

Ionic and Covalent Bonding

- ➤ Ionic Bonds 9.1 Describing Ionic Bonds
- ✓ An ionic bond is a chemical bond formed by the electrostatic attraction between positive and negative ions.
- ✓ The bond forms between two atoms when one
 or more electrons are transferred from the
 valence shell of one atom to the valence shell of
 the other.
- ✓ The atom that loses electrons becomes a cation (positive ion), and the atom that gains electrons becomes an anion (negative ion).
- ✓ As a result of the electron transfer, ions are formed, each of which has a noble-gas configuration.

$$Na([Ne]3s^1) + Cl([Ne]3s^23p^5) \longrightarrow Na^+([Ne]) + Cl^-([Ne]3s^23p^6)$$

Low ionization E High electron affinity

has anoble gas configuration

➤ Lewis Electron-Dot Symbols

✓ is a symbol in which the <u>electrons in the valence shell</u> of an atom or ion are represented by dots placed around the letter symbol of the element

$$Na \cdot + \cdot Cl : \longrightarrow Na^+ + [:Cl:]^-$$

 Table 9.1
 Lewis Electron-Dot Symbols for Atoms of the Second and Third Periods

Period	1A (ns ¹)	2A ns ²	$3A \\ ns^2np^1$	$\frac{4A}{ns^2np^2}$	$5A \\ ns^2 np^3$	6A ns ² np ⁴	$7A$ ns^2np^5	8A ns ² np ⁶
Second	Li·	·Be ·	· B ·	·	: Ņ ·	: Ö ·	: F ·	: Ne :
Third	Na·	·Mg·	· Al ·	· Si ·	: P ·	: <u>\$</u> ·	: Cl ·	: Ar :

(Q) Use Lewis electron-dot symbols to represent the transfer of electrons from magnesium to fluorine atoms to form ions with noble-gas configurations

$$: \overrightarrow{F} \cdot + \cdot \overrightarrow{Mg} \cdot + \cdot \overrightarrow{F} : \longrightarrow [: \overrightarrow{F} :]^{-} + \overrightarrow{Mg}^{2+} + [: \overrightarrow{F} :]^{-}$$

- > Energy Involved in Ionic Bonding
- ✓ Formation of an ionic bond between a sodium atom and a chlorine atom:
- ionic bond (1) $Na_{(g)} \rightarrow Na_{(g)}^+ + e^- \Delta H i.e = +496 kJ/mol$ b metal + non-metal
- (2) $Cl_{(g)} + e^{-} \rightarrow Cl_{(g)}$ $\Delta H E.A = -349 \text{ kJ/mol}$
- ✓ The overall energy is (496 349) = + 147 kJ/mol
- the process requires more energy to remove an electron from the sodium atom than is gained when the electron is added to the chlorine atom.
- formation of ions from the atoms is not in itself energetically favorable.
- **BUT** When positive and negative ions bond \rightarrow energy is released to make the overall process favorable.

Coulomb's law
$$E = \frac{kQ_1Q_2}{r}$$
 distance between Q_1 and Q_2

Coulomb's law states that the potential energy obtained in bringing two charges Q1 and Q2, initially far apart, up to a distance r apart is directly proportional to the product of the charges and inversely proportional to the distance between them.

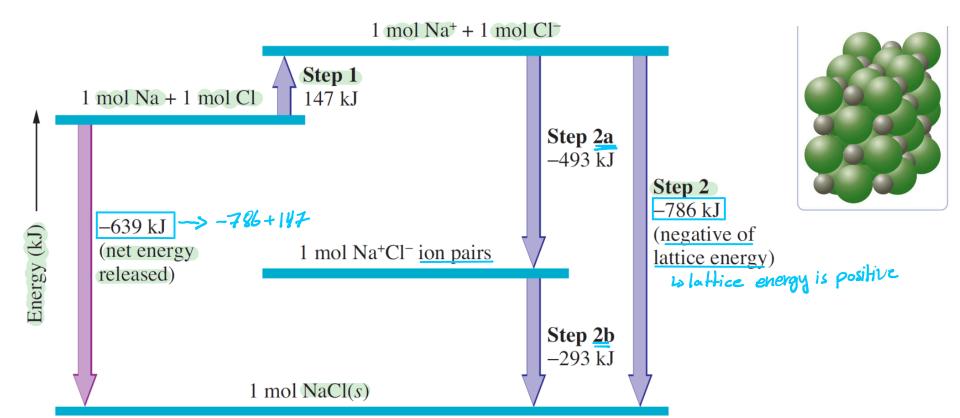
$$E = \frac{kQ_1Q_2}{r}$$
 -> used to calculate the electrostatic attraction -> tomation of ion pair energy

 $k = 8.99 \times 10^9 \text{ J.m/C}^2$

The charge on Na⁺ is +e and that on Cl⁻ is -e.

$$e = 1.602 \times 10^{-19} \text{ C}$$

r = distance between Na⁺ and Cl⁻ = 282 pm, or $2.82 \times 10^{-10} \text{ m}$.

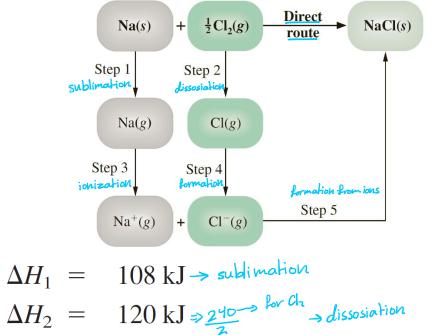

$$E = \frac{-(8.99 \times 10^{9} \text{ J} \cdot \text{m/C}^{2}) \times (1.602 \times 10^{-19} \text{ C})^{2}}{2.82 \times 10^{-10} \text{ m}} = -8.18 \times 10^{-19} \text{ J}$$

$$1 \rightarrow -\frac{9 \cdot 19 \times 10^{-19}}{10^{3}} = -\frac{1}{10^{3}} \times \frac{1}{10^{3}} = -\frac{1}{10^{3}} \times \frac{1}{10^$$

- √ The minus sign means energy is released

 6.022x16³ → ★
- ✓ This energy is for the formation of one ion pair
- ✓ Multiplying by Avogadro's number, 6.02 x 10²³ → -493 kJ/mol

- ✓ The **lattice energy** is the <u>change in energy that occurs (required)</u> when an ionic solid is separated into isolated ions in the gas phase.
- \checkmark For sodium chloride, the process is: $NaCl(s) \longrightarrow Na^+(g) + Cl^-(g)$



- ✓ The negative sign shows that there has been a net decrease in energy, which you expect when stable bonding has occurred.
- ✓ Ionic bond forms between elements if the ionization energy of one is sufficiently small and the electron affinity of the other is sufficiently large

> The Born-Haber Cycle for NaCl (Energy diagram)

important -> doctor said

- 1- Sublimation of sodium
- 2. Dissociation of chlorine + cl → cl
- 3. Ionization of sodium
- 4. Formation of chloride ion (E.A.)
- 5. Formation of NaCl(s) from ions

 $\Delta H_5 = -U$ - negative of lattice energy

$$\text{Na}(s) \longrightarrow \text{Na}(g)
 \frac{1}{2}\text{Cl}_2(g) \longrightarrow \text{Cl}(g)$$

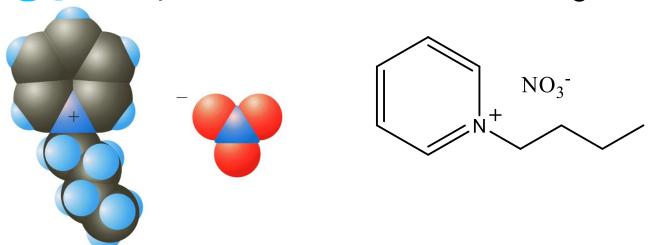
Na(g)

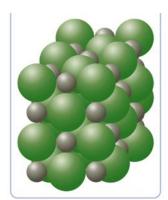
$$\longrightarrow \Omega(g)$$

Na(g)
$$\longrightarrow$$
 Na⁺(g) + e⁻(g) $\Delta H_3 = 496 \text{ kJ} \Rightarrow \text{ionization}$
Cl(g) + e⁻(g) \longrightarrow Cl⁻(g) $\Delta H_4 = -349 \text{ kJ} \Rightarrow \text{formation of ion (EA)}$

$$\frac{\text{Na}^{+}(g) + \text{Cl}^{-}(g)}{\text{Na}(s) + \frac{1}{2}\text{Cl}_{2}(g)} \longrightarrow \text{NaCl}(s)$$

$$\text{Na}(s) + \frac{1}{2}\text{Cl}_2(g) \longrightarrow \text{NaCl}(s)$$


$$\Delta H_f^{\circ} = 375 \text{ kJ} - U$$


$$\Delta H_f^{\circ} = \Delta H_{\text{sub}}^{\circ} + \Delta H_{\text{ie}}^{\circ} + 1/2 \Delta H_{\text{d}}^{\circ} + \Delta H_{\text{ea}}^{\circ} - U_0$$

enthalpy of formation determined calorimetrically \rightarrow - 411 kJ \rightarrow

375 kJ –
$$U = -411$$
 kJ \rightarrow $U = (375 + 411)$ kJ = 786 kJ

- Properties of Ionic Substances
- ✓ Strong ionic bonds (strong electrostatic interaction)
 - → high-melting points of ionic solids. → darge 1 → melting point 1
- m.p of MgO (2800 °C) > m.p NaCl (801 °C) $E = \frac{kQ_1Q_2}{r}$ charges (Mg²⁺ and O²⁻); $E = \frac{kQ_1Q_2}{r}$
- ✓ The liquid melt from an ionic solid consists of ions, and so the liquid melts conducts an electric current.
- ✓ <u>Ionic liquids have low m.p</u> (RT) <u>because the cations are large</u> and non-spherical → weak ionic bonding

9.2 Electron Configurations of lons

> lons of the Main-Group Elements

Table 9.2 lon	ization Energies of Na	zation Energies of Na, Mg, and Al (in kJ/mol)*					
		Successive Ioni	ization Energies				
Element	First	Second	Third	Fourth			
Na	496	→ 4,562	6,910	9,543			
Mg	738	1,451	7 ,733	10,542			
Al	578	1,817	2,745	→ 11,577			

- ✓ Valence electrons are easily removed
- ✓ Much higher energy is needed to remove further electrons.
- → No compounds are found with ions having charges greater than the group number. e.g: Na²⁺, Mg³⁺, Al⁴⁺ (Doesn't exist)
- ✓ Boron (Group 3A) doesn't form ionic compounds with B³+ ions, the bonding is normally covalent.
- ✓ The remaining elements of Group 3A do form compounds containing 3+ ions because of decreasing ionization energy.
- ✓ Thallium in 3A, Period 6, has compounds with 1⁺ ions and compounds with 3⁺ ions

$$T1([Xe]4f^{14}5d^{10}6s^26p^1) \longrightarrow T1^+([Xe]4f^{14}5d^{10}6s^2) + e^-$$

- ✓ The first three elements of Group 4A (C, Si, and Ge) are metalloids and usually form covalent rather than ionic bonds.
- Tin (Sn) and lead (Pb) (group 4A) commonly form ionic compounds with 2^+ ions. Sn⁻² ionic Sn⁻⁴ covalent Pb⁻² ionic Pb⁺⁴ covalent
- √ Tin forms tin(II) chloride, SnCl₂, which is an ionic compound and tin(IV) chloride SnCl₄ which is a covalent compound.
- ✓ Bi (group 5A) forms ionic Bi³⁺ cpds and covalent Bi⁵⁺ cpds.
- ✓ Anions of Groups 5A to 7A gain electrons (large EA) to form noble-gas or pseudo-noble-gas configurations.
- ✓ Hydrogen forms compounds of the 1⁻ ion, H⁻ (hydride ion).
- Although the electron affinity of nitrogen $(2s^22p^3) = 0$ N^{3-} ion $(2s^22p^6)$ is stable in the presence of Li⁺ (Li₃N) and other alkaline earth elements ions (Mg₃N₂).
- (Q)Write the electron configuration and the Lewis symbol for N³⁻.

N: [He]
$$2s^22p^3$$
 N³-: [He] $2s^22p^6$ Sn: [Kr] $4d^{10}5s^25p^2$ Sn²⁺ : [Kr] $4d^{10}5s^2$ Sn⁴⁺ : [Kr] $4d^{10}5s^2$

> Transition-Metal lons

✓ M^{2+} is a common oxidation state as two electrons are removed from the outer *ns* shell. Fe: [Ar] 4s²3d⁶

Fe²⁺: [Ar] $3d^6$ loses 4s electrons first

Fe $^{3+}$: [Ar] $3d^{5}$ then loses 3d electrons

(Q) What are the correct electron configurations for Cu & Cu²⁺ ? $\Delta \Gamma \Delta r \Gamma \Delta s^2 3 d^9 \Gamma \Delta r \Gamma 3 d^9$

B. [Ar] 3d¹⁰4s¹, [Ar] 4s¹3d⁸

C. [Ar] 3d¹⁰4s¹, [Ar] 3d⁹

D. [Ar] 4s²3d⁹, [Ar] 3d¹⁰4s¹

E. [K] 4s²3d⁹, [Ar] 3d⁹

Cu: [Ar] 3d¹⁰ 4s¹
Cu^{t2}: [Ar] 3d⁹

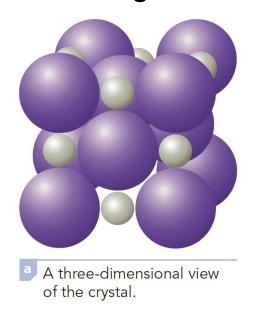
(Q) What are the correct electron configurations for zirconium(II) and

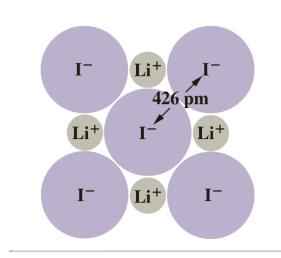
zirconium(IV) ions?

A. [Kr] $5d^2$ [Kr] $4d^1$

B. [Ar] $4d^2$ [Ar] $5s^2$

C. [Kr] 5s²4d² [Kr]

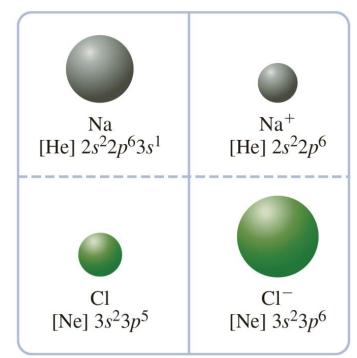

D. [Kr] 5s² 4d⁶ [Kr] 4d⁶


E. [Kr] 4*d* ² [Kr] 🗸

						CKY	76	501	12									
	IA			0	r:			,,,										VIIIA
	· Н	2			+2	CK	~7	4d2	-				13	.,	15	16	.,	^² Не
	Hydrogen 1.008	IÍA											LIIA	IVA	VA VA	VIA	VIIA	Helium 4.002602
	³ Li	^⁴ Be			. 44		rl						[°] B	° C	'N	°O	[°] F	[™] Ne
	Lithium 6.94	Beryllium 9.0121831				LI V							Boron 10.81	Carbon 12.011	Nitrogen 14.007	Oxygen 15.999	Fluorine 18.998403163	Neon 201797
	"Na	Mg			_								¹³ AI	⁵Si	¹⁵ P	¹⁶ S	CI	[™] Ar
	Sodium 22.98976928	Magnesium 24.305	IIIB	ı√B	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	IB	12 IIB	Aluminium 26.9815385	Silicon 28.085	Phosphorus 30.973761998	Sulfur 32.06	Chlorine 35.45	Argon 39.948
	¹⁹ K	²⁰ Ca	Sc	Ti	²³ V	²⁴ Cr	Mn ²⁵	[∞] Fe	²⁷ Co	Ni Ni	²⁹ Cu	³⁰ Zn	³ Ga	³²Ge	³³As	³Se	³⁵ Br	³⁶ Kr
	Potassium 39.0983	Calcium 40.078	Scandium 44.955908	Titanium 47.867	Vanadium 50.9415	Chromium 51.9961	Manganese 54.938044	Iron 55.845	Cobalt 58.933194	Nickel 58.6934	Copper 63.546	Zinc 65.38	Gallium 69.723	Germanium 72.630	Arsenic 74.921595	Selenium 78.971	Bromine 79.904	Krypton 83.798
)	³⁷ Rb	⁵Sr	³⁹ Y	[∞] Zr	⁵Nb	Mo	^{⁴³} Тс	[™] Ru	⁵Rh	[™] Pd	⁴⁷ Ag	[®] Cd	⁴⁹ In	⁵Sn	⁵¹ Sb	⁵² Te	53	⁵⁴Xe
	Rubidium 85.4678	Strontium 8762	Yttrium 88.90584	Zirconium 91.224	Niobium 92.90637	Molybdenum 95.95	Technetium (98)	Ruthenium 101.07	Rhodium 102.90550	Palladium 106.42	Silver 107.8682	Cadmium 112.414	Indium 114.818	Tin 118.710	Antimony 121.760	Tellurium 12760	lodine 124,96-47	Xenon 131.293
	°Cs	Ba	57 - 71 Lanthanoids	Hf Hafaire	Ta	W Tunostan	Re	Os Osmism	77 Ir	Pt Statioum	Au Gold	Hg	TI Thellium	Pb	Bi Bi	Po Bolosium	Att	⁸⁶ Rn

> 9.3 Ionic Radii

Determining the iodide ion radius in the lithium iodide (LiI) crystal



Ionic radius of I^- = 426 / 2 = 213 pm

Exercise 9.6 arrange the following ions in order of increasing ionic radius: Sr²⁺, Mg²⁺, Ca²⁺.

$$Mg^{2+} < Ca^{2+} < Sr^{2+}$$

✓ Ionic radii increase down any column because of the addition of electron shells.

Table 9.3	Ionic Radii (in pm) of Some Main-Group Elements											
Period	1A	2A	3A	6A	7A							
2	Li ⁺	Be ²⁺		O^{2-}	F^-							
	60	31		140	136							
3	Na ⁺	Mg^{2+}	$A1^{3+}$	S^{2-}	Cl ⁻							
	95	65	50	184	181							
4	K ⁺	Ca ²⁺	Ga ³⁺	Se ²⁻	Br^-							
	133	99	62	198	195							
5	Rb^+	Sr^{2+}	In ³⁺	Te ²⁻	I-							
	148	113	81	221	216							
6	Cs ⁺	Ba ²⁺	T1 ³⁺									
	169	135	95									

- radius > + radius

IA																	18 VIIIA
Hydrogen	2 IIA											13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	He Helium
3 Li Lithium	Be Beryllium 9.0129331											B Boron	G Carbon	7 Nitrogen	Oxygen	9 F Fluorine 18,998403163	Ne Neon 201797
Na Sodium 22.98978928	Mg Magnesium 24305	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	Al Aluminium 26.9815385	Silicon	Phosphorus	S Sulfur 32.06	Cl Chlorine	Ar Argon
19 K	Ca Calcium	SC Scandium	Ti Titanium	Vanadium	Cr Chromium	Mn Manganese	Fe Iron	Co Cobalt	Ni Nickel	Cu Copper	Zn Zinc	Ga Gallium	Ge Germanium	As Arsenic	Se Selenium	Br Bromine	Kr Krypton
37 Rb	38 Sr Strontium	44.955908 39 Yttrium	Zr Zirconium	Nb Niobium	MO Molybdenum	43 TC Technetium	Ru Ruthenium	45 Rh Rhodium	46 Pd	47 Ag	48 Cd Cadmium	49 In	50 Sn Tin	51 Sb Antimony	Te	79.904 53	54 Xe Xenon

> Pattern across a period

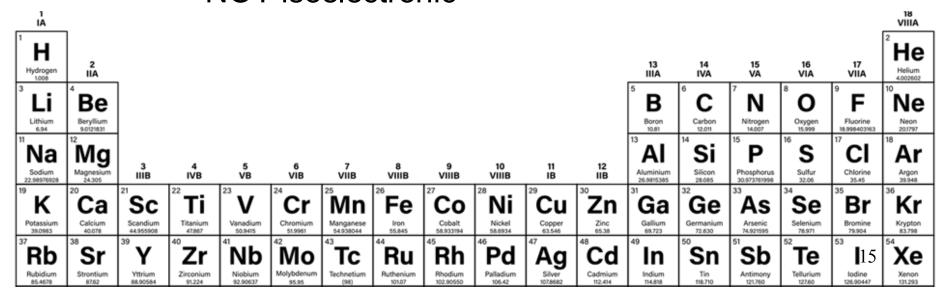
Cation Na⁺ Mg²⁺ Al³⁺ Anion S²⁻ Cl⁻ Radius (pm) 95 > 65 > 50 Radius (pm) 184 181

- ✓ All of these cations have Ne configuration 1s²2s²2p6 but different nuclear charges (they are isoelectronic).
- ✓ **Isoelectronic** refers to <u>different species having the same</u> <u>number and configuration of electrons</u> with different nuclear charge
- **9.47** Arrange the following in order of increasing ionic radius:

As $^{3-}$, Se $^{2-}$, Br $^{-}$ Br $^{-}$ < Se $^{2-}$ < As $^{3-}$ Or As $^{3-}$ > Se $^{2-}$ > Br $^{-}$ atomic number decreases

		;° >	. <u></u>	' >						npe			ase			_
H	AS		, 5 e		Br		1101		П				<i>,</i> 450			² Не
Hydrogen IIA											13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	Helium 4.002602
³ Li ˈBe											^в В	°С	['] N	[®] O	° F	[™] Ne
Lithium Berylliu 6.94 9.01218											Boron 10.81	Carbon 12.011	Nitrogen 14.007	Oxygen 15.999	Fluorine 18.998403163	Neon 201797
"Na Mg]	4	5	6	7	8	9	10	11	12	¹³ Al	⁵Si	¹⁵ P	¹⁶ S	"CI	[™] Ar
Sodium Magnes 22.98976928 24.305	m IIIB	IVB	VВ	VĬB	viiB	VIIIB	VIIIB	viiiB	Ϊ́Β	12 IIB	Aluminium 26.9815385	Silicon 28.085	Phosphorus 30.973761998	Sulfur 32.06	Chlorine 35.45	Argon 39.948
¹⁹ K Ca	SC	²² Ti	²³ V	²⁴ Cr	Mn 25	Fe Fe	²⁷ Co	²⁸ Ni	²⁹ Cu	³⁰ Zn	³Ga	³² Ge	³³ As	⁵Se	³5Br	³⁶ Kr
Potassium Calciu 39.0983 40.078	Scandium 44.955908	Titanium 47.867	Vanadium 50.9415	Chromium 51.9961	Manganese 54.938044	Iron 55.845	Cobalt 58.933194	Nickel 58.6934	Copper 63.546	Zinc 65.38	Gallium 69.723	Germanium 72.630	Arsenic 74.921595	Selenium 78.971	Bromine 79.904	Krypton 83.798
Rb S	³⁹ Y	[∞] Zr	¹Nb	42Мо	⁴³ Tc	⁴Ru	⁵Rh	⁴⁶ Pd	⁴⁷ Ag	[®] Cd	⁴⁹ In	⁵Sn	51 Sb	⁵² Te	⁵³ ▮ 14	Xe
Rubidium Strontio 85.4678 87.62	n Yttrium 88.90584	Zirconium 91.224	Niobium 92.90637	Molybdenum 95.95	Technetium (98)	Ruthenium 101.07	Rhodium 102.90550	Palladium 106.42	Silver 107.8682	Cadmium 112.414	Indium 114.818	Tin 118.710	Antimony 121.760	Tellurium 127.60	lodine 126.90447	Xenon 131.293

(Q) arrange the following ions in order of decreasing ionic radius: F⁻, Mg²⁺, O²⁻


isoelectronic series \rightarrow Mg²⁺ (Z=12) < F⁻ (Z=9) < O²⁻ (Z=8)

9.49 Arrange the following in order of increasing ionic radius: F⁻, Na⁺, and N³⁻.

highest r

isoelectronic series \rightarrow Na⁺ (Z=11) < F⁻ (Z=9) < N³⁻ (Z=7)

9.48 Which has the larger radius, N³⁻ or P³⁻? **P**³⁻ NOT isoelectronic

> Covalent Bonds

✓ a <u>chemical bond formed by the sharing of a pair of electrons</u> between atoms.

9.4 Describing Covalent Bonds

✓ The <u>distance</u>

<u>between nuclei at</u>

<u>minimum energy</u>

is called the *bond length* of H₂.

Figure 9.11 ◀

Potential-energy curve for H₂ The stable molecule occurs at the bond distance corresponding to the minimum in the potential-energy curve.

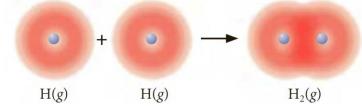
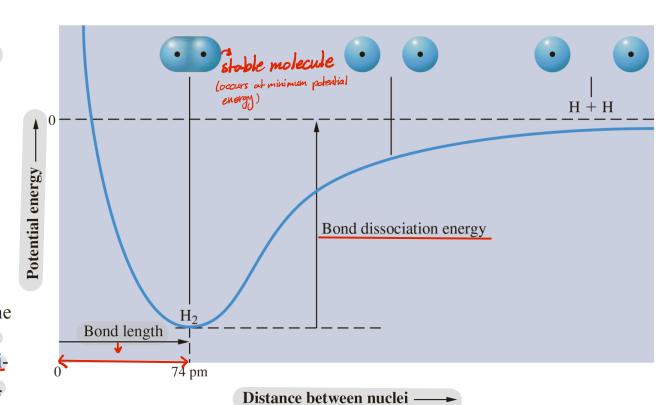



Figure 9.10 A

The electron probability distribution for the H₂ molecule The electron density (shown in red) occupies the space around both atoms.

> Lewis Formulas

$$H \cdot + \cdot H \longrightarrow H : H \qquad H : H$$

$$H \cdot + \cdot \stackrel{\cdots}{Cl} : \longrightarrow H \stackrel{\cdots}{:} \stackrel{\cdots}{:} \stackrel{\cdots}{:}$$

$$3H \cdot + \cdot \stackrel{\cdot}{N} : \longrightarrow H : \stackrel{\cdot}{N} : \\ H$$

➤ Coordinate Covalent Bonds

✓ is a <u>bond formed when both electrons of the bond are donated</u>

<u>by one atom</u> and the other atom gives an empty orbital

$$A \cdot + \cdot B \longrightarrow A : B$$

$$A + : B \longrightarrow A : B$$

$$H^{++} + 0NH_3 \longrightarrow \begin{vmatrix} H & H \\ H : N : H \\ H \end{vmatrix}^{+}$$

- > Octet Rule
- ✓ The <u>tendency of atoms in molecules to have eight electrons in their valence shells</u> (two for hydrogen atoms)

> Multiple Bonds

9.5 Polar Covalent Bonds (Polar Bonds)

✓ is a <u>covalent bond in which the bonding electrons spend more</u> time near one atom than the other.

```
H: H: H: Cl: Na^+: Cl: 
Nonpolar covalent Polar covalent Ionic

difference in electronegativity \Rightarrow polar bond

no difference in electronegativity \Rightarrow non-polar bond
```

- ➤ Electronegativity is a <u>measure of the ability of an atom in a</u> molecule to draw bonding electrons to itself.
- ✓ Mulliken electronegativity (χ): $X = \frac{I.E. + E.A.}{2}$
- ✓ F has large E.A. and large I.E. → large electronegativity
- ✓ Li has small E.A. and small I.E. → small electronegativity
- \checkmark Pauling's electronegativity (χ): depends on bond enthalpies
- ✓ Electronegativity increases from <u>left to right</u> and decreases from <u>top to bottom</u> in the periodic table. | increase in electronegativity
- ✓ Metals are the least electronegative elements (they are electropositive) and nonmetals the most electronegative.
- ✓ The absolute value of the difference in electronegativity of two bonded atoms gives a rough measure of the polarity of a bond

$$H$$
— H , H — Cl , and Na — Cl

$$\Delta \chi$$
: 0.0 0.9 2.1 H — Cl

$$non-polar Polar ionic Polar molecule$$

19

Writing Lewis Electron-Dot Formulas

L> first = check the octet rule L> second => check the formal charge

These will be done in class:

H₂O, NF₃, CCl₂F₂, CO₂, SCl₂, POCl₃, COCl₂, HSO₃Cl, CO₃²-, NH₄+, BF₄-, H₃O+, ClO₂-.

CONCEPT CHECK 9.2

Each of the following may seem, at first glance, to be plausible electron-dot formulas for the molecule N_2F_2 . Most, however, are incorrect for some reason. What concepts or rules apply to each, either to cast it aside or to keep it as the correct formula?

- :F:N:N:F:
- b :F:N::N:F:

c : F::N:N:F:

:F:N:N:F:

e :F:N::F:N:

$$V_2F_2$$
 $V_6 = 10 + 14 = 24e^{-1}$

$$V_{2}F_{2}$$

$$V_{2}=10+14=24e^{-1}$$

$$V_{3}=10+14=24e^{-1}$$

$$V_{4}=10+14=24e^{-1}$$

$$V_{5}=10+14=24e^{-1}$$

$$V_{5}=10+14=24e^{-1}$$

writing Lewis e dot formula

- 1. find the valence electrons for all atoms in the formula. I hadd one for each negative charge and substract one for each positive charge ex: $11.0 \Rightarrow 11x2)+6=8e^{-}$ $10.5 \Rightarrow 5+(3x6)+1=24e^{-}$ $10.5 \Rightarrow 5+(4x1)-1=8e^{-}$
- 2. draw skeletal for the structure put the "least electronegativity" atom in the center (with exception for H)-, always on the summarings. "the one that form more bonds"
- 3. draw single bond between the center and the surrounding atoms
- 4. complete octet for each atom starting from the surroundings (except H for 2E)
- 5. draw double or triple bond if needed (when valence electrons finish and the center atoms that often form multiple bond => CINIO,5 atom hasn't reached the octet yet!)

a formal charge for the atom:

valence e - 1 (bonding electrons) - non-bonding electrons -> computed for each atom on it's own.

2. NF3 Ve= S+(3x7)=26e-

3.
$$CGl_2F_2$$
 $V_e = 4 + (2x^2) + (2x^2) = 32e^x$
 $\vdots F:$
 $\vdots CI - CI:$
 $\vdots F:$

5.
$$SCI_2$$
 $Ve = 6 + (2x7) = 20e^{-1}$

$$4. co_2 \ Ue = 4 + (2xb) = 16e^{-}$$

$$6.CO_3^2$$
 $Ve = 4 + (3x6) + 2 = 24e^-$

$$\begin{bmatrix} : \ddot{O} - C = O \\ \vdots & \vdots \\ : O : \end{bmatrix}^{2}$$

$$\begin{bmatrix} H - I_0 - I_1 \end{bmatrix}$$

$$\underbrace{\circ}_{: \mathcal{Q}_{:}} = \underbrace{-\ddot{\mathcal{Q}}_{:}}_{: \mathcal{Q}_{:}} \underbrace{\circ}_{: \mathcal{Q}_{$$

8.
$$1354$$
 $Ve = 3 + (4x7) + 1 = 32e^{-1}$

this is called resonance
$$9.430^{\dagger}$$
 Ue = $3+6-1=8e^{-}$

$$\begin{bmatrix} \ddot{x} - \ddot{y} - \ddot{y} \\ \ddot{x} - \ddot{y} \end{bmatrix}$$

$$\begin{bmatrix} \ddot{x} - \ddot{y} - \ddot{y} \\ \ddot{y} \end{bmatrix}$$

$$\begin{bmatrix} \ddot{x} - \ddot{y} - \ddot{y} \\ \ddot{y} \end{bmatrix}$$

$$\left[\ddot{\ddot{Q}} - \ddot{\ddot{Q}} - \ddot{\ddot{Q}} - \ddot{\ddot{Q}} \right]^{-1}$$

12.
$$POCl_3$$
 $Ve = 9+6+21 = 32e^{-1}$
 Oi
 Oi

Lo to reach a zero formal Charge

$$\ddot{O} = S^{\circ} - \ddot{O} - H \quad \Rightarrow \text{ exception for octet rule}$$

$$\overset{\circ}{C} = S^{\circ} - \ddot{O} - H \quad \Rightarrow \text{ exception for octet rule}$$

$$\overset{\circ}{C} = S^{\circ} - \ddot{O} - H \quad \Rightarrow \text{ exception for octet rule}$$

$$|U_{e}| = 4+6+14=24e$$

$$|C| - C - C|$$

$$|C| = 4+6+14=24e$$

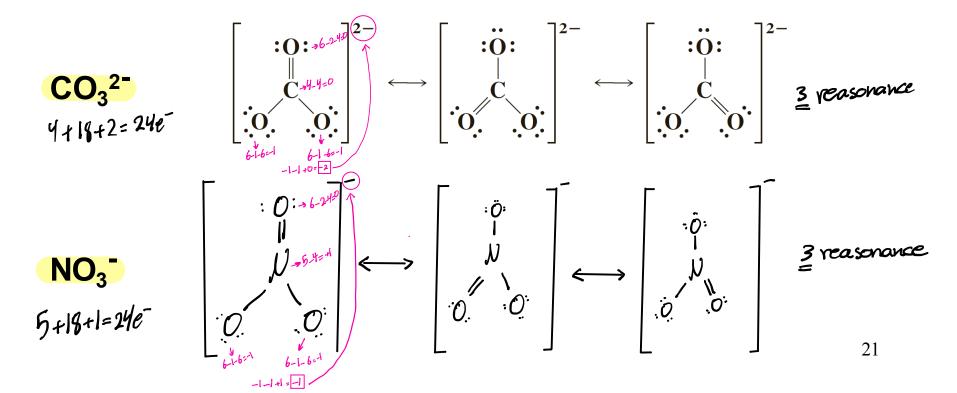
$$|C| - C - C|$$

$$|C| = 4+6+14=24e$$

$$|C| - C - C|$$

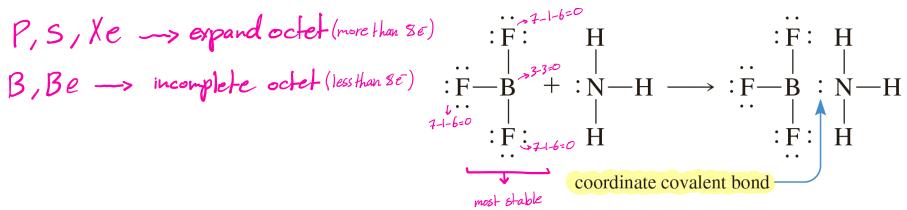
$$|C| = 4+6+14=24e$$

$$|C| - C - C|$$

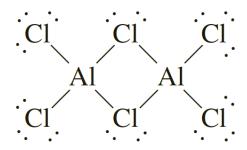

rit c formed double bond with other atom than O

> the formal charge with be zero X

9.7 Delocalized Bonding: Resonance



- ✓ The lengths of the two oxygen—oxygen bonds (that is, the distances between the atomic nuclei) are both 128 pm.
- √ delocalized bonding



9.8 Exceptions to the Octet Rule

These will be done in class:

AICI₃ @ RT & at melting point (very low 192°C)

two of the CI atoms are in bridge positions

Promotes the stability for the

The octet exceptions:

2. SF₆
$$V_e = 6 + 42 = 48e^{-1}$$

 $F_e = 6 + 42 = 48e^{-1}$
 $F_e = 6 +$

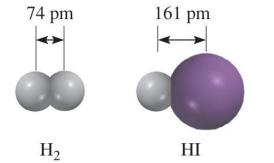
5.
$$|BeC|_2$$
 $|Ve = 2 + |Ve = |6e|$
 $|C| - |Be - C|$: $|Ve = |C|$:

9.9 Formal Charge and Lewis Formulas

RULE A Whenever you can write several Lewis formulas for a molecule, choose the one having the lowest magnitudes of formal charges.

RULE B When two proposed Lewis formulas for a molecule have the <u>same</u> magnitudes of formal charges, choose the one having the <u>negative</u> formal charge on the more electronegative atom.

RULE C When possible, choose Lewis formulas that do not have like charges on adjacent atoms.


(Q) Write the Lewis formula that best describes the charge distribution in the sulfuric acid molecule, H₂SO₄, according to the rules of formal charge. (HNO₃, H₃PO₄, HCN)

(Q) Draw three resonance structures for the molecule nitrous oxide, N₂O (the atomic arrangement is NNO)

Structure (b) is the most important one because the negative charge is on the more electronegative oxygen atom.

Structure (c) is the least important one because it has a larger separation of formal charges. Also, the positive charge is on the more electronegative oxygen atom.

> 9.10 Bond Length and Bond Order

bond length:

the sum of the covalent radii of atoms A and B predicts the

A-B bond length.

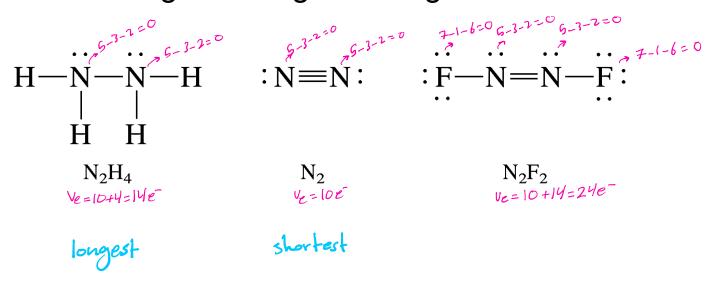
covalent radius:

Covalent radius of an atom X = half of the covalent bond length of a homonuclear X-X single bond.

If covalent radius of (C = 76 pm) & (Cl = 102 pm) → bond length of C-Cl = (76 + 102) = 178 pm chloromethane, CH₃Cl, 178.4 pm;

tetrachloromethane, CCl₄, 176.6 pm;

Bond lengths: the shortest the strongest Triple bond < Double Bond < Single Bond


Average Bond Lengths of Some Common Single, Double, and Triple Bonds

Bond Type	Bond Length (pm)
С—Н	107
С—О	143
C=O	121
С—С	154
C=C	133
C≡C	120
C—N	143
C=N	138
C≡N	116
N—O	136
N=O	122
О—Н	96

Trends for atomic radii

- 1. Within a period, the covalent radius tends to decrease with increasing atomic number.
- 2. Within a group, the covalent radius tends to increase with period number.

(Q) Consider the molecules N_2H_4 , N_2 , and N_2F_2 . \rightarrow should draw lewis structure Which molecule has the shortest nitrogen—nitrogen bond? Which has the longest nitrogen—nitrogen bond?

bond length => N2Hy > N2F2 > N2

9.11 Bond Enthalpy (BE) - important

"bond enthalpy" and "bond energy" are often used interchangeably

$$H = \begin{pmatrix} H & H & H \\ -C & H(g) & \longrightarrow H - \begin{pmatrix} C(g) + H(g) & \Delta H = 435 \text{ kJ} \end{pmatrix}$$

$$H = \begin{pmatrix} H & H & H & H \\ H & -C & -C & H(g) & \longrightarrow H - \begin{pmatrix} C & C(g) + H(g) & \Delta H = 410 \text{ kJ} \end{pmatrix}$$

$$H = \begin{pmatrix} H & H & H & H \\ H & H & H & H \end{pmatrix}$$

$$H = \begin{pmatrix} H & H & H \\ -C & -C & H(g) & \longrightarrow H - \begin{pmatrix} C & C(g) + H(g) & \Delta H = 410 \text{ kJ} \end{pmatrix}$$

$$H = \begin{pmatrix} H & H & H & H \\ H & H & H & H \end{pmatrix}$$

$$CH_{4}(g) \longrightarrow C(g) + 4H(g); \Delta H = \begin{pmatrix} 1662 \text{ kJ} & H - \begin{pmatrix} C & -H & \rightarrow C_{(g)} & + 4H_{(g)} \\ H & H & H & H \end{pmatrix}$$

$$\Rightarrow BE(C - H) = \frac{1}{4} \times 1662 \text{ kJ} = 416 \text{ kJ}$$
Here would be an expected to the second seco

- ✓ Because it takes energy to break a bond, bond enthalpies are always positive numbers.
- ✓ Bond enthalpy is a measure of the strength of a bond: the larger the bond enthalpy, the stronger the chemical bond

(Q) Use bond enthalpies to estimate the enthalpy change for the following reaction:

⇒ dr said this is imp question ~

$$CH_4(g) + Cl_2(g) \longrightarrow CH_3Cl(g) + HCl(g)$$

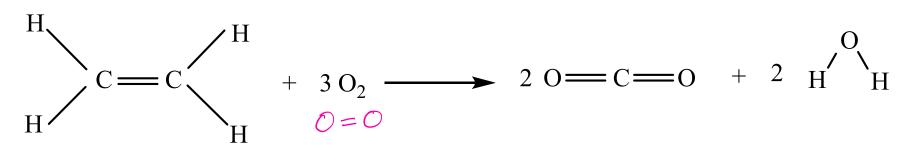
Given that bond enthalpies (kJ/mol) for:

$$(C-H) = 413$$
, $(CI-CI) = 242$, $(C-CI) = 328$, $(H-CI) = 431$,

$$\Delta H \approx BE(\text{C}-\text{H}) + BE(\text{Cl}-\text{Cl}) - BE(\text{C}-\text{Cl}) - BE(\text{H}-\text{Cl})$$

$$= (413 + 242 - 328 - 431) \text{ kJ}$$

$$= -104 \text{ kJ}$$


In general, the enthalpy of reaction is (approximately) equal to the sum of the bond enthalpies for bonds broken minus the sum of the bond enthalpies for bonds formed.

AH= sum of broken bonds enthalpies - sum of formed bonds enthalpies enthalpies

Exercise 9.18 Use bond enthalpies to estimate the enthalpy change for the combustion of ethylene, C_2H_4 , according to the equation

$$C_2H_4(g)+3O_2(g)\longrightarrow 2CO_2(g)+2H_2O(g)$$
 = the eq will be given and we Given that bond enthalpies (kJ/mol) for:

$$(C=C) = 614, (C-H) = 413, (O=O) = 498, (C=O) = 804, (O-H) = 463$$

$$\Delta H = \{[614 + (4 \times 413) + (3 \times 498)] - [(4 \times 804) + (4 \times 463)]\} \text{ kJ}$$

= -1308 kJ

9.85 Use bond enthalpies (Table 9.5) to estimate ΔH for the following gas-phase reaction.

$$\Delta H \cong BE(C=C) + BE(H-Br) - BE(C-C) - BE(C-H) - BE(C-Br)$$

= (614 + 366 - 348 - 413 - 276) kJ = -57 kJ