more double
bonds -
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Figure 5.10

(a) Saturated (b) Unsaturated
fat fat

Structural formula
of a saturated fat
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Figure 5.10a

(a) Saturated fat

Structural formula
of a saturated fat
molecule

Space-filling model of
stearic acid, a
saturated fatty acid

&) y\\g\/\ \,-\U,,Lyop\/\n\o'\c/ ‘\v\_\.uos:k\‘uo\/»\
e Xz Sokuvakid &kt

© 2018 Pearson Education Ltd.



Figure 5.10b
(b) Unsaturated fat

Structural formula
of an unsaturated
fat molecule

Space-filling model of
oleic acid, an
unsaturated fatty acid

Cis double bond
causes bending.
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e Fats made from saturated fatty acids are called
saturated fats and are solid at room temperature

e Most animal fats are saturated

e Fats made from unsaturated fatty acids are called
unsaturated fats or oils and are liquid at room
temperature

e ‘Plant fats and fish fats are usually unsaturated

© 2018 Pearson Education Ltd.



: o Qe Lolom
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e Adiet rich in saturated fats may contribute to
cardiovascular disease through plaque deposits

e Hydrogenation'is the process of converting
unsaturated fats to saturated fats by adding
hydrogen

e Hydrogenating vegetable oils also creates
unsaturated fats with trans douAbIe bonds

N

e These trans fats may contribute more than
saturated fats to cardiovascular disease

Troms {xfc  are womse han Semostel B2
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e The major function of fats is energy storage@

e Humans and other mammals store their long-term
food reserves in adipose cells

e Adipose tissue also cushions vital organs and

insulates the body ‘
=

pdipose = Ll
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hospholipids

e |In a phospholipid, two fatty acids and a phosphate
group are attached to glycerol

e The two fatty acid tails are hydrophobic, but the
phosphate group and its attachments form-a— —

hydrophilic head ~>Colint. oY st grof>-
® wkreckion e 8l<7cz/roﬁ,

guél auplwww sl i% sl
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Figure 5.11
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e When phospholipids are added to water, they
self-assemble into double-layered sheets
calledilayers

o At the surface of a cell, phospholipids are also
arranged in a bilayer, with the hydrophobic tails
pointing toward the interior

» The phospholipid bilayer forms a boundary between
the cell and its external environment



eroids

o Steroids are lipids characterized by a carbon
skeleton consisting of four fused rings

—_—

¢ “Cholesterol, a type of steroid, is a component in
animalcell membranes and a precursor from which

other steroids are synthesized <o wuderiol’

e Ahi vel of cholesterol in the blood may
contribute to|cardiovascular disease &2
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Figure 5.12
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oncept 5.4: Proteins include a diversity
of structures, resulting in a wide range
of functions

e 'Proteins account forrmore than 50% of the dry mass
of most cells
e Some proteins speed up chemical reactions

e Other protein functions include defense, storage,
transport,cellular communication, movement,and
structural support
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Figure 5.13a

Enzymatic proteins

Function: Selective acceleration of
chemical reactions

Example: Digestive enzymes catalyze the
hydrolysis of bonds in food molecules.
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Defensive proteins

Function: Protection against disease

Example: Antibodies inactivate and help
destroy viruses and bacteria.
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Virus

Storage proteins

Function: Storag}\,of amino aC|ds

Examples: Caseil, the protein of milk, is
the major source ino acids for baby
mammals. Plants_hadve storage proteins in
their seeds. Ovalbumin is the protein of
egg white, used as an amino acid source
for the developing embryo.
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Transport proteins

Function: Transport of substances

Examples: Hemoglobin, the iron-containing
protein of vertebrate blood, transports
oxygen from the lungs to other parts of the
body. Other proteins transport molecules
across membranes, as shown here.

Cell
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Figure 5.13aa

Enzymatic preteins

Function: Se’ective acceleration of
chemical rzactions

Example:'Digestive enzymes catalyze the
\ hydrolysis of bonds in food molecules.
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Figure 5.13ab
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Defensive proteins ™~

Function: Proteetion against disease

Example: Antibodies inactivate and help
destroy viruses and bacteria.
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Figure 5.13ac

Storage proteins

Function: Storage of amino acids

Examples: Casein, the protein of milk, is
the major source of amino acids for baby
mammals. Plants have storage proteins in
their seeds. Ovalbumin is the protein of
egg white, used as an amino acid source

for the developi b
or the developing embryo.
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Figure 5.13ad

Transport proteins

Function: Transport of substances

Examples: Hemoglobin, the iron-containing
protein of vertebrate blood, transports
oxygen from the lungs to other parts of the
body. Other proteins transport molecules
across membranes, as shown here.
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Figure 5.13b

Hormonal proteins Receptor proteins

Function: Coordination of an organisrn’S/ Function: Response of cell to chemical
activities stimuli

Example: Insulin, a hormone secreted By Example: Receptors built into the

the pancreas, causes other tissues to take membrane of a nerve cell detect signaling
up glucose, thus regulating blood sugar molecules released by other nerve cells.
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Actin and myosin proteins a respon5| Insects and spiders use silk fibers to make
for the contraction of muscle their cocoons and webs, respectively.

Collagen and elastin proteins provide a
fibrous framework in animal connective
Actin Myosi tissues.
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Figure 5.13ba

Hormonal proteins

\Function: Coordination of an organism’s

© 2018 Pearson Education Ltd.

activities

Example: Insulin, a hormone secreted by
the pancreas, causes other tissues to take
up glucose, thus regulating blood sugar
concentration.

mﬁj Insulin A‘om/
secrete

blood blood
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Figure 5.13bb
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Receptor proteins

Function: Response of cell to chemical
stimuli

Example: Receptors built into the
membrane of a nerve cell detect signaling
molecules released by other nerve cells.

Receptor

\ protein
Slgnallng<\0

molecule



Figure 5.13bc
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Contractile and motor proteins

Function: Movement

Examples: Motor proteins are responsible
for the undulations of cilia and flagella.
Actin and myosin proteins are responsible
for the contraction of muscles.
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Figure 5.13bd

© 2018 Pearson Education Ltd.

Structural proteins

Function: Support

Examplest Keratin is the protein of hair,
horns, feathers, and other skin appendages.
Insects and spiders use silk fibers to make
their cocoons and webs, respectively.
Collagen and elastin proteins provide a
fibrous framework in animal connective
tissues.

Collage

e
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e Enzymes are proteins that act as catalysts to speed
up chemical reactions

e Enzymes can perform their functions repeatedly,
functioning as workhorses that carry out the
processes of'life
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e Proteins are all constructed from the same set of 20
amino acids

o Polypeptides are unbranched polymers built from
these amino acids

e Aprotein is a biologically functional molecule that
consists of one or more polypeptides
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mino Acid Monomers

e /Amino acids are organic molecules with amino and
carboxyl groups

e ‘Amino acids'differ in their properties due to difféfing
side chains, called R groups
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Figure 5.UNO1

Side chain (R group) — Sow << oj/
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Figure 5.14
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Figure 5.14a
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Figure 5.14b
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Figure 5.14c
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olypeptides (Amino Acid Polymers)

e Amino acids are linked by covalent bonds called

peptide bonds | = | corbewg! — Avino | akagt

o A polypeptide is a polymer of amino acids

e Polypeptides range in length from a few to more
than 1,000 monomers

e Each polypeptide has a unique linear sequence of
amino acids, with a carboxyl end (C-terminus) and
an-.amino end (N-terminus)

® Amino acids vary in water solubility according to the
R group.
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Figure 5.15
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Figure 5.15a
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Figure 5.15b
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rotein Structure and Function

e ' The specific activities of proteins result from their
Intricate three-dimensional architecture

e Afunctional protein consists of one or more

polypeptides precisely twisted, folded, and coiled
Into a-unique shape
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Figure 5.16
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Figure 5.16a
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Figure 5.16b
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e The sequence of amino acids determines a protein’s
three-dimensional structure

e A protein’s structure determines how it works

e The function of a protein usually depends on
its ability to recognize and bind to some other
molecule

<

© 2018 Pearson Education Ltd.



Figure 5.17

Antibody protein Protein from flu virus
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our Levels of Protein Structure

e Thegprimary structureof a protein is its unique

sequence of amino acids

e ‘Secondary structure, found in most proteins,
consists of coils and folds in the polypeptide chain

e (Tertiary structure'is determined by interactions
among various side chains (R groups)

e Quaternary structure results when a protein consists
of multiple polypeptide chains
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Figure 5.18a
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Figure 5.18b
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Figure 5.18ba
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Figure 5.18bb
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Figure 5.18bc
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Figure 5.18c
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Figure 5.18d
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Figure 5.18e
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Figure 5.18f
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e The primary structure of a protein is its sequence
of amino acids

e Primary structure_is like the order of letters in a long

word \

e Primary structure is determined by inherited genetic
information

© 2018 Pearson Education Ltd.



e The coils and folds of secondary structure result
from"hydrogen bonds’'between repeating
constituents of the polypeptide backbone

e Typical secondary\structures are a colil called an
o helix and a folded structure called a g pleated
sheet

N
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e Tertiary structure, the overall shape of a
polypeptide, results from interactions between
R groups, rather than interactions between

backbone constituents
<,

e These interactions include hydrogen bggds,
lonic bonds?@ydrophobic interactions, and
van der Waals interaction§

e Strong covalent bonds called disulfide bridges may
reinforce the protein’s structure
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e Quaternary structure results when two or more
polypeptide chains form one macromolecule

e (Collagenvis a fibrous protein consisting of three
polypeptides coiled like a rope

e (Hemoglobin is a globular protein consisting of
four polypeptides: two a and two 3 subunits
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ickle-Cell Disease: A Change in Primary
Structure

e Aslight change in primary structure can affect a
protein’s structure and ability to function

o Sickle-cell disease, an inherited|blood disorder,
results from a single amino acid substitution in the

protein hemoglobin -

e The abnormal hemoglobin molecules cause the red
blood cells to aggregate into chains and to deform
Into a sickle shape
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Figure 5.19
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Figure 5.19a
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Figure 5.19aa
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Figure 5.19ba
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/hat Determines Protein Structure?

e [n addition to primary structure, physical and
chemical conditions can affect structure

e Alterations in pH, salt concentration, temperature, or
other environmental factors can cause a protein to
unravel

e This loss of a protein’s native structure is called
denaturation (©

e A denatured protein is biologically|inactive
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Figure 5.20
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rotein Folding in the Cell

e |t isthard to predict a protein’s structure from its
ﬁprimarjy structure

» Most proteins probably go through several stages on

—/

their way to a stable struc:tureCD

e Diseases such as'Alzheimer’s, Parkinson’s, and
mad co%disease are associated with misfolded

proteins cystic Abrosis
+ 1 i
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e Scientists useX-ray crystallography to determine a
protein’s structure

e Another method isiuclear magnetic resonance
(NMR) spectroscopy, which does not require protein
crystallization

e (Bioinformatics is another approach to prediction of
protein structure from amino acid sequences
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Figure 5.21
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oncept 5.5: Nucleic acids store\, transmit,zand
help express hereditary information”

e The amino acid sec*uence of a polypeptide is
programmed by a unit of inheritance called a‘gene

e (Genes'consist of DNA, a nucleic acid made of

monomers called'nucleotides ok
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he Roles of Nucleic Acids

e There aretwo type%s of nucleic acids
o Deoxi

ribonucleic acid (RNA)
¢ Ribonucleic acid (RNA)

e DNA provides directions for its own replication

e DNAdirects synthesis of messenger RNA (mRNA)
and, through mRNA, controls protein synthesis

e This process is called'gene expression
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Figure 5.22_1
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Figure 5.22_2
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Figure 5.22_3
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e Each gene along a DNA molecule directs synthesis
of a messenger RNA (mRNA)

e The mRNA molecule interacts with the cell’'s protein-
synthesizing machinery to direct production of a
polypeptide

e The flow of genetic information can be summarized
as DNA — RNA — protein
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he Components of Nucleic Acids

e ‘Nucleic acids are polymers called polynucleotides

e Each polynucleotide is made of monomers called
nucleotides

e Eachnucleotide consists of a nitrogenous base, a
pentose sugar, and one or more phosphate groups

e The portion of a nucleotide without the phosphate
group is called a nucleoside
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e Nucleoside = nitrogenous base + sugar

e There are two families of nitrogenous bases

e ‘Pyrimidines (cytosine, thymine, and uracil)
have a single'six-membered ring

e (Purines (adenine and guanine) have a six-membered
ring fused to a five-membered ring

e In DNA, the sugar is deoxyribose; in RNA, the
sugar is ribose

e Nucleotide = nucleoside + phosphate group
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Figure 5.23
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Figure 5.23a
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Figure 5.23b
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Figure 5.23c
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ucleotide Polymers

e ‘Nucleotides are linked together by a phosphodiester
linkage to build a polynucleotide

e A phosphodiester linkage consists of a phosphate
group that links the sugars of two nucleotides

e These links create a backbone of sugar-phosphate
units with nitrogenous bases as appendages

e The sequence of bases along a DNA or mRNA
polymer is unique for each gene
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he Structures of DNA and RNA Molecules

e DNA molecules have two polynucleotides spiraling
around an imaginary axis, forming a double helix

e The backbones run in opposite 5' — 3"'directions
from each other, an arrangement referred to as
antiparallel

e One DNA molecule includes many genes

-

-
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e Only certain bases in DNA pair up and form
hydrogen bonds: adenine (A) always with thymine
(T), and guanine (G) always with cytosine (C)

e This is called complementary base pairing

e This feature of DNA structure makes it possible
to generate two identical copies of each DNA
molecule in a cell preparing to divide
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e RNA, in contrast to DNA, is single-stranded

e Complementary pairing can also occur between
two RNA molecules.or between parts of the
same molecule

e In RNA, thymine:is replaced by uracil (U), so A
and U pair

e While DNA always exists as a double helix, RNA
molecules are more variable in form
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Figure 5.24
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