

اللهم صلّ وسلّم على نبينا محمد وعلى آله وصحبه أجمعين

Chapter 2 Atoms, Molecules, and lons

- Required sections:
- 2.3 Nuclear Structure and Isotopes
- 2.4 Atomic Weights
- 2.8 Naming Simple Compounds
- 2.9 Writing Chemical Equations
- 2.10 Balancing Chemical Equations
- > Excluded sections: 2.1, 2.2, 2.5, 2.6, 2.7

Frample:

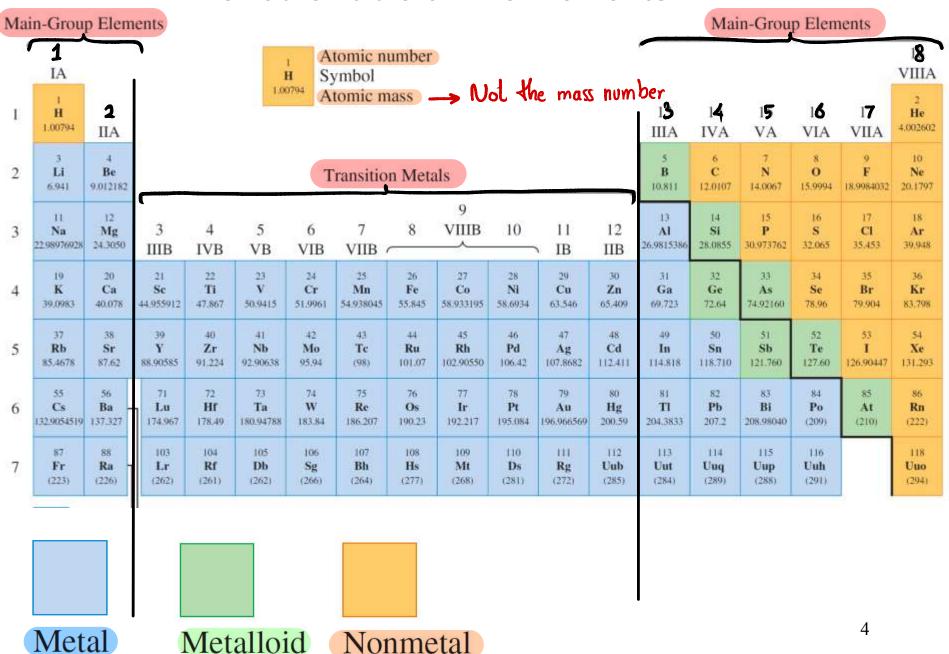
1) Ni
$$=$$
 Atomic Hass \rightarrow Periodic table = 28

1) Property Periodic table = 28

2) Prope

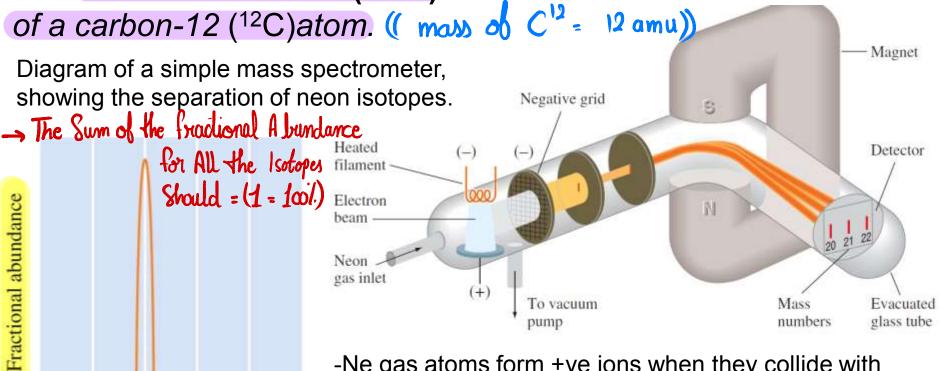
Exercise 2.1 A nucleus consists of 17 protons and 18 neutrons.

What is its nuclide symbol?


See Problems 2.47

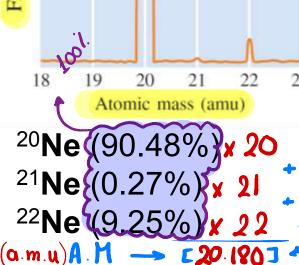
and 2.48.

Atomic Hass + Mass Number


: Isotope المنطقة الم

Periodic Table of The Elements

2.4 Atomic Masses and atomic mass Units (amu)


One atomic mass unit (amu) is a mass unit = 1/12 of the mass

- -Ne gas atoms form +ve ions when they collide with electrons.
- -Ne⁺ atoms are accelerated from this region by the negative grid and pass between the poles of a magnet.
- -The beam of positively charged atoms is split into three beams by the magnetic field according to the

mass/charge ratios.

-The three beams then travel to a detector at the end of the tube

Relative Atomic Masses (A_r)

Calculate the value of A_r for naturally occurring chlorine if the distribution of isotopes is 75.77% 35Cl and

24.23% ³⁷₁₇Cl. Accurate masses for ³⁵Cl and ³⁷Cl are 34.97 and 36.97.

Exercise 2.2 ing isotopes:

Chlorine consists of the follow-

Fractional Isotopic Abundance Isotope Mass (amu) 0.75771 = 75.77% Chlorine-35 34.96885 0.24229 = 24. 229% Chlorine-37 36.96590

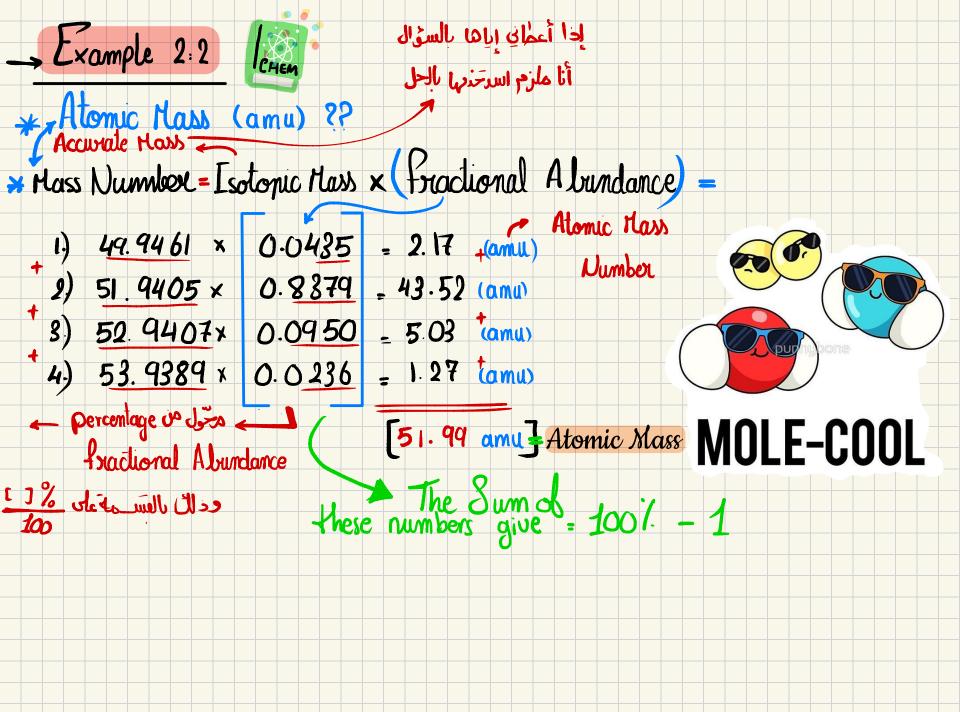
What is the atomic mass of chlorine? 35 45

Example 2.2

.7577

Determining Atomic Mass from Isotopic Masses and Fractional Abundances

Chromium, Cr, has the following isotopic masses and fractional abundances:


Mass Number	Isotopic Mass (amu)	Abundance Abundance
دی 50	49.9461	0.0435 Lendle
52	51.9405	إدا ما أعداً الله الله الله الله الله الله الله ال
53	52.9407	0.0950 (Isolopic Mass) Ji
54	53.9389	ستصر ال 0.0236

Solution Multiply each isotopic mass by its fractional abundance, then sum:

> $49.9461 \text{ amu} \times 0.0435 = 2.17 \text{ amu}$ $51.9405 \text{ amu} \times 0.8379 = 43.52 \text{ amu}$ $52.9407 \text{ amu} \times 0.0950 = 5.03 \text{ amu}$ $53.9389 \text{ amu} \times 0.0236 = 1.27 \text{ amu}$ 51.99 amu

The atomic mass of chromium is 51.99 amu.

Answer Check The average mass (atomic mass)

xercise 2.2 Chlorine consists of the following isotopes:

See Problems 2.51, 2.52, 2.53, and 2.54.

Fractional Isotopic Abundance Isotope Mass (amu) Chlorine-35 34.96885 0.75771 Chlorine-37 36.96590 0.24229

What is the atomic weight of chlorine?

Atomic weight mass

* Mass Number = Isotopic Mass x (Fractional Abundance)

- 34.96885 x/0.75771 = 26.496 (amu)
- 36.96590 × 0.24229 = 8.9565 (amu)

1.100

35.452 (amu) Atomic Mass

If the relative atomic mass for Cl is 35.45, and the accurate masses of ³⁵Cl and ³⁷Cl are 34.97 and 36.97; What is the fractional abundance of ³⁷Cl?

- Atomic mass
$$CL = 35.45$$

- Accurate Hasses $(Cl^{35} Cl^{37}) \Rightarrow 34.97 36.97$

* Practional Abundance = $Cl^{37} ??$

Accurate Hass * Practional Abundance = Atomic Hass $(2l^{35} Cl^{37}) \Rightarrow 34.97 \Rightarrow 35.45$

(34.97 $(34.97) \Rightarrow 34.97 \Rightarrow 35.45$

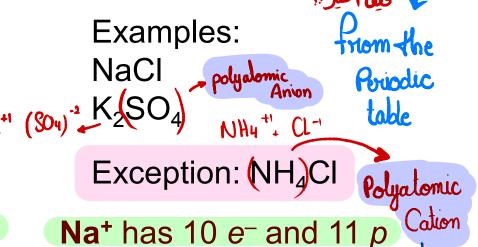
(34.97 $(34.97) \Rightarrow 34.97 \Rightarrow 35.45$

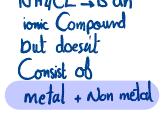
(34.97 $(34.97) \Rightarrow 34.97 \Rightarrow 35.45$

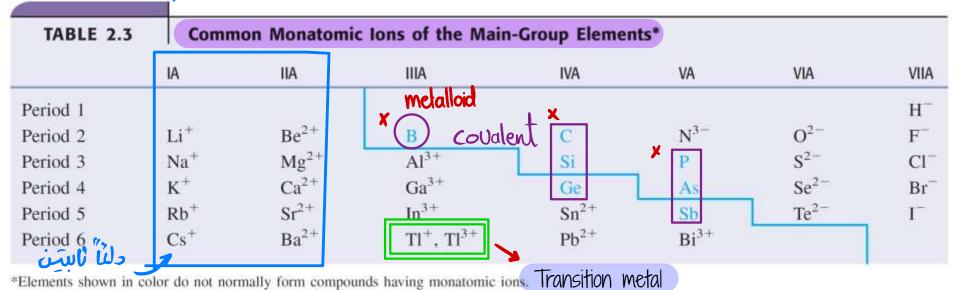
All the $2y = .48 \Rightarrow y = .24.999$ I dea is here.

2.8 Naming Simple Compounds (Chemical nomenclature)

-nomenclature of some simple inorganic compounds


- Naming ionic Compounds: (Cation Anion) Formula
 - (Most ionic compounds contain metal + nonmetal atoms)


Cations


- Positively charged ions
- Formed from metals
- Atoms lose electrons
- **e.g.**, **Na** has 11 e⁻ and 11 p

Anions

- Negatively charged ions
- Formed from non-metals
- Atoms gain electrons
- **e.g., CI** has 17 *e*⁻ and 17 *p*

> Rules for Predicting the Charges on Monatomic Ions:

- 1. In most main-group **metallic** elements :
 - **charge = group number in the periodic table (the Roman numeral).
- numeral).

 group Number: → (3+4+5+6)

 2. Some(metallic)elements of high atomic number have more than one cation:

 δη C
- (i) Common cations, charge = (group number 2) # Tin, Chlorid

+29

(ii) Charge = group number.

Example (Pb): common ion Pb2+ in addition to Pb4+

- 3. Most transition elements form more than one monatomic cation.
- -Most of these elements have one ion with a charge of 2+. (Age Examples: (Fe) has common cations Fe²⁺ and Fe³⁺

(Cu) has common cations Cu⁺ and Cu²⁺.

4. Charge on a monatomic anion for a nonmetallic main-group

element = (group number – 8).#

Example: (O) has the monatomic anion O².

(The group number is 6; the charge is [(6-8)= -2]

one Cation - one Anion.

Rules for Naming Monatomic Ions

الاسم الصبيعي 4 للعنصب

1. Monatomic cations are named after the element if there is only one such ion.

Transition metal)

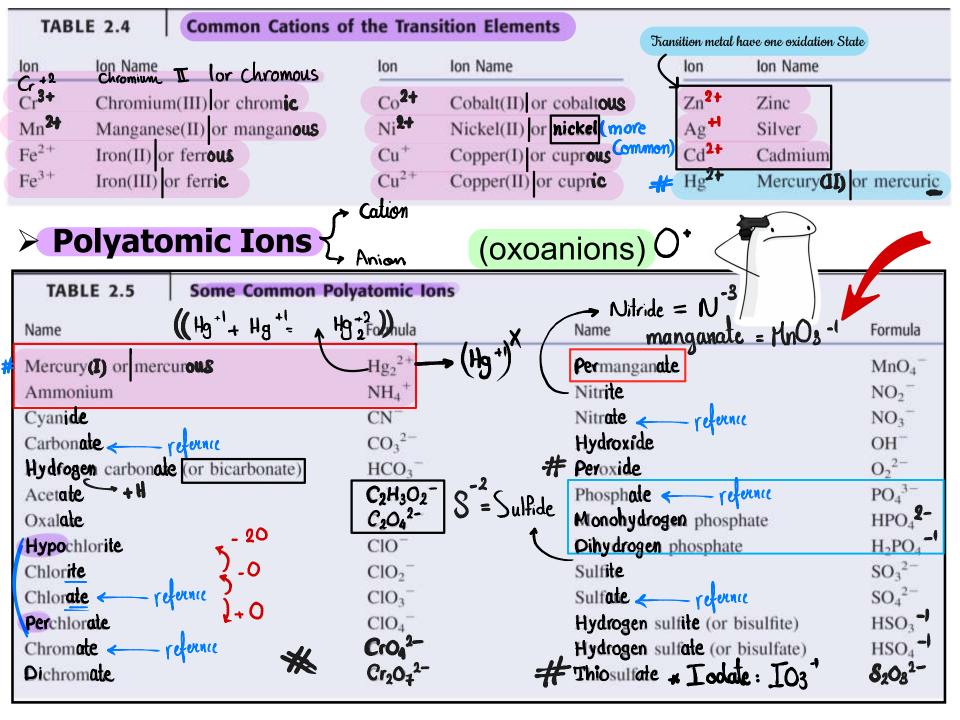
high atomic Number (main group metal)

Example: Al3+ is called aluminum ion; Na+ is called sodium ion.

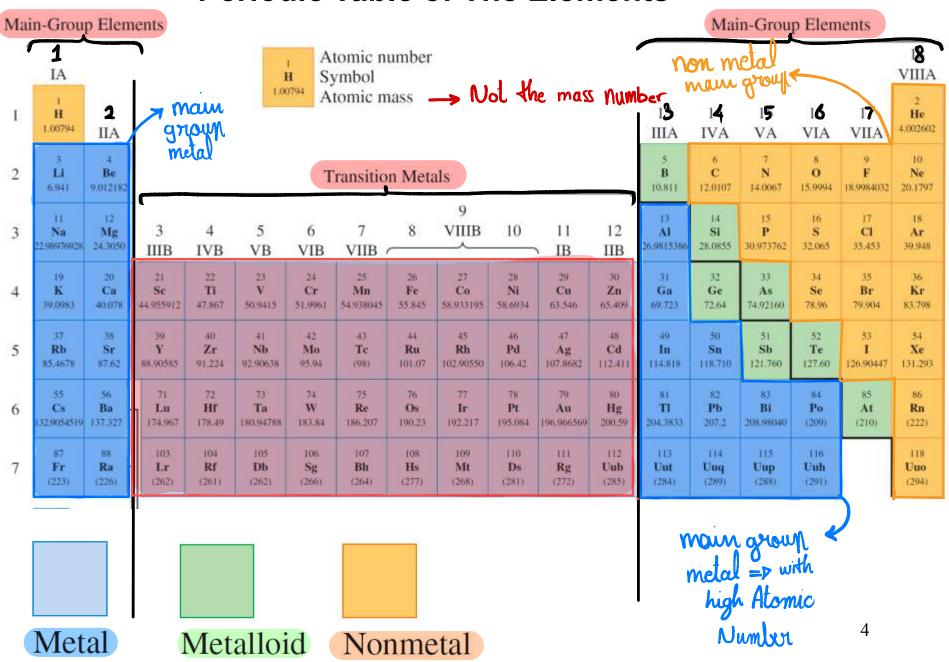
TABLE 2.5 Monatomic Negative Ions "Anoion" Hydride Carbide Nitride Oxide Fluoride Silicide Phosphide Sulfide Chloride Selenide Arsenide Bromide 10 Telluride **Iodide**

2. If there is more than one monatomic cation of an element

Rule 1 is not sufficient

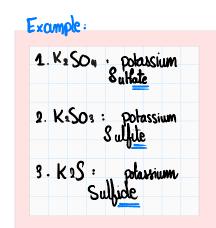

Use Stock system

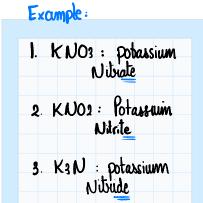
have more than one Oxidation


Example: Fe²⁺ is called iron(II) ion and Fe³⁺ is called iron(III) ion. State

Older system of nomenclature, such ions are named by adding the suffixes ous and fic to a stem name of the element to indicate the ions of lower and higher charge, respectively. Fe'cl's Fe'cl's Examples:

- Fe²⁺ (ferrous ion) and Fe³⁺ (ferric ion)
- Cu⁺ (cuprous ion) and Cu²⁺ (cupric ion) Exeption (Ag+)
- Few transition metal cations, such as Zn, have only a single ion usually name them by just the metal name.
- Also, It's not wrong to name Zn²⁺ as zinc(II) ion./Zinc Ion
- 3. The names of the monatomic **anions** are obtained from a stem name of the element followed by the suffix *-ide*. Example: Br is called **bromide** ion, from the stem name *brom-* for bromine and the suffix *-ide*.

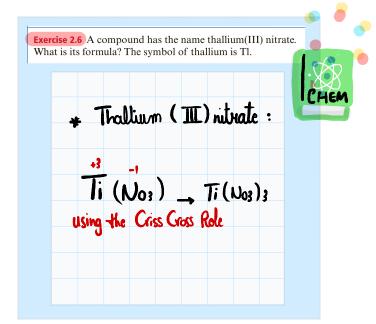



Periodic Table of The Elements

> Polyatomic Ions

- NO_2 \longrightarrow nitrite ion
- $NO_3^- \rightarrow nitrate$ ion
- ClO[−] → <u>hypochlorite</u> ion
- ClO_2 \longrightarrow chlorite ion
- $ClO_3^- \longrightarrow chlorate ion$
- ClO_4 \rightarrow perchlorate ion
- Example 2.4 Naming an Ionic Compound from Its Formula
- (Q) Name the following compounds: **Metal** → **nonmetal**
- Mg3N2: magnesium nitride Mg=Main grown metal
- CrSO₄: chromium(II) sulfate Gr. Transition element
- PbCrO4: Lead(II) chromate pb = high main group metal
- FeCl₂: Iron (II) chloride Transition element FeCl₃: Iron (III) chloride
- Cr₂S₃: chromium(III) sulfide G= Transition element

"Criss-cross" rule


- K₂O
 Polyatomic Cation
 (NH₄)CIO₃
 (CH₃COO)⁻
 Mg(C₂H₃O₂)₂ potassium oxide Exercise 2.5 Write the names of the following compounds: ammonium chlorate A. CaO: _ Calcium Oxide magnesium acetate B. pb CrO4: Cr_2O_3 chromium(III) oxide _lead (II) Chromate zinc bromide • $ZnBr_2$
- (Q) Determine The Formula of the following compounds: Using the Criss Calcium hydroxide $Ca(OH)_2$ Manganese(II) bromide MnBr₂ Ammonium phosphate $(NH_4)_3PO_4$ Mercury(I) Fluoride $Hg_2F_2 \rightarrow x \downarrow = (HgF)$ Mercury(II) Fluoride HgF₂ Mercury(I) nitride $(Hg_2)_3N_2$ $Fe_3(PO_4)_2$ Iron(II) phosphate TiO2 - Ti2O4 Titanium(IV) oxide $TI(NO_3)_3$ Thallium(III) nitrate

(Q) Which is the correct name for Cu₂S?

- 6
- A. copper sulfide

Transition metal will one Oxidation State

- B. copper(II) sulfide
- C. copper(II) sulfate
- D. copper(I) sulfide
- E. copper(I) sulfite
- (Q) Which is the correct formula for ammonium sulfite?
 - A. NH₄SO₃
 - B. $(NH_4)_2SO_3$
 - C. (NH₄)₂SO₄
 - D. NH₄S
 - E. $(NH_4)_2S$

- Q) Name the following compounds:
- (a) $Fe(NO_3)_2$ Iron (I) Nitrate
 - (b) Na₂HPO₄ Sodium HonoHydrogen phosphate
 - (c) $(NH_4)_2(C_2O_4)$ Amminium Oxalate
- (Q)Write chemical formulas for the following compounds:
- (a) cesium sulfide \longrightarrow Cs_2
 - (b) calcium phosphate $\longrightarrow Ca_3(\rho_{04})_{4}$

JU. MEDICINE iron (11) chloride iron (111) dibride -> Stock system [iron (11) siron (111)] Ferrous chloride Ferric chloride. Elements which have more than one oxidation state: 1-Transition metals except Zn 1 Ag/Cd 2-Ga, In, Sn, TT, Pb, B; Po, (main group netal high A.M) magnesium choricle / because Hg has only one exidation state -SnCl Calcium Hydrick Tin (11) Chloride

Naming Hydrates

1.Name ionic compound

2. Give number of water molecules in formula using Greek

prefixes

Ca(SO₄).2H₂O : calcium sulfate dihydrate

CoCl₂.6H₂O *cobalt(II) chloride hexahydrate

Fel₃·3H₂O • iron(III) iodide trihydrate

Fe(NO₂)₃.9H₂O : iron(III) nitrite nonahydrate

Tf (Fe (NO2)3.9 H2O) was heated and all the water was heated name the Resulting Compound:

anhypotrous Iron (III) nitrate

Greek Prefixes for Naming Compounds				
Number	Prefix			
1	mono-			
2	di-			
3	tri-			
4	tetra-			
5	penta-			
6	hexa-			
7	hepta-			
8	octa-			

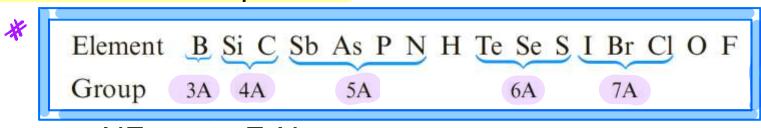
10

TABLE 2.6

nona-

deca-

Naming Molecular Compounds:


(Non-metal + Non-metal) or (Non-metal + Metalliod)

-binary compounds: composed of only two elements e.g. NaCl, MgCl₂ (ionic). CO, H₂O, CCl₄, NH₃ (molecular)

-Order of Elements in the Formula:

- In ionic compounds: metal → non-metal
- NaCl not ClNa

In molecular compounds:

NF₃ not F₃N H₂S not SH₂ SbH₃ not H₃Sb

> Rules for Naming Binary Molecular Compounds

- 1. The name of the compound has the elements in the order given in the previous formula.
- 2. Name the first element using the exact element name.
- 3. Name the second element by writing the stem name of the element with the suffix -ide
- 4. You add a prefix, derived from the Greek to each element name to denote the subscript of the element in the formula.

Note: the **prefix** *mono*- is not used, unless it is needed to (المسمة) distinguish two compounds of the same two elements. ⇒ المري المالية المالية

Examples:

SF₆

N₂O₃
 HCI
 hydrogen chloride
 CO
 carbon monoxide
 CO₂
 carbon dioxide
 SF₄
 sulfur tetrafluoride

sulfur hexafluoride

Element B Si C Sb As P N H Te Se S I Br Cl O F Group 3A 4A 5A 6A 7A

hydrogen chloride NOT monochloride

العنصرالأدل ما يتحطله "Mono" بالحيال الحيال الحيال المالية ال

H₂S NO H₂O NH₃ dihydrogen sulfide nitrogen monoxide

common name: hydrogen sulfide common name: nitric oxide

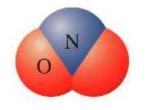
water - Dihydrogen monoxide ammonia - Nitrogen trihydride

NO₂ N₂O₄ P₄O₆ CI₂O₆ PCI₃ PCI₅

nitrogen dioxide
dinitrogen monoxide
dinitrogen tetroxide
tetraphosphorus hexoxide
dichlorine hexoxide
phosphorus trichloride
phosphorus pentachloride

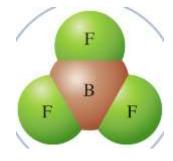
* hector + Oxide ->
Hect Oxide

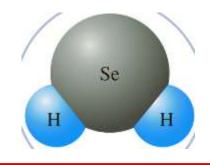
* tenox + Oxide ->
Tetroxide


* hexox + Oxide ->
hex oxide

disulfur dichloride tetraphosphorus trisulfide carbon disulfide sulfur trioxide

 S_2Cl_2 \rightarrow P_4S_3 CS_2 SO_3


التبسيط فسفط لا "Ionic Compound"


إذا أعطالي إلاسم وحكالت لبري الما Formula الما 20

nitrogen dioxideNO2 CLFChlorine monofluoride Example - 2.8

Hydrogen selenide

Or dihydrogen selenide

GaBr₃

GeBr₄

CaBr₂

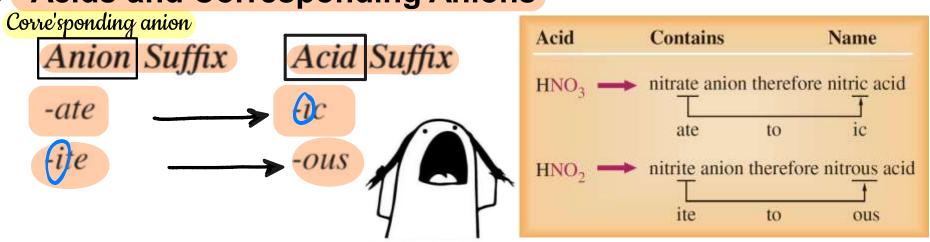
 $Hg_2(NO_2)_2.H_2O$

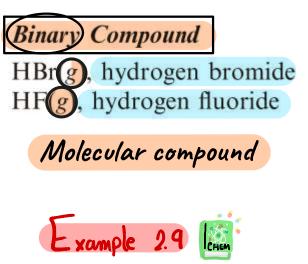
Gallium (III) bromide

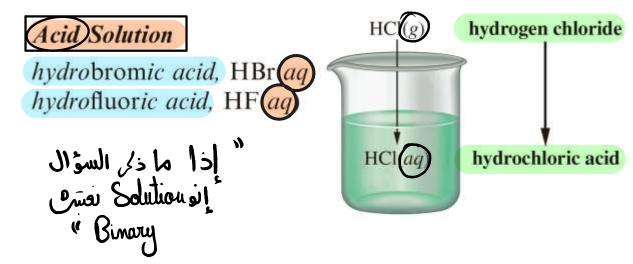
Germanium tetrabromide

Calcium bromide **Ionic**

Mercury(I) nitrite monohydrate


Ionic


Ionic

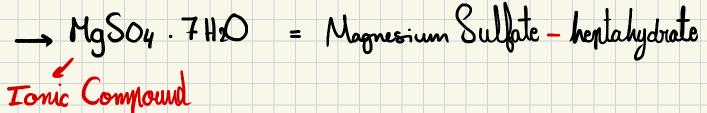

21

Acids and Corresponding Anions

		,		
Table 2.8	Some O	xoanions and Their Corre	esponding Oxoacids	having no charge
Oxoanion	0+	non metal	Oxoacid H+O	+ non metal
CO ₃ ²⁻	2H+	Carbonate ion	H_2CO_3	Carbon ic acid
	H+	Nitrite ion	HNO_2	Nitrous acid
NO ₃	H+	Nitrate ion	HNO ₃	Nitric acid
PO ₄ ³⁻	311+	Phosphate ion	H_3PO_4	Phosphoric acid
	2H+	Sulfite ion	H_2SO_3	Sulfurous acid
	2H+	Sulfate ion	H_2SO_4	Sulfuric acid
•	H +	Hypochlorite ion	HClO	Hypochlorous acid
**************************************	H+	Chlorite ion	HClO ₂	Chlorous acid
ClO ₃ ⁻	H+	Chlorate ion	HClO ₃	Chloric acid
ClO ₄	H *	Perchlorate ion	HClO ₄	Per chlor ic acid

(Q)Selenium has an oxoacid, H_2SeO_4 , called selenic acid. What is the formula and name of the corresponding anion? Remove the (II) Selenate SeO_4^{2-}

Exercise 2.10


What are the name and formula of the anion corresponding to perbromic acid, HBrO₄?

BrO₄ perbromate

Example 2.10 Naming a Hydrate from Its Formula

Gaining Mastery Toolbox

Epsom salts has the formula MgSO₄·7H₂O. What is the chemical name of the substance?

Exercise 2.11 Washing soda has the formula Na₂CO₃·10H₂O. What is the chemical name of this substance?

See Problems 2.91 and 2.92.

Janic Compound Sodium Carbonate - decapydrate

Example 2.11 Writing the Formula from the Name of a Hydrate

Gaining Mastery Toolbox

Critical Concept 2.11

The mineral gypsum has the chemical name calcium sulfate dihydrate. What is the chemical formula of this substance?

Exercise 2.12 Photographers' hypo, used to fix negatives during the development process, is sodium thiosulfate pentahydrate. What is the chemical formula of this compound?

See Problems 2.93 and 2.94

Na 2(S2O3) .5H20

Chemical Reactions: Equations 2:9 + 2:10

Example 2.12

Balancing Simple Equations

Balance first the atoms for elements that occur in only one substance on each side of the equation.

(a)
$$H_3PO_3 \rightarrow H_3PO_4 + PH_3$$

(b) Ca +
$$H_2O \rightarrow Ca(OH)_2 + H_2$$

(c)
$$Fe_2(SO_4)_3 + NH_3 + H_2O \rightarrow Fe(OH)_3 + (NH_4)_2SO_4$$

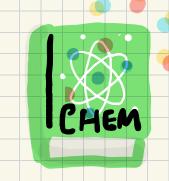
Exercise 2.13

Find the coefficients that balance the following equations.

$$O_2 + PCI_3 \rightarrow POCI_3$$

b.
$$P_4 + N_2O \rightarrow P_4O_6 + N_2$$

$$\checkmark As_2S_3 + O_2 \rightarrow As_2O_3 + SO_2$$


$$Ca_3(PO_4)_2 + H_3PO_4 \rightarrow Ca(H_2PO_4)_2$$

Example 2: 12 8

- A) 4 H3 PO3 ____ 3 H3 PO4 + PH3
- B) $Ca + 2H_2O \rightarrow Ca (OH)_2 \rightarrow H_2$
- C) Fe 2 (SO4)3 + 6NH3 +6H2O 2Fe (OH)3 +3(NH4)2 SO4

Exercise : 2.13 :

- A) 102 + 2pCl3 2pocl3
 - 8) $\rho_4 + 6N_2O \rightarrow \rho_4O_6 + 6N_2$
- + c.) 2 As₂S₃ ($\frac{9}{4}$ O₂ \rightarrow 2As₂O₃ \rightarrow 6 SO₂
 - 0) Ca3 (po4)2 + 4H3 po4 3Ca (H2po4)2

Some Notes:

- * يفضل أخلى ال (H O) آخر الشي بالمان ك ...
- * يجد أن سكن العادلة بأسط صوفى ...
 - ... L cofficients = sec gary ...

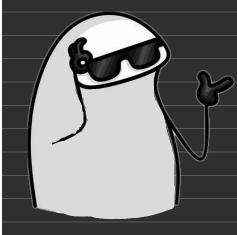
Examples:

(Q)When the following equation is balanced and written with the smallest whole number coefficients, what is the coefficient of Al? $\$ $3 \text{Fe}_3 \text{O}_4 + \$ Al $_2 \text{O}_3 + \$ Fe

(Q) When the following equation is balanced and written with the smallest whole number coefficients, what is the sum of coefficients of Al and Fe? 17

$$Fe_3O_4 + AI \rightarrow AI_2O_3 + Fe$$

(Q) When the following equation is balanced and written with the smallest whole number coefficients, what is the sum of all coefficients?

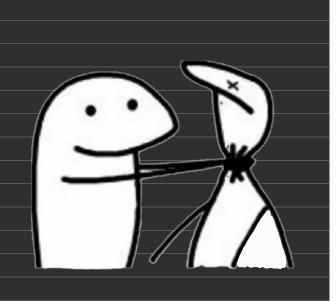


Fe(OH)₃ + 3HNO₃
$$\longrightarrow$$
 Fe(NO₃)₃ + 3 H₂O

The equation is Balanced \Rightarrow The Sum = 1+3+1+3=8

Q38. Name the following compounds: (MnSO₃. H₂O/CuIO3

- a) Magnesium Sulfate monohydrate / Copper(1) iodide
- b) Manganese(ll) sulfide hydrate/ Copper (l) iodate
- c) Manganese (II) sulfite monohydrate/Copper(l) iodate
- d) Manganese (II) Sulfate monohydrate/Copper(l) iodate
- e) Manganese(ll) thiosulfate monohydrate / Copper(I) iodide



Q39. Name the following compounds: $MgSO_4.7H_2O / Ni(IO_4)_2. H_2O$

- a) Magnesium Sulfate heptahydrate / Nickel (II) periodate monohydrate
- b) Manganese(ll) Sulfate heptahydrate / Nickel iodide monohydrate
- c) Magnesium thiosulfate heptahydrate / Nickel (II) periodate hydrate
- d) Magnesium (II) Sulfate heptahydrate / Nickel periodate monohydrate
- Magnesium sulfite heptahydrate/ Nickel periodate monohydrate.

Q41. Name the following compounds: (MnS.3H₂O / Cs₃P. H₂O)

- a) Manganese (II) Sulfate trihydrate / Cesium phosphide monohydrate
- b) Magnesium (II) Sulfide trihydrate / Cesium phosphate monohydrate
- c) Manganese (II) Sulfite trihydrate / Cesium phosphide monohydrate
- d) Manganese (II) Sulfide trihydrate/ Cesium phosphide monohydrate
- e) Manganese (II) Sulfate trihydrate/Cesium phosphate monohydrate.

Q44. Which one of the following is correct?

- a) The name of Fe₂O₃ is iron(ll) oxide
- b)The name of MnO₂ is manganese(ll) oxide
- c)The name of Cr₂O₃ is chromium (III) oxide
- d)The name of CrO₃ is chromium trioxide
- e)The name of Cu₃N₂ is copper(ll) nitrite

Learning Objectives	Important Terms
Atomic Theory of Matter	
 Lst the postulates of atomic theory. Define <i>element, compound,</i> and <i>chemical reaction</i> in the context of these postulates. Recognize the atomic symbols of the elements. Explain the significance of the law of multiple proportions. 	atomic theory atom element compound chemical reaction atomic symbol law of multiple proportions
The Structure of the Atom	
Describe Thomson's experiment in which he discovered the electron. Describe Rutherford's experiment that led to the nuclear model of the atom.	nucleus electron
2.3 Nuclear Structure; Isotopes	
Name and describe the nuclear particles making up the nucleus of the atom. Define atomic number, mass number, and nuclide. Write the nuclide symbol for a given nuclide. Define and provide examples of isotopes of an element. Write the nuclide symbol of an element. Example 2.1	proton atomic number (Z) neutron mass number (A) nuclide isotope
2.4 Atomic Weights	
Define atomic mass unit and atomic weight. Describe how a mass spectrometer can be used to determine the fractional abundance of the isotopes of an element. Determine the atomic weight of an element from the isotopic masses and fractional abundances. Example 2.2	atomic mass unit (amu) atomic weight fractional abundance
Periodic Table of the Elements	
Identify periods and groups on the periodic table. Find the <i>main-group</i> and <i>transition</i> elements on the periodic table. Locate the <i>alkali metal</i> and <i>halogen</i> groups on the periodic table. Recognize the portions of the periodic table that contain the <i>metals</i> , <i>nonmetals</i> , and <i>metalloids</i> (<i>semimetals</i>).	periodic table period (of periodic table) group (of periodic table) metal nonmetal metalloid (semimetal)

Chemical Formulas; Molecular and Ionic Substances	
represents a molecule. Determine whether a chemical formula of a compound represents a molecule. Determine whether a chemical formula is also a molecular formula. Define ion, cation, and anion. Classify compounds as ionic or molecular. Define and provide examples for the term formula unit. Specify the charge on all substances, ionic and molecular. Write an ionic formula, given the ions. Example 2.3	chemical formula molecule molecular formula polymer monomer ion anion cation ionic compound formula unit
Organic Compounds	
 1 the attributes of molecular substances that make them <i>organic compounds</i>. Explain what makes a molecule a <i>hydrocarbon</i>. Recognize some <i>functional groups</i> of organic molecules. 	organic compound hydrocarbon functional group
2 Naming Simple Compounds	
Recognize inorganic compounds. Learn the rules for predicting the charges of monatomic ions in ionic compounds. Apply the rules for naming monatomic ions. Learn the names and charges of common polyatomic ions. Name an ionic compound from its formula. Example 2.4 Write the formula of an ionic compound from its name. Example 2.5 Determine the order of elements in a binary (molecular) compound. Learn the rules for naming binary molecular compounds, including the Greek prefixes. Name a binary compound from its formula. Example 2.6 Write the formula of a binary compound from its name. Example 2.7 Name a binary molecular compound from its molecular model. Example 2.8 Recognize molecular compounds that are acids. Determine whether an acid is an oxoacid. Learn the approach for naming binary acids and oxoacids. Write the name and formula of an anion from the acid. Example 2.9 Recognize compounds that are hydrates. Learn the rules for naming hydrates. Name a hydrate from its formula. Example 2.11	chemical nomenclature inorganic compound monatomic ion polyatomic ion binary compound oxoacid hydrate
2 Writing Chemical Equations	
 Identify the <i>reactants</i> and <i>products</i> in a chemical equation. Write chemical equations using appropriate phase labels, symbols of reaction conditions, and the presence of a gatalyst. 	chemical equation reactant product
2.7 Balancing Chemical Equations	
 Determine if a chemical reaction is balanced. Master the techniques for balancing chemical equations. Example 2.12 	

Done by: Toud Taber

Thank you