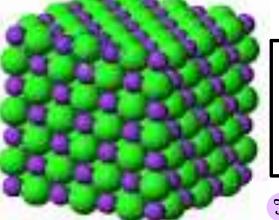
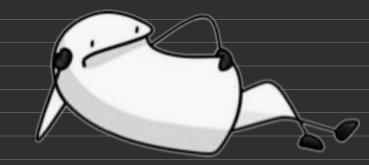
EBBING - GAMMON

اللهم صلَّ وسلَّم على نبينا محمد وعلى آله وصحبه أجمعين

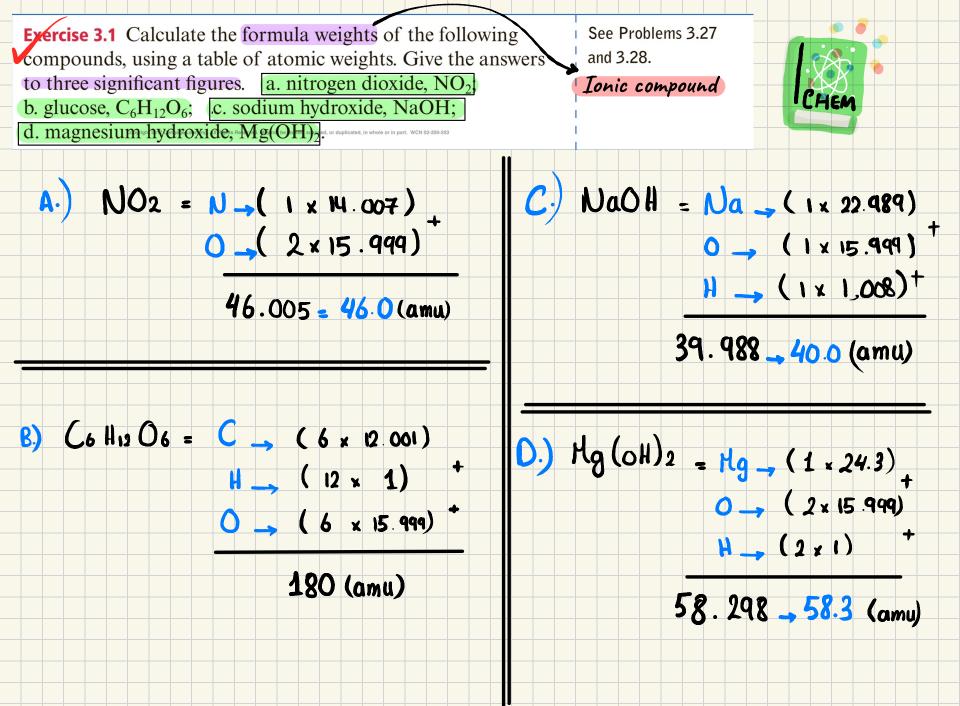

Calculations with Chemical Formulas and Equations

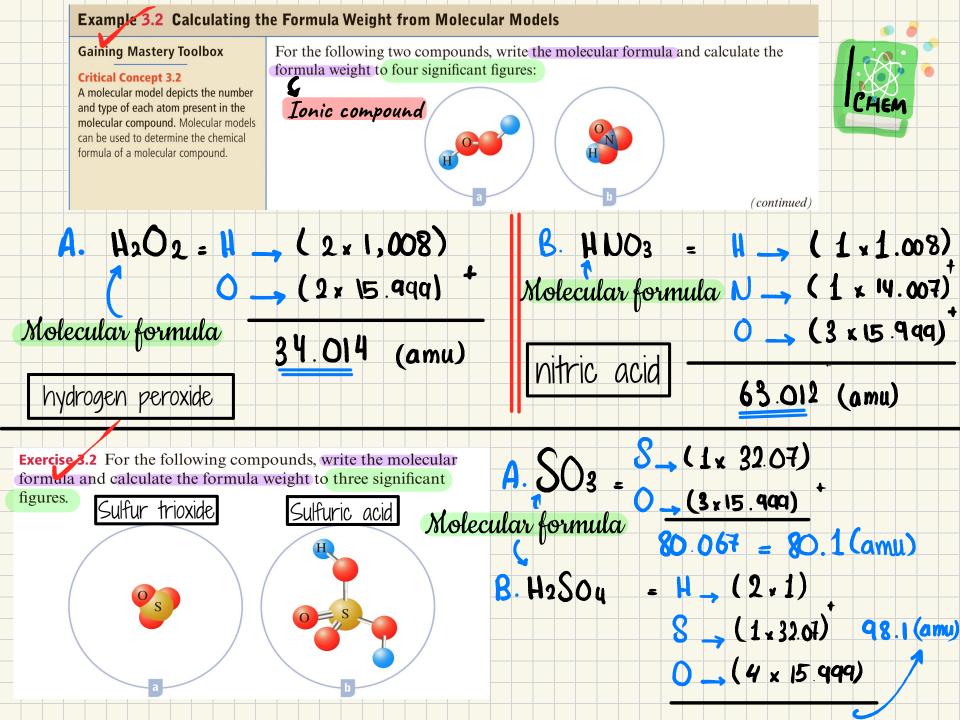
General Chemistry ELEVENTH EDITION

©2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use.


	1 1.0080												DISPL	AY PROPER	TY/TREND			2 4.002
1	Н												Che	Chemical Group Block $$				He
	Hydrogen Nonmetal			,			7 05 4											Helium Noble Gas
	3 7.0	4 9.0121			Atomic Nu	mber	17 35.4	5Atom	lic Mass, u				5 10.81	6 12.011	7 14.007	8 15.999	9 18.99	10 20.180
2	Li Lithium Alkali Metal	Be Beryllium Alkaline Eart			N	ame	Cl Chlorine	Sym		Disali			B Boron Metalloid	C Carbon Nonmetal	N Nitrogen Nonmetal	O Oxygen Nonmetal	F Fluorine Halogen	Neon Noble Gas
	11 22.9	12 24.3	12 24.3 13 26.9 14 28.0 15 3									15 30.9	16 32.07	17 35.45	18 39.9			
3	Na	Mg Magnesium					Plot Atomi	c Mass 🖸	7				Aluminum	Silicon	P	S Sulfur	Cl	Ar
		Alkaline Eart	3	4	5	6		8	9	10	11	12	Post-Transiti	Metalloid	Nonmetal	Nonmetal	Halogen	Noble Gas
	19 39.0	20 40.08	21 44.9	22 47.8	23 50.9	24 51.9	25 54.9	26 55.84	27 58.9	28 58.6	29 63.55	30 65.4	31 69.723	32 72.63	33 74.9	34 78.97	35 79.90	36 83.80
	K Potassium Alkali Metal	Calcium Alkaline Eart	Scandium Transition Me	Ti Titanium Transition Me	V Vanadium Transition Me	Cr Chromium Transition Me	Mn Manganese Transition Me	Fe Iron Transition Me	Co Cobalt Transition Me	Nickel Transition Me	Cu Copper Transition Me	Zn Zinc Transition Me	Gallium Post-Transiti	Ge Germanium Metalloid	As Arsenic Metalloid	Se Selenium Nonmetal	Br Bromine Halogen	Kr Krypton Noble Gas
	37 85.4	38 87.62	39 88.9	40 91.22	41 92.9	42 95.95	43 96.9	44 101.1	45 102	46 106	47 107	48 112.41	49 114	50 118.71	51 121.7	52 127.6	53 126	54 131.29
5	Rubidium Alkali Metal	Strontium Alkaline Eart	Y Yttrium Transition Me	Zr Zirconium Transition Me	Niobium Transition Me	Mo Molybden Transition Me	Tc Technetium Transition Me	Ru Ruthenium Transition Me	Rh Rhodium Transition Me	Pd Palladium Transition Me	Ag Silver Transition Me	Cd Cadmium Transition Me	In Indium Post-Transiti	Sn Tin Post-Transiti	Sb Antimony Metalloid	Te Tellurium Metalloid	lodine _{Halogen}	Xe Xenon Noble Gas
	55 132	56 137.33		72 178.49	73 180	74 183	75 186	76 190.2	77 192.22	78 195	79 196	80 200	81 204	82 207	83 208	84 208	85 209	86 222
6	Cesium Alkali Metal	Ba Barium Alkaline Eart		Hf Hafnium Transition Me	Ta Tantalum Transition Me	W Tungsten Transition Me	Re Rhenium Transition Me	Os Osmium Transition Me	Ir Iridium Transition Me	Pt Platinum Transition Me	Au Gold Transition Me	Hg Mercury Transition Me	TI Thallium Post-Transiti	Pb Lead Post-Transiti	Bi Bismuth Post-Transiti	Po Polonium Metalloid	At Astatine Halogen	Rn Radon Noble Gas
	87 223	88 226		104 26	105 26	106 26	107 27	108 26	109 27	110 282	111 282	112 286	113 28	114 29	115 290	116 29	117 294	118 29
	Fr Francium Alkali Metal	Ra Radium Alkaline Eart		Rf Rutherford Transition Me	Db Dubnium Transition Me	Seaborgium	Bh Bohrium Transition Me	Hs Hassium Transition Me		Ds Darmstadt Transition Me		Cn Coperniciu Transition Me	Nh Nihonium Post-Transiti	FI Flerovium Post-Transiti	Mc Moscovium Post-Transiti	Lv Livermorium Post-Transiti	Ts Tennessine Halogen	Oganesson Noble Gas
				57 138	58 140	59 140	60 144	61 144	62 150.4	63 151	64 157.2	65 158	66 162	67 164	68 167	69 168	70 173.05	71 174.9
				La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
				Lanthanum Lanthanide	Cerium Lanthanide	Praseody Lanthanide	Neodymium Lanthanide	Promethium Lanthanide	Samarium Lanthanide	Europium Lanthanide	Gadolinium Lanthanide	Terbium Lanthanide	Dysprosium Lanthanide	Holmium Lanthanide	Erbium Lanthanide	Thulium Lanthanide	Ytterbium Lanthanide	Lutetium Lanthanide
				89 227	90 232	91 231	92 238	93 237	94 244	95 243	96 247	97 247	98 251	99 252	100 25	101 25	102 25	103 26
				Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
				Actinium Actinide	Thorium Actinide	Protactini Actinide	Uranium Actinide	Neptunium Actinide	Plutonium Actinide	Americium Actinide	Curium Actinide	Berkelium Actinide	Californium Actinide	Einsteinium Actinide	Fermium Actinide	Mendelevi Actinide	Nobelium Actinide	Lawrencium Actinide

3.1 Molecular Weight and Formula Weight ____ Ionic compound molecular weight (MW) of a substance is: the sum of the atomic weights of all the atoms in a molecule of the substance. **Example:** H_2O , is 18.0 amu Amount of (2 x 1.0 amu + 16.0 amu) = 18 amu = Molar Mass H20 = 18 g/mol Molar Mass Atomic weight mass formula weight (FW) of a substance is: the sum of the atomic weights of all atoms in a formula unit of the compound, whether molecular or not Example: NaCl, has a formula weight of 58.44 amu (22.99 amu + 35.45 amu) = 58.44 amu = Molar Mass Nacl = 58.44 g/mol

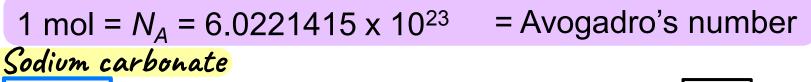



Molecular weight = formula weight Molar mass = Molecular weight

The Mass of one mole

Example 3.1 Calculating the Formula Weight from a Formula
Calculate the formula weight of each of the following to three
significant figures, using a table of atomic weights (AW):
a. chloroform, CHCl₃ b. iron(III) sulfate,
$$Fe_2(SO_4)_3$$
.

i × AM of C
i × AM of H
i × AM of Cl = 3 × 35.45 amu = 106.4 amu
FM of CHCl₃ = 119.4 amu → Molecular weight \Rightarrow 119 omu
Molar Mass → Periodic table
 $2 × AM$ of Fe = 2 × 55.8 amu = 111.6 amu
 $3 × AM$ of S = 3 × 32.1 amu = 96.3 amu
 $3 × 4 × AM$ of O = 12 × 16.00 amu = 192.0 amu
FM of Fe₂(SO₄)₃ = 399.9 amu → Formula wight \Rightarrow 4.00 × 10²



3.2 The Mole Concept

The Mole (mol) A unit to count numbers of particles

A mole (symbol mol) is defined as the quantity of a given substance that contains as many molecules or formula units as the number of atoms in exactly 12 g of carbon-12

1 mole of Na2CO3 contains 6.02* 10 (23) C

1 mole of Na₂CO₃ contains 6.02 x 10²³ Na₂CO₃ units

1 mole of Na₂CO₃ contains 2x 6.02 x 10²³ Na⁺ ions

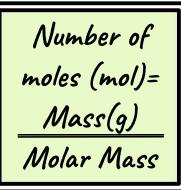
1 mole of Na₂CO₃ contains 6.02 x 10^{23} CO₃² ions

molar mass of a substance is the mass of one mole of the substance. ((1 mole of carbon = 12g/c))

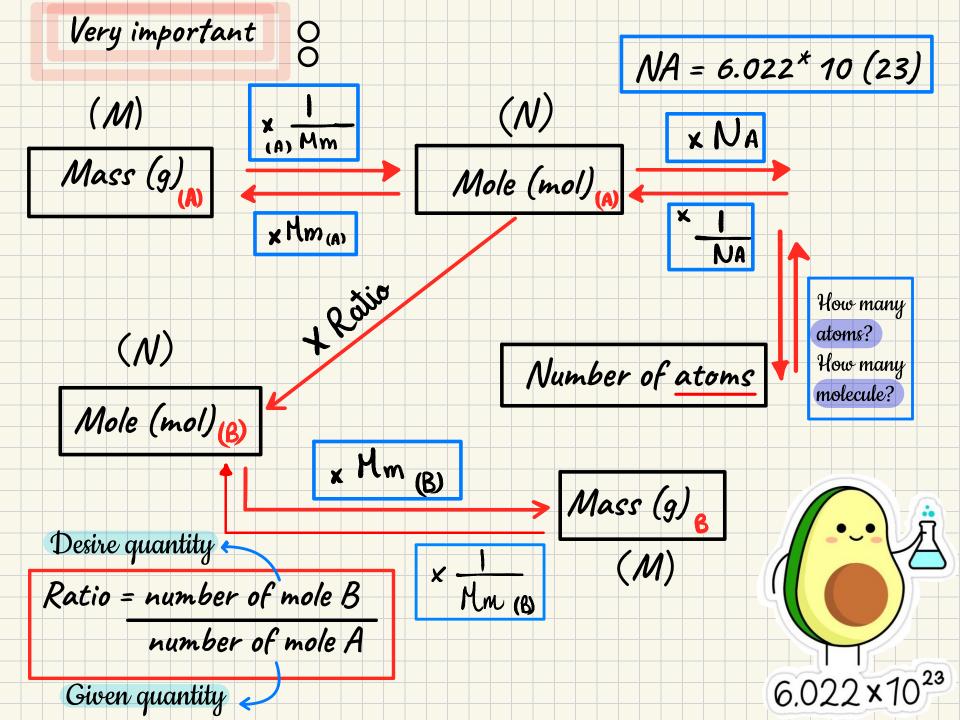
C has a molar mass of exactly 12 g/mol, = Atomic Mass (amu)

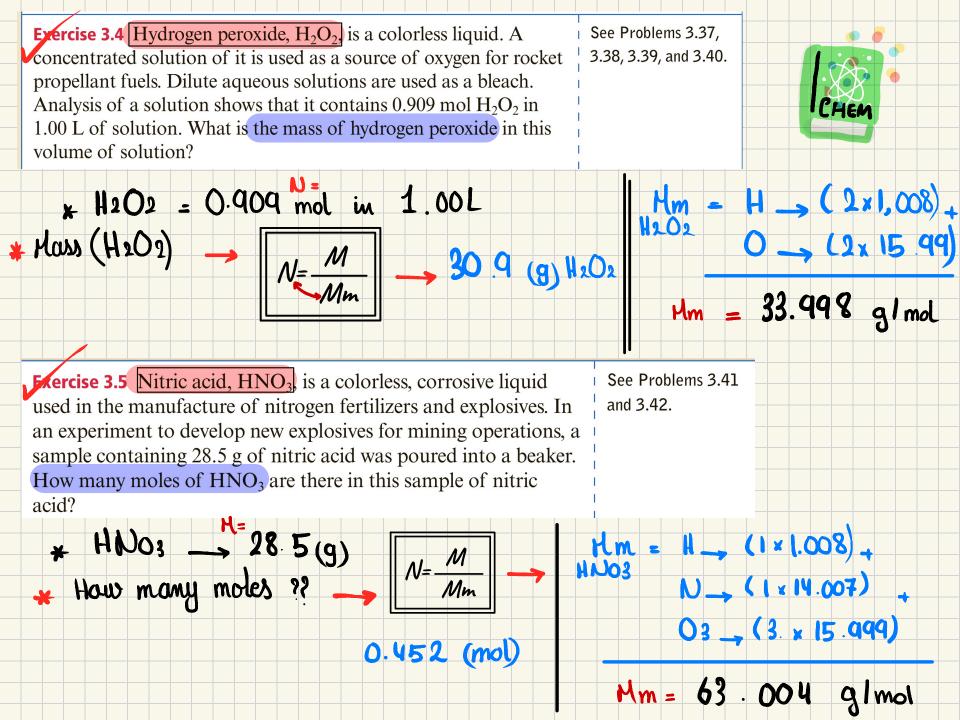
C₂H₅OH has a molar mass of exactly 46.1 g/mol *Ethanol*⁵ And has a molecular weight of exactly 46.1 amu

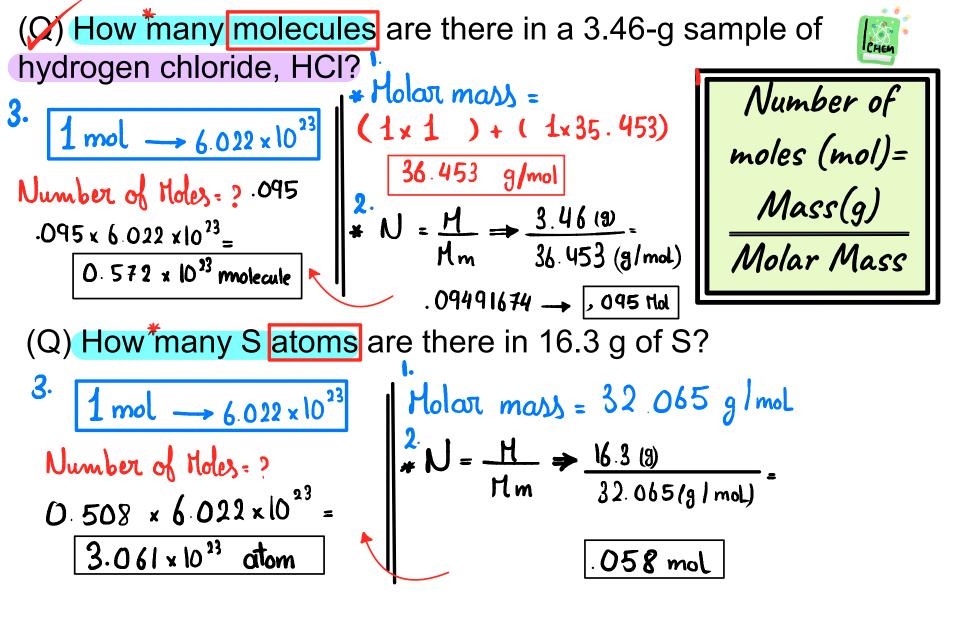
Pair = 2

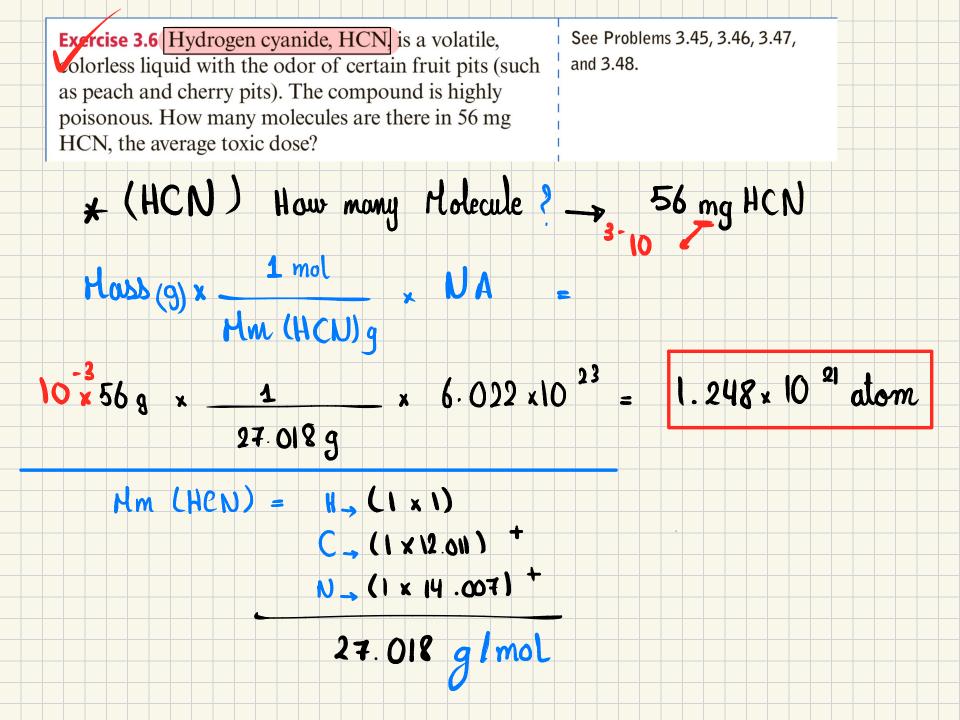

For any element

atomic mass (amu) = molar mass (grams)


(Q) A chemist determines from the amounts of elements that 0.0654 mol Znl_2 can form. How many grams of zinc iodide is this? molar mass of Znl_2 is 319 g/mol


Number of moles = mass(g) / molar mass



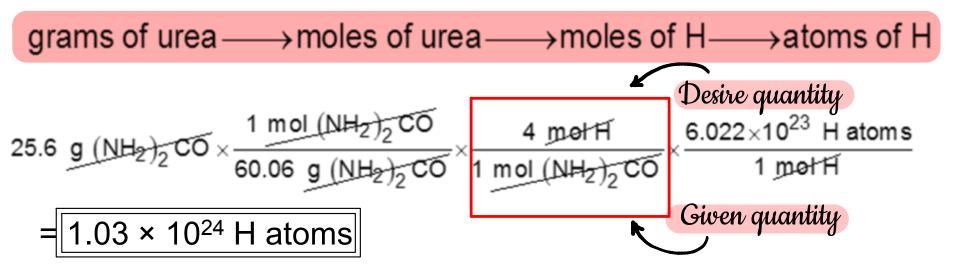

(Q)In a preparation rxn., 45.6 g of lead(II) chromate is obtained as a precipitate. How many moles of PbCrO₄ is this? Example 3.5 molar mass of PbCrO₄ = 323 g/mol

Here of mole (mol) =
$$\frac{45.6(9)}{323(9/mol)}$$
, 1412 mol

Example 3.3 Calculating the Mass of an Atom or Molecule a. What is the mass in grams of one chlorine atom, Cl? b. What is the mass in grams of one HCl molecule?

A.)
$$N = \frac{M}{Mm} = 1 \operatorname{atom}(CL) \times \frac{1 \operatorname{mol}}{6.022 \times 10^{23} \operatorname{atom}} \times (35.45) \operatorname{g/mol} = 5.9 \times 10^{-23} \operatorname{g/mol}$$

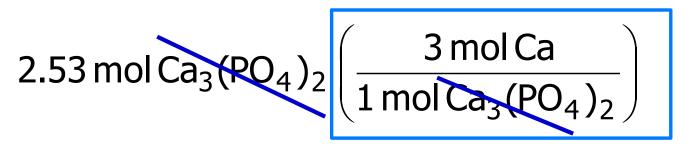
B.)
$$M_{m} (HCL) = 1 \text{ molecule } \times \frac{1 \text{ mol}}{6.022 \times 10^{23}} \times (36.45) \text{ g/mol} = 6.052 \times 10^{-23} \text{ Mm} (HCL) = (1 \times 1) + (1 \times 35.45) = 36.45 \text{ g/mol}$$


Exercise 3.3 a. What is the mass in grams of a See Problems 3.33, 3.34, 3.35, calcium atom, Ca? b. What is the mass in grams and 3.36. of an ethanol molecule, C_2H_5OH ? A. $C_{a} = 1$ otom $C_{a} \times \frac{1}{6.022 \times 10^{23}} \times \frac{40.08}{1000} = \frac{6.66 \times 10^{-23}}{(9)}$ NA $\leftarrow 6.022 \times 10^{23}$ Nm cL $B C_{2}H_{5}OH = 1 \text{ molecule } 1 (46.021) = 7.65 \times 10^{-23}$ $NA = 6022 \times 10^{23}$ $Mm(C_2H_5OH) \rightarrow C = (2 \times 12.011)$ $H = (b \times 1)$ $0 = (1 \times 15.000)^+$ 46.021 (g/mol)

(Q) How much, in grams, do 8.85 \times 10²⁴ atoms of zinc weigh? A. 3.49 \times 10⁴⁹ g

- B. 961 g
- C. 4.45 g
- D. $5.33\times10^{47}~g$
- E. 1.47 g

$$8.85 \times 10^{24} \operatorname{atoms} \times \left(\frac{1 \operatorname{mol}}{6.022 \times 10^{23} \operatorname{atoms}}\right) \times \left(\frac{65.41 \operatorname{gZn}}{1 \operatorname{mol}}\right)$$

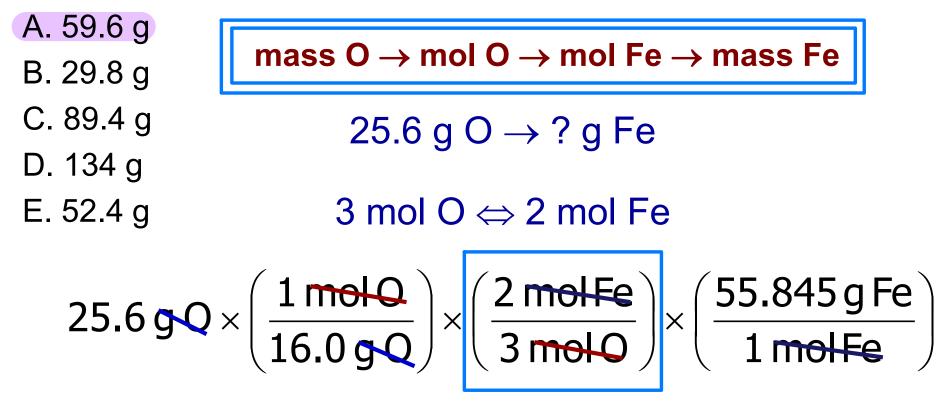

= 961 g Zn

(Q) Calculate the number of moles of calcium in 2.53 moles of $Ca_3(PO_4)_2$

- A. 2.53 mol Ca
- B. 0.432 mol Ca
- C. 3.00 mol Ca
- D. 7.59 mol Ca
- E. 0.843 mol Ca

2.53 moles of $Ca_3(PO_4)_2 = ? mol Ca$ 3 mol Ca \Leftrightarrow 1 mol Ca₃(PO₄)₂

= 7.59 mol Ca


(Q) A sample of sodium carbonate, Na_2CO_3 , is found to contain 10.8 moles of sodium. How many moles of oxygen atoms (O) are present in the sample?

- A. 10.8 mol O
- B. 7.20 mol O
- C. 5.40 mol O
- D. 32.4 mol O
- E. 16.2 mol O

10.8 moles of Na = ? mol O 2 mol Na \Leftrightarrow 3 mol O 10.8 mol Na $\left(\frac{3 \mod O}{2 \mod Na}\right)$

= 16.2 mol O

(Q) How many g of iron are required to use up all of 25.6 g of oxygen atoms (O) to form Fe_2O_3 ?

= **59.6 g Fe**

(Q) Silver is often found in nature as the ore, argentite (Ag₂S). How many grams of pure silver can be obtained from a 836 g rock of argentite?

A. 7.75 g

B. 728 g

C. 364 g

D. 775 g

E. 418 g

 $\begin{array}{c} \text{mass } Ag_2S \rightarrow \text{mol } Ag_2S \rightarrow \text{mol } Ag \rightarrow \text{mass } Ag \\ \text{Sg} & 836 \text{ g } Ag_2S \rightarrow ? \text{ g } Ag \\ \text{1 } \text{mol } Ag_2S \Leftrightarrow 2 \text{ mol } Ag \\ \text{Sg} \end{array}$

836 g Ag₂S×
$$\left(\frac{1 \mod Ag_2S}{247.8 \ g Ag_2S}\right)$$
× $\left(\frac{2 \mod Ag}{1 \mod Ag_2S}\right)$ × $\left(\frac{107.9 \ g Ag}{1 \mod Ag}\right)$

= 728 g Ag

Percentage Composition 3.3

% by mass of element = $\frac{\text{mass of element}}{\text{mass of sample}} \times 100\%$

Example: A sample of a liquid with a mass of 8.657 g was decomposed into its elements and gave 5.217 g of carbon, 0.9620 g of hydrogen, and 2.478 g of oxygen. What is the percentage composition of this compound?

$$\begin{pmatrix} g C \\ g \text{ total} \end{pmatrix} = 100\% = \frac{5.217 \text{ g C}}{8.657 \text{ g}} \times 100\% = 60.26\% \text{ C} \\ \begin{pmatrix} g H \\ g \text{ total} \end{pmatrix} = 100\% = \frac{0.9620 \text{ g H}}{8.657 \text{ g}} \times 100\% = 11.11\% \text{ H} \\ \begin{pmatrix} g O \\ g \text{ total} \end{pmatrix} = 100\% = \frac{2.478 \text{ g O}}{8.657 \text{ g}} \times 100\% = 28.62\% \text{ O} \\ 8.657 \text{ g} \end{pmatrix}$$

(O) A sample was analyzed and found to contain 0.1417 g nitrogen and 0.4045 g oxygen.

What is the percentage composition of this compound?

Total sample mass = 0.1417 g + 0.4045 g = 0.5462 g

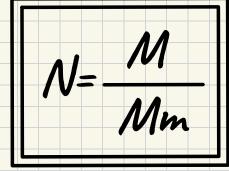
% Composition of N

$$\left(\frac{g N}{g \text{ total}}\right) \times 100\% = \left(\frac{0.1417 g N}{0.5462 g}\right) \times 100\% = 25.94\% N$$
% Composition of O
$$\left(\frac{g O}{g \text{ total}}\right) \times 100\% = \left(\frac{0.4045 g O}{0.5462 g}\right) \times 100\% = 74.06\% O$$

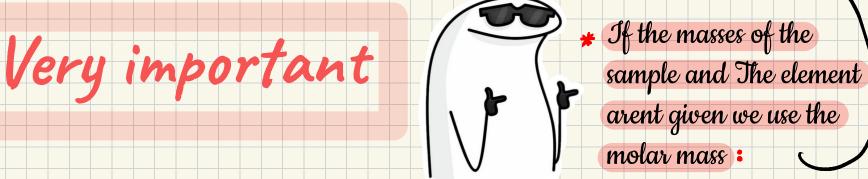
(Q) a. Calculate the mass percentages of the elements in
formaldehyde (CH₂O) molar mass = 30g/mol b does
%
$$C = \frac{12.0 \text{ g}}{30.0 \text{ g}} \times 100\% = 40.0\%$$

% $H = \frac{2 \times 1.01 \text{ g}}{30.0 \text{ g}} \times 100\% = 6.73\%$
% $O = 16/30 \times 100\% = 53.3 \%$
% $O = 100\% - (40.0\% + 6.73\%) = 53.3\%$
% How many grams of carbon are there in 83.5 g of CH₂O?
CH₂O is 40.0% C, so the mass of carbon in 83.5 g CH₂O is:
83.5 g X 0.400 = 33.4 g
% Mass of element (A) = mass(A)
mass sample
17

Percentage composition 8* If the masses of the sample and The element are given:


1. Mass of element (A) = mass(A)

mass sample


(Number of moles for the element from the formula)

Mm (A) * N (A) ______ /.100

× / 100

Exercise 3.7 Ammonium nitrate, NH_4NO_3 , which is prepared See Problems 3.57, from nitric acid, is used as a nitrogen fertilizer. Calculate the 3.58, 3.59, and 3.60. mass percentages of the elements in ammonium nitrate (to three significant figures). * NHyNO3 = Mm = N - (2 x 14.007) Exercise 3.8 How many grams of nitrogen, N, are there in a fertilizer containing 48.5 g of ammonium nitrate and no H __ (4 × 1) other nitrogen-containing compound? See Exercise 3.7 for the percentage composition of NH₄NO₃. 0 _ (3 x 15.099) * percentage N = Hass (N) Hass (sample) 80.011 g/mol .35x48.5 = 17.9(N) Mm(N) × N(N) 14.007 x 2 = $= 0.35 \times 100\%$ Mm (NHNO3) 80.01 35.0 / 1,008×4 Mm(H) × N(H) = .0499 x 100% = 80.011 Mm (NHNO3) 5.0 % $Mmlo) \times N(0)$ 3 × 15.999 = .599 x 100/ 80.011 Mm (NHNO3) 6.0*ï*.

(Q) Calculate the mass percentages of the elements in H_3PO_4 molar mass = 97.99 g/mol *Phosphoric acid*

$$\% H = \frac{3(1.008 \text{ g}) \text{ H}}{97.99 \text{ g} \text{ H}_3 \text{PO}_4} \times 100\% = 3.086\%$$
$$\% P = \frac{30.97 \text{ g} \text{ P}}{97.99 \text{ g} \text{ H}_3 \text{PO}_4} \times 100\% = 31.61\%$$
$$\% O = \frac{4(16.00 \text{ g}) \text{ O}}{97.99 \text{ g} \text{ H}_3 \text{PO}_4} \times 100\% = 65.31\%$$

Example 3.9 Calculating the Percentages of C and H by Combustion $(C_2H_4O_2) = C_2H_3O_2^{-1}$

Guning Mastery Toolbox

Critical Concept 3.9

The mass percentages of carbon and hydrogen can be calculated from the masses of CO₂ and H₂O. During the reaction, *all* of the carbon atoms in the sample end up in the CO₂ and *all* of the hydrogen atoms end up in the H₂O. Therefore, the mass of carbon in the CO₂ is equal to the mass of carbon in the sample, and the mass of hydrogen in the H₂O is equal to the mass of hydrogen in the statement that the mass of oxygen in the H₂O and CO₂ is equal to the mass of oxygen in the H₂O and CO₂ is equal to the mass of oxygen in the sample because oxygen is both in the sample because oxygen is

Solution Essentials:

- Elemental analysis
- Percentage composition
- Mass percentage
- Molar mass
- Dimensional analysis
- Rules for significant figures and rounding

Acetic acid contains only C, H, and O. A 4.24-mg sample of acetic acid is completely burned. It gives 6.21 mg of carbon dioxide and 2.54 mg of water. What is the mass percentage of each element in acetic acid?

Problem Strategy Note that in the products of the combustion, all of the carbon from the sample ends up in the CO_2 , all of the hydrogen ends up in the H_2O , and the oxygen is in both compounds. Because of this, you should concentrate first on the carbon and hydrogen and worry about the oxygen last. If we can determine the mass of carbon and hydrogen in the original sample, we should then be able to determine the percentage of each of these elements present in the compound, the remaining mass percentage (100% total) must be due to oxygen. Let's start by determining the mass of CO₂ to moles of CO₂. Then you convert this to moles of C, noting that 1 mol C produces 1 mol CO₂. Finally, you convert to mass of C. Similarly, for hydrogen, you convert the mass of H₂O to mol H₂O, then to-mol H, and finally to mass of C and H, you can calculate the mass percentages. Subtract from 100% to get % O.

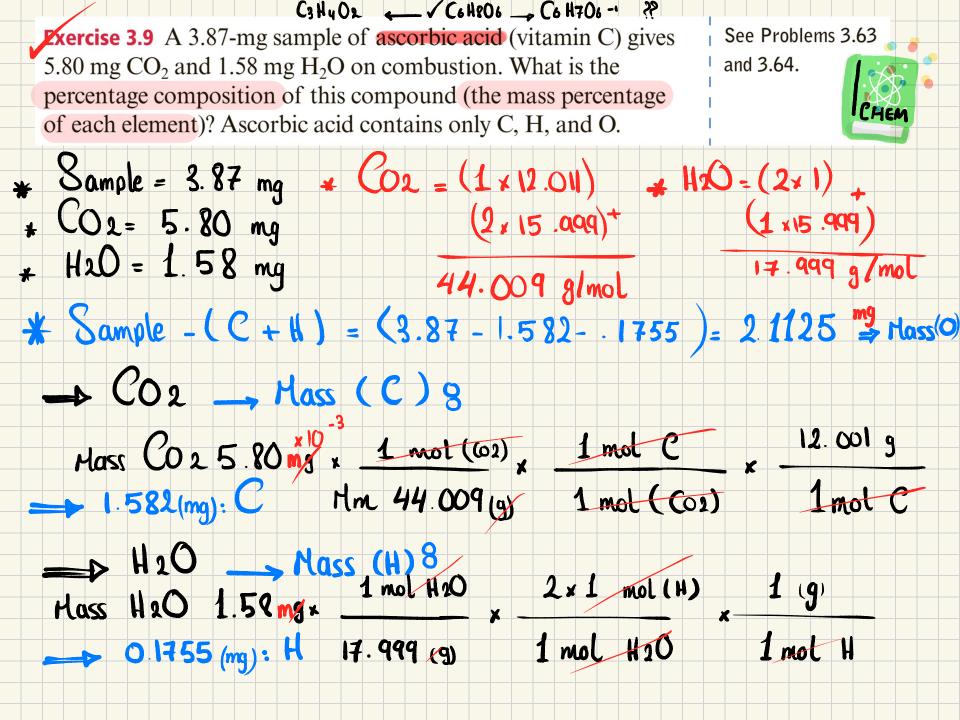
Solution Following is the calculation of grams C:

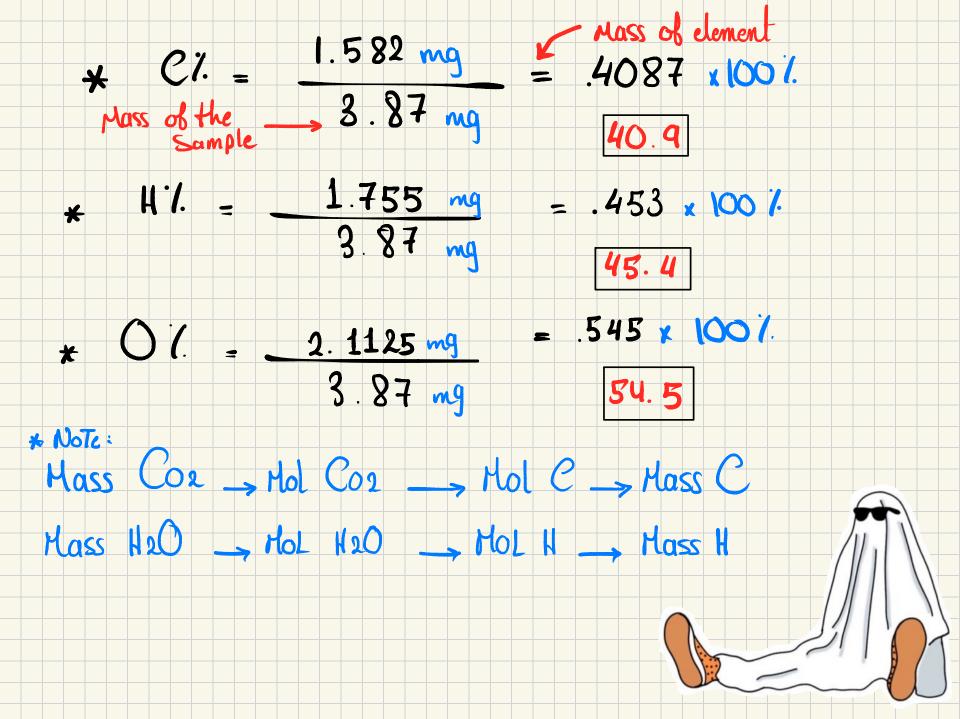
$$6.21 \times 10^{-3} \text{ g-CO}_2 \times \frac{1 \text{ mol-CO}_2}{44.0 \text{ g-CO}_2} \times \frac{1 \text{ mol-C}}{1 \text{ mol-CO}_2} \times \frac{12.0 \text{ g-C}}{1 \text{ mol-C}}$$

$$= 1.69 \times 10^{-3} \text{ g C} (\text{or } 1.69 \text{ mg C})$$

For hydrogen, you note that 1 mol H₂O yields 2 mol H, so you write

$$2.54 \times 10^{-3} \text{ g-H}_2\text{O} \times \frac{1 \text{ mol-H}_2\text{O}}{18.0 \text{ g-H}_2\text{O}} \times \frac{2 \text{ mol-H}}{1 \text{ mol-H}_2\text{O}} \times \frac{1.01 \text{ g-H}}{1 \text{ mol-H}_2\text{O}} \times \frac{1.01 \text{$$


 $= 2.85 \times 10^{-4} \text{ g H} (\text{or } 0.285 \text{ mg H})$


You can now calculate the mass percentages of C and H in acetic acid.

$$\begin{split} Mass\% & C = \frac{1.69 \text{ mg}}{4.24 \text{ mg}} \times 100\% = 39.9\% \\ Mass\% & H = \frac{0.285 \text{ mg}}{4.24 \text{ mg}} \times 100\% = 6.72\% \end{split}$$

You find the mass percentage of oxygen by subtracting the sum of these percentages from 100%:

Mass%
$$O = 100\% - (39.9\% + 6.72\%) = 53.4\%$$

Determining Empirical and Molecular Formulas 3.5

Empirical Formula 8

- Simplest ratio of atoms of each element in compound
- Obtained from experimental analysis of compound

Molecular Formula 8

- Exact composition of one molecule
- Exact whole number ratio of atoms of each element in molecule

glucose

Three Ways to Calculate Empirical Formulas

1. From Masses of Elements

e.g., 2.448 g sample of which 1.771 g is Fe and 0.677 g is O.

2. From Percentage Composition

e.g., 43.64% P and 56.36% O

- 3. From Combustion Data
 - Given masses of combustion products
 - e.g., The combustion of a 5.217 g sample of a compound of C, H, and O in pure oxygen gave 7.406 g CO_2 and 4.512 g of H_2O

1. Empirical Formula from Mass Data

When a 0.1156 g sample of a compound was analyzed, (it was found to)contain 0.04470 g of C, 0.01875 g of H, and 0.05215 g of N. Calculate the empirical formula of this compound.

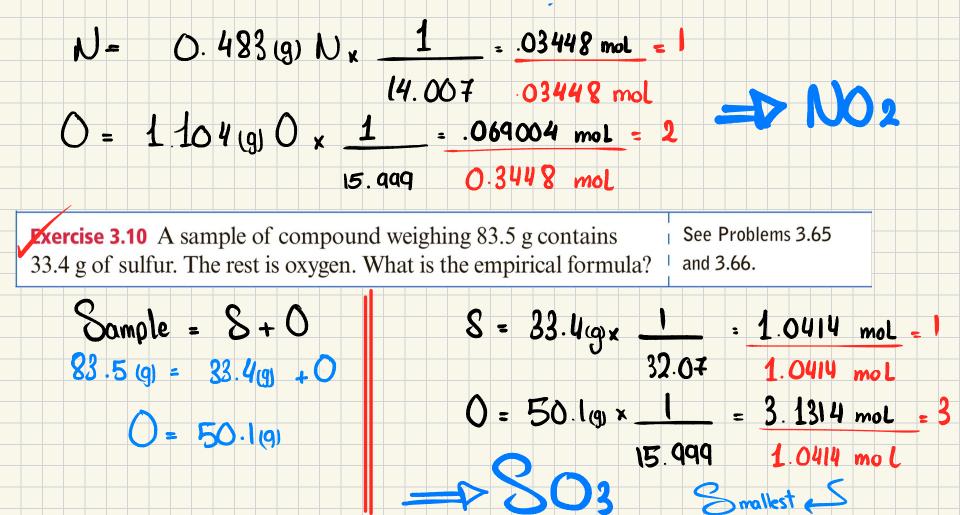
Step 1: Calculate moles of each substance $N = \frac{M}{Mm}$ $0.04470 \text{ g C} \times \frac{1 \text{ mol C}}{12.011 \text{ G C}} = 3.722 \times 10^{-3} \text{ mol C}$ $0.01875 \,\text{gH} \times \frac{1 \,\text{mol H}}{1.008 \,\text{gH}} = 1.860 \times 10^{-2} \,\text{mol H}$ 0.05215 g N × $\frac{1 \text{ mol N}}{14.0067 \text{ c N}} = 3.723 \times 10^{-3} \text{ mol N}$

Step 2: Select the smallest number of moles

• Smallest is 3.722×10^{-3} mole

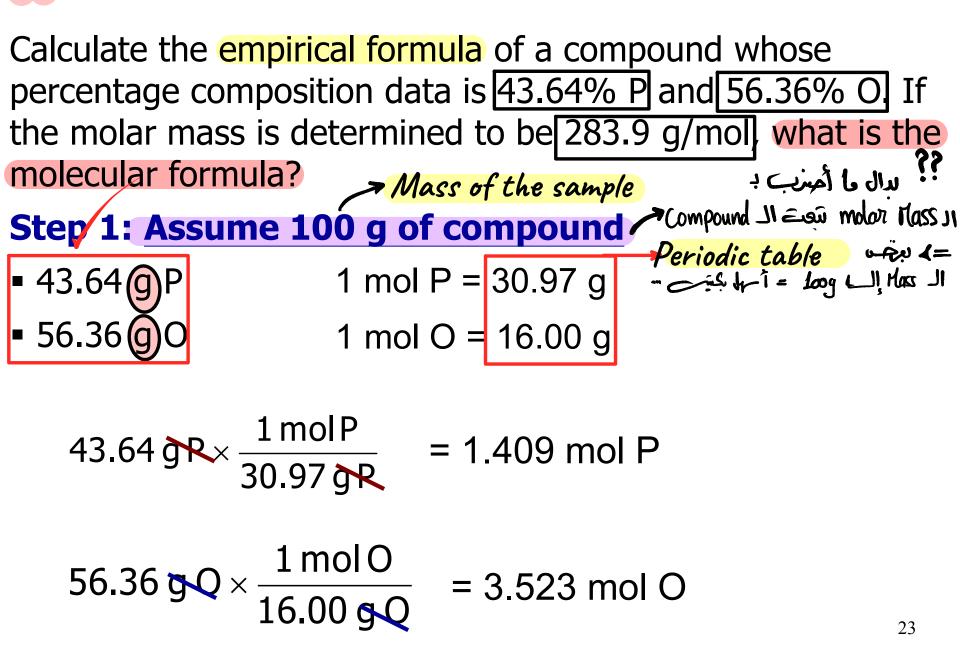
•
$$C = \frac{3.722 \times 10^{-3} \text{ mol C}}{3.722 \times 10^{-3} \text{ mol C}} = 1.000 = 1$$

• $H = \frac{1.860 \times 10^{-2} \text{ mol H}}{3.722 \times 10^{-3} \text{ mol C}} = 4.997 = 5$


• N = $\frac{3.723 \times 10^{-3} \text{ mol N}}{3.722 \times 10^{-3} \text{ mol C}} = 1.000$ = 1

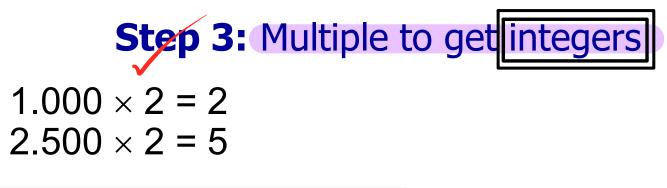
Step 3: Divide all number of moles by the smallest one

Empirical formula = CH₅N


A compound of nitrogen and oxygen is analyzed, and a sample weighing 1.587 g is found to contain 0.483 g N and 1.104 g O. What is the empirical formula of the compound?

Example 3.10

mple weighing 1.587 g is


2. Empirical Formula from Percentage Composition

Step 2: Divide by smallest number of moles

 $\frac{1.409 \text{ mol P}}{1.409 \text{ mol P}} = 1.000$

 $\frac{3.523 \text{ mol O}}{1.409 \text{ mol P}} = 2.500$

Empirical formula = P_2O_5

Molecular formula '8

$$P = 2 \times 30.9 = 61.8 \text{ g Imol}$$

$$P = 2 \times 30.9 = 61.8 \text{ g Imol}$$

$$P = 5 \times 15.999 = 79.995 \text{ g Imol}$$

$$P = 283.9 \text{ g Imol}$$

$$P = 283.9$$

(Q) Ascorbic acid (vitamin C) is composed of <u>40.92(percent</u>) ioo/.
 carbon (C), <u>4.58 percent</u> hydrogen (H), and <u>54.50 percent</u> oxygen
 (O) by mass. Determine its <u>empirical formula</u>.

Assume you have 100 g.¹.

$$n_{\rm C} = 40.92 \ g \ C \times \frac{1 \ {\rm mol \ C}}{12.01 \ g \ C} = 3.407 \ {\rm mol \ C}$$

 $n_{\rm H} = 4.58 \text{ g/H} \times \frac{1 \text{ mol H}}{1.008 \text{ g/H}} = 4.54 \text{ mol H} \rightarrow \text{formula } C_{3.407} H_{4.54} O_{3.406}$

$$n_{\rm O} = 54.50 \text{ g O} \times \frac{1 \text{ mol O}}{16.00 \text{ g O}} = 3.406 \text{ mol O}$$

C:
$$\frac{3.407}{3.406}$$
 ≈ 1 H: $\frac{4.54}{3.406}$ = 1.33 O: $\frac{3.406}{3.406}$ = 1
→ formula C₁H_{1.33}O₁ X 3 → formula C₃H₄O₃

Chromium forms compounds of various colors. (The word *chromium* comes from the Greek *khroma*, meaning "color"; see Figure 3.9.) Sodium dichromate is the most important commercial chromium compound, from which many other chromium compounds are manufactured. It is a bright orange, crystalline substance. An analysis of sodium dichromate gives the following mass percentages: 17.5% Na, 39.7% Cr, and 42.8% O. What is the empirical formula of this compound? (Sodium dichromate is ionic, so it has no molecular formula.)

 $((Na_2Cr_2O_7))$

2

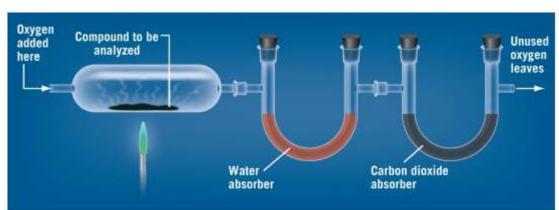
E

3

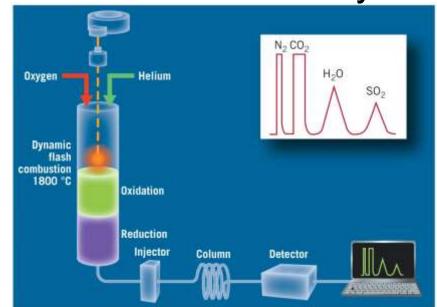
Na = 17.5% x Mors Bample 100 17.59 x = 1 × 2 = 2 1 mol Na 761 22.9 mol $Cr = 39.7 / \times 100 = 39.7 g \times$ × 2 = .763 1 mol Cr 51.Q -761 mol = 42.8% × 100 = 43.8g × 3.5×2= 2.68 mol O 15.999 - Na 2 Cra Oz .761 mol See Problems 3.67, 3.68, **Exercise 3.11** Benzoic acid is a white, crystalline powder used as a food preservative. The compound contains 68.8% C, 5.0% H, 3.69, and 3.70. and 26.2% O, by mass. What is its empirical formula? Hass Samale C = 68.8 / x 100 = $mol = 3.49 \times 2 = 6.99 = 7$ 5.728 68.8 12.011 2 = (6)

H = 5.0 $\% \times 100 = 5.0 \times \frac{1}{1} = 5.0 \text{ mol} = 3$ O = 26.2 $\% \times 100 = 26.2 \times \frac{1}{15.999} = 1.637 \text{ mol} = 1.637$

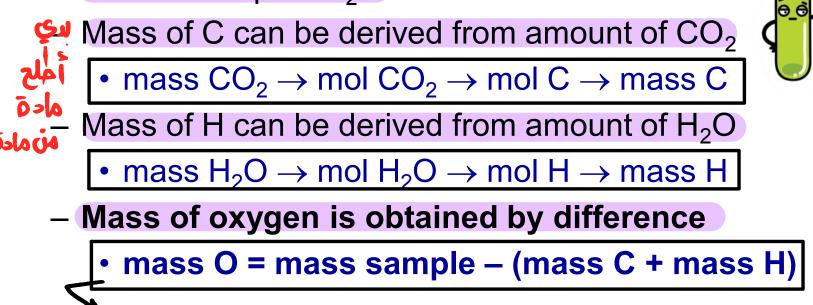
3. Empirical Formulas from Indirect Analysis: (Combustion analysis)


Classic

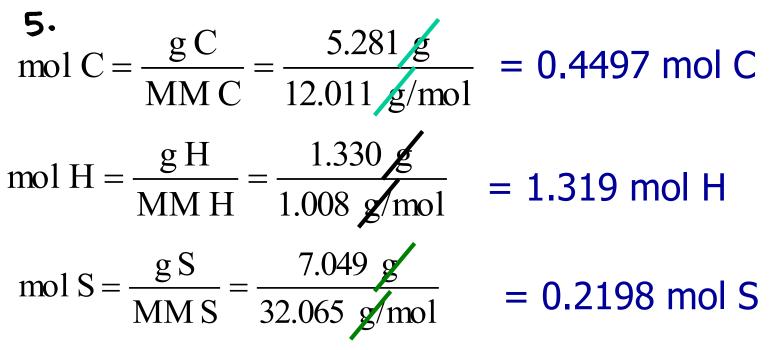
Combustion Analysis


Compounds containing carbon, hydrogen, and oxygen, can be burned completely in pure oxygen gas.

Only carbon dioxide and water are produced e.g., Combustion of methanol (CH₃OH)


 $2CH_{3}OH + 3O_{2} \longrightarrow$ $2CO_{2} + 4H_{2}O$

Modern CHN analysis


- Carbon dioxide and water are separated and weighed separately
 - All C ends up as CO₂
 - All H ends up as H_2O

(9) The combustion of a 5.217 g sample of a compound of C,
H, and O in pure oxygen gave 7.406 g CO₂ and 4.512 g of
H₂O Calculate the empirical formula of the compound.
1 Calculate mass of C from mass of CO₂.
mass CO₂
$$\rightarrow$$
 mole CO₂ \rightarrow mole C \rightarrow mass C
7.406 g CO₂ $\left(\frac{1 \text{ mol } \text{CO}_2}{44.01 \text{ g } \text{CO}_2}\right) \left(\frac{1 \text{ mol } \text{C}}{1 \text{ mol } \text{CO}_2}\right) \left(\frac{12.011 \text{ g } \text{C}}{1 \text{ mol } \text{C}}\right) = 2.021 \text{ g } \text{C}$
2 Calculate mass of H from mass of H₂O.
mass H₂O \rightarrow mol H₂O \rightarrow mol H \rightarrow mass H
4.512 g H₂O $\left(\frac{1 \text{ mol } \text{H}_2\text{O}}{18.015 \text{ g } \text{H}_2\text{O}}\right) \left(\frac{2 \text{ mol } \text{H}}{1 \text{ mol } \text{H}_2\text{O}}\right) \left(\frac{1.008 \text{ g } \text{H}}{1 \text{ mol } \text{H}}\right) = 0.5049 \text{ g } \text{H}$
3 Calculate mass of O from difference.
5.217 g sample - (2.021 g C + 0.5049 g H) = 2.691 g O

4. Calculate mol of each element		
mol C = $\frac{g C}{MM C} = \frac{2.021 g}{12.011 g/mol}$	= 0.1683 mol C	
$molH = \frac{gH}{MMH} = \frac{0.5049g}{1.008g/mol}$	= 0.5009 mol H	
$mol O = \frac{g O}{MM O} = \frac{2.691 g}{15.999 g/mol}$	= 0.1682 mol O	
 Preliminary empirical formula 	29	
$C_{0.1683}H_{0.5009}O_{0.1682}$		
C _{0.1683} H _{0.5009} O _{0.1682} 5. Calculate mol ratio of each element		
$C_{\underline{0.1683}}H_{\underline{0.5009}}O_{\underline{0.1682}} = C_{1.00}H_{2.97}O_{1.00}$		
Empirical Formula = CH₃O		

(Q) The combustion of a 13.660 g sample of a compound of C,
H, and S in pure oxygen gave 19.352 g CO₂ and 11.882 g of
H₂O. Calculate the empirical formula of the compound.
A. C₄H₁₂S
B. CH₃S
C. C₂H₆S
B. CH₃S
C. C₂H₆S
H = 19.352 g CO₂
$$\rightarrow$$
 mole CO₂ \rightarrow mole C \rightarrow mass C
(2) mass H₂O \rightarrow mole H₂O \rightarrow mole H \rightarrow mass H
(3) Calculate mass of S from difference
D. C₂H₆S₃
E. CH₃S₂ 19.352 g CO₂ $\left(\frac{1 \text{ mol } \text{CO}_2}{44.01 \text{ g } \text{CO}_2}\right) \left(\frac{1 \text{ mol } \text{C}}{1 \text{ mol } \text{C}}\right) \left(\frac{12.011 \text{ g C}}{1 \text{ mol } \text{C}}\right) = 5.281 \text{ g C}$
11.882 g H₂O $\left(\frac{1 \text{ mol } \text{H}_2\text{O}}{18.015 \text{ g } \text{H}_2\text{O}}\right) \left(\frac{2 \text{ mol } \text{H}}{1 \text{ mol } \text{H}}\right) = 1.330 \text{ g H}$
13.66 g sample - 5.281 g C - 1.330 g H = 7.049 g S

- Preliminary empirical formula
 - $C_{0.4497}H_{1.319}S_{0.2198}$

$$C_{\underline{0.4497}}H_{\underline{1.319}}O_{\underline{0.2198}}O_{\underline{0.2198}} = C_{\underline{2.03}}H_{\underline{6.00}}S_{\underline{1.00}}^{31}$$

Empirical Formula = C_2H_6S

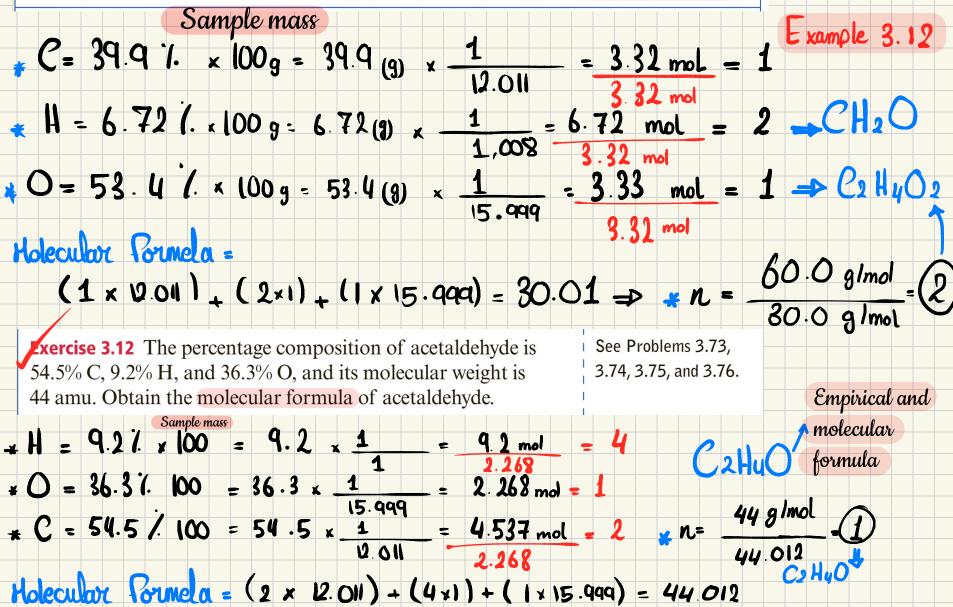
Determining Molecular Formula from empirical formula

-In some cases molecular and empirical formulas are the same

-When they are different, the subscripts of molecular formula are integer multiples of those in empirical formula

- If empirical formula is $A_x B_y$ - Molecular formula will be $A_{(n \times x)} B_{(n \times y)}$

(Q) The empirical formula of hydrazine is NH₂, and its molecular mass is 32.0. What is its molecular formula?

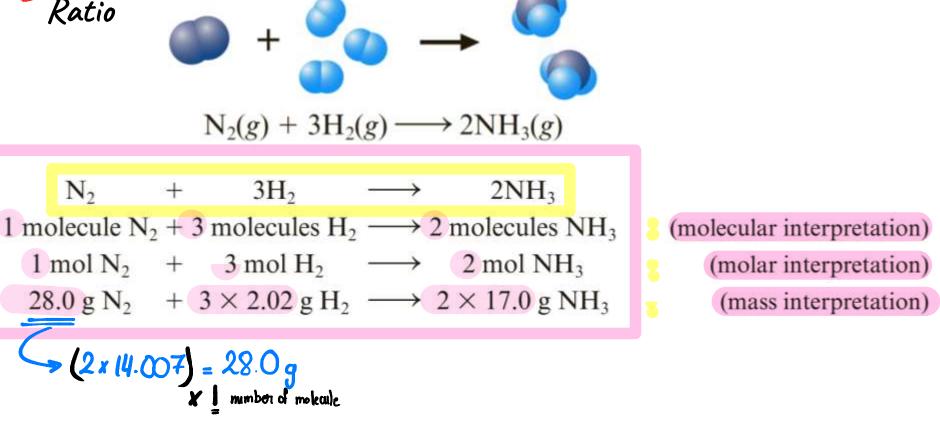

Atomic masses: N = 14.007; H = 1.008

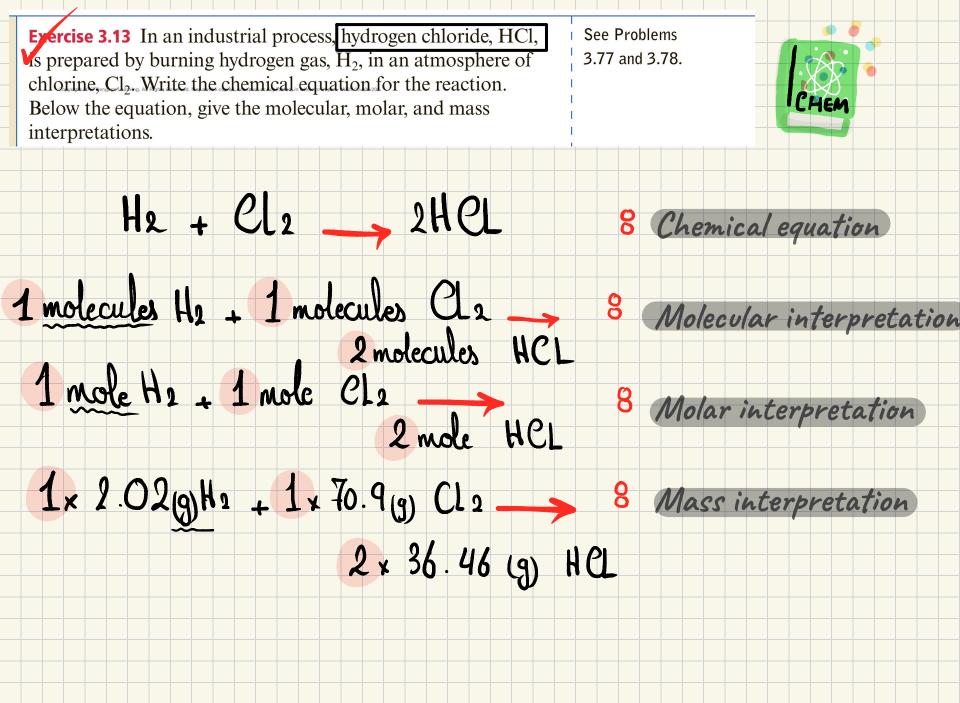
Molar mass of $NH_2 = (1 \times 14.01) g + (2 \times 1.008) g = 16.017 g$

n =
$$(32.0/16.02) = 2$$

(NH₂) X 2 = N₂H₄

In Example 3.9, we found the percentage composition of acetic acid to be 39.9% C, 6.72% H, and 53.4% O. Determine the empirical formula. The molecular weight of acetic acid was determined by experiment to be 60.0 amu. What is its molecular formula?





Stoichiometry: Quantitative Relations in Chemical Reactions

Molar Interpretation of a Chemical Equation

3.7 Amounts of Substances in a Chemical Reaction

Example 3.13 g - The and = Gin and (g) us

Relating the Quantity of Reactant to Quantity of Product In the following reaction:

$$Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$$

How many grams of Fe(s) can be produced from 1.00 kg Fe_2O_3 ? Molar masses are: Fe = 55.8 g/mol and Fe_2O_3 = 160 g/mol

Solution The calculation is as follows:

$$1.00 \times 10^3 \text{ g Fe}_2\text{O}_3 \times \frac{1 \text{ mol Fe}_2\text{O}_3}{160 \text{ g Fe}_2\text{O}_3} \times \frac{2 \text{ mol Fe}}{1 \text{ mol Fe}_2\text{O}_3} \times \frac{55.8 \text{ g Fe}}{1 \text{ mol Fe}} = 698 \text{ g Fe}$$

★ The equation must be balanced *

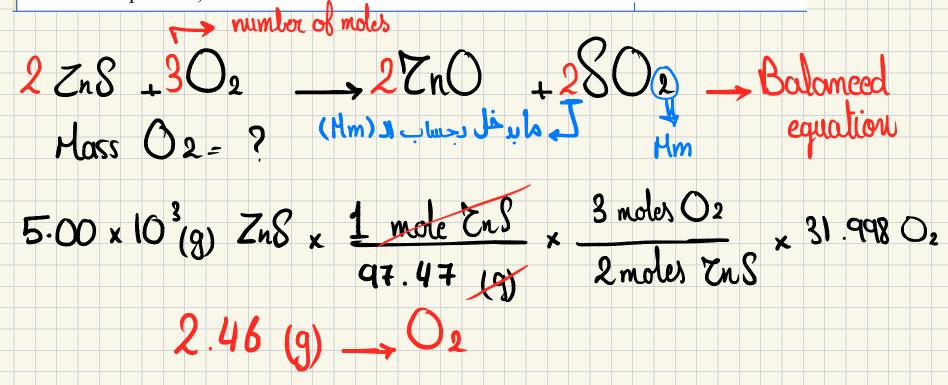
See Problems **Exercise 3.14** Sodium is a soft, reactive metal that instantly reacts 3.83, 3.84, 3.85, with water to give hydrogen gas and a solution of sodium hydroxide, and 3.86. NaOH. How many grams of sodium metal are needed to give 7.81 g of hydrogen by this reaction? (Remember to write the balanced equation first.) H2 + 2NaOH - Balanced 2Na + 2H2Oequation Mass Na = ? 1 mol # 2 mol Na 7.81g (H) 22.9(q)X 2×(1.01)(9)A ł 1 mol 1 mol Na 178(g) Na 7.81 22.9 =

Example 3.14

Relating the Quantities of Two Reactants (or Two Products)

In the following reaction: $4HCl(aq) + MnO_2(s) \rightarrow 2H_2O(l) + MnCl_2(aq) + Cl_2(g)$ How many grams of HCl react with 5.00 g of MnO₂, according to this equation?

$$5.00 \text{ g MnO}_2 \times \frac{1 \text{ mol MnO}_2}{86.9 \text{ g MnO}_2} \times \frac{4 \text{ mol HCl}}{1 \text{ mol MnO}_2} \times \frac{36.5 \text{ g HCl}}{1 \text{ mol HCl}} = 8.40 \text{ g HCl}$$


Exercise 3.16 oxygen can be prepared by heating mercury(II) oxide, HgO. Mercury metal is the other product. If 6.47 g of oxygen is collected, how many grams of mercury metal are also produced? $2HgO \rightarrow 2Hg + O_2$

3. SP

$$6.47 \text{ g } \text{O}_2 \times \frac{1 \text{ mol } \text{O}_2}{32.00 \text{ g } \text{O}_2} \times \frac{2 \text{ mol } \text{Hg}}{1 \text{ mol } \text{O}_2} \times \frac{200.59 \text{ g } \text{Hg}}{1 \text{ mol } \text{Hg}} = 81.11 = 81.1 \text{ g } \text{Hg}$$

 35

Exercise 3.15 Sphalerite is a zinc sulfide (ZnS) mineral and an important commercial source of zinc metal. The first step in the processing of the ore consists of heating the sulfide with oxygen to give zinc oxide, ZnO, and sulfur dioxide, SO₂. How many kilograms of oxygen gas combine with 5.00×10^3 g of zinc sulfide in this reaction? (You must first write the balanced chemical equation.)

See Problems 3.87 and 3.88.

How many grams of Al_2O_3 are produced when 41.5 g Al react?

$$2AI(s) + Fe_2O_3(s) \rightarrow AI_2O_3(s) + 2Fe(/)$$

- A. 78.4 g
- B. 157 g
- C. 314 g
- D. 22.0 g
- E. 11.0 g

$$41.5 \text{ gAl} \left(\frac{1 \text{ molAl}}{26.98 \text{ gAl}}\right) \left(\frac{1 \text{ molAl}_2 \text{ O}_3}{2 \text{ molAl}}\right) \left(\frac{101.96 \text{ gAl}_2 \text{ O}_3}{1 \text{ molAl}_2 \text{ O}_3}\right)$$

 $= 78.4 \text{ g Al}_2\text{O}_3$

How many grams of sodium dichromate are required to produce 24.7 g iron(III) chloride from the following reaction?

$14\text{HCl} + \text{Na}_2\text{Cr}_2\text{O}_7 + 6\text{FeCl}_2 \rightarrow 2\text{CrCl}_3 + 7\text{H}_2\text{O} + 6\text{FeCl}_3 + 2\text{NaCl}$

A. 6.64 g $Na_2Cr_2O_7$

B. 0.152 g $Na_2Cr_2O_7$

C. 8.51 g Na₂Cr₂O₇ D. 39.9 g Na₂Cr₂O₇ E. 8.04 g Na₂Cr₂O₇

24.7 g FeCl₃ ×
$$\left(\frac{1 \text{ mol FeCl}_3}{162.2 \text{ g FeCl}_3}\right)$$
 ×
 $\left(\frac{1 \text{ mol Na}_2 \text{Cr}_2 \text{O}_7}{6 \text{ mol FeCl}_3}\right)$ × $\left(\frac{262.0 \text{ g Na}_2 \text{Cr}_2 \text{O}_7}{1 \text{ mol Na}_2 \text{Cr}_2 \text{O}_7}\right)$
= 6.64 g Na₂Cr₂O₇

3.8 Limiting Reactant; Theoretical and Percentage Yields

Example 3.15 Calculating with a Limiting Reactant (Involving Moles) Reactant A = B there is no limiting reactant Zinc metal reacts with hydrochloric acid by the following reaction: $\mathbf{1}$ Zn(s) + $\mathbf{2}$ HCl(aq) $\rightarrow \mathbf{1}$ ZnCl₂(aq) + $\mathbf{1}$ H₂(g) If 0.30 mol Zn is added to a solution containing 0.52 mol HCl, how many moles of H₂ are produced? Coefficient .30 $Tn \rightarrow 0.30 \text{ mol}$ KO2:.25 _ 0625 mol H2O: 15/2 .075 mol HCL -> 0.52 mol / 2 (26 *.52 mol HCL x Limiting 2 mol Het x.25mol KO2x 3mol 0 = . 26 mol H2 limiting - 4 mol Ko2 3,91 Potassium superoxide, KO2, is used in rebreathing gas masks to generate oxygen. 4KO₂(s) + 2H₂O(l) \rightarrow 4KOH(s) + 3O₂(g) If a reaction vessel contains 0.25 mol KO₂ and 0.15 mol H₂O, what is the limiting reactant? How many moles of oxygen can be produced? 38

Coefficient 8

Explanation

 $\frac{1}{B}read + \frac{3}{5}falafel \rightarrow \rightarrow 1sandwich$ Product Reactant 5 bread 12 falafel How many sandwiches can be produced? 1. Step 1 5 __ Bread is excess Coefficient ___ Falafel is the limiting 2 Palafel x 1 Sandwich = 4 Sandwich 2. Step 2: 3 falafil The maximum Hosses Not Holes ~ Theoretical yield _ [1] - + mass

Exercise 3.17 Aluminum chloride, AlCl₃, is used as a catalyst in various industrial reactions. It is prepared from hydrogen chloride gas and aluminum metal shavings.

 $2Al(s) + 6HCl(g) \longrightarrow 2AlCl_3(s) + 3H_2(g)$

Suppose a reaction vessel contains 0.15 mol Al and 0.35 mol HCl. How many moles of AlCl₃ can be prepared from this mixture?

 $2 AL_{(3)} + 6HCL_{(3)} \rightarrow 2ALCL_{3} + 3H_{2}$.15 mol AL __ 1 = ,075 mol AL .35 mol Hel _____ 6 = ,0583 mol Hel * 2-Significant 2 mol ALCl3 = 1166 mol ALCL3 = => .35 mol HCL x 6 mol Het Theoretical yield Ratio

See Problems

3.91 and 3.92.

Calculating with a Limiting Reactant (Involving Masses) **3,96** Hydrogen cyanide, HCN⁽⁹⁾ is prepared from ammonia, air, and natural gas (CH₄) by the following process: (1) $2NH_3(g) + 3O_2(g) + 2CH_4(g) \rightarrow 2HCN(g) + 6H_2O(g)$ hydrocyanic acid If a reaction vessel contains 11.5 g NH₃, 12.0 g O₂, and 10.5 g CH_4 , what is the maximum mass in grams of hydrogen cyanide that could be made, assuming the reaction goes to Coofecient completion as written? Hm Holes from the balanced . 338 mol equation * NH3 = 11.5q . 676 mol 17.007 = 375 mol ÷ 3 = .125 mol : limiting *02 = 12.0931. 998 = . 656 mol - 2 = .328 mol * CHy = 10.5 16.001 <u>2 mol HCN</u> = .25 mol HCN × Hm 27.018 = 3 mol O2 .375 mol 02 × 6.754 (9) H Theoretical hold

Theoretical yield and percentage yield

Percentage yield =
$$\frac{\text{actual yield}}{\text{theoretical yield}} \times 100\%$$

3.97 Aspirin (acetylsalicylic acid) is prepared by heating salicylic acid, $C_7H_6O_3$, with acetic anhydride, $C_4H_6O_3$. The other product is acetic acid, $C_2H_4O_2$. $C_7H_6O_3 + 1C_4H_6O_3 \rightarrow 1C_9H_8O_4 + 1C_2H_4O_2$ What is the theoretical yield (in grams) of aspirin, $C_9H_8O_4$, when 2.00 g of salicylic acid is heated with 4.00 g of acetic anhydride? If the actual yield of aspirin is 1.86 g, what is the percentage yield?

3.97 8 you Should balance the y $C_7H_6O_3 + C_4H_6O_3 \rightarrow 1C_9H_8O_4 + 1C_2H_4O_2$ C=H6O3 = 2.00g CyH6O3 = 4.00g ? Actual yield = 1.86g ____ percentage yield $C_7H_6O_8 = 2.00g \times \frac{1}{138.004} = 01449 \text{ mol}$ $\frac{C_{4}H_{6}O_{3}}{102.00} = \frac{0.392}{100} \frac{1}{100}$ $\frac{1}{100} \frac{1}{100} \frac{1}{100}$ # C9H8Oy = .01449molx(180.05) 2.608g [mole __ Hass] = Treoretical yield percentage yield = actual yield (9) = 1.869 Theoretical yield (8) 2.608 g have a Anit

(Q) When 6.40 g of CH_3OH was mixed with 10.2 g of O_2 and ignited, 6.12 g of CO_2 was obtained. What was the percentage yield of CO_2 ?

 $2CH_3OH + 3O_2 \longrightarrow 2CO_2 + 4H_2O$ MM(g/mol) (32.04) (32.00) (44.01) (18.02)

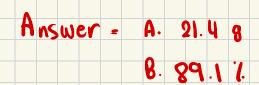
A. 6.12% B. 8.79% C. 100% D. 142% E. 69.6% $6.40 \text{ g CH}_{3}\text{OH} \times \frac{1 \text{ mol CH}_{3}\text{OH}}{32.04 \text{ g CH}_{3}\text{OH}} \times \frac{3 \text{ mol } \text{O}_{2}}{2 \text{ mol CH}_{3}\text{OH}} \times \frac{32.00 \text{ g O}_{2}}{1 \text{ mol O}_{2}}$ $= 9.59 \text{ g O}_{2} \text{ needed}; \text{ CH}_{3}\text{OH} \text{ limiting}$ $6.40 \text{ g CH}_{3}\text{OH} \times \frac{1 \text{ mol CH}_{3}\text{OH}}{32.04 \text{ g CH}_{3}\text{OH}} \times \frac{2 \text{ mol CO}_{2}}{2 \text{ mol CH}_{3}\text{OH}} \times \frac{44.01 \text{ g CO}_{2}}{1 \text{ mol CO}_{2}}$ $= 8.79 \text{ g CO}_{2} \text{ in theory}$

$$\frac{6.12 \text{ g CO}_2 \text{ actual}}{8.79 \text{ g CO}_2 \text{ theory}} \approx 100 \% = 69.6\%$$

Example = 3.16 \$

 $2CH_3CHO + 1O_2$ $2HC_2H3O_2$ J ↓ ↓ 20.0 g 0.0 g A. $HC_{2}H_{3}O_{2} = ?(9)$ B. the excess Reactant=? * CH3CHO = 20.0(g) × <u>1 mol x</u> <u>1 mol O2</u> × 32.(g) ~ Limiting <u>44 1(g)</u> 2 mol CH3CHO <u>1 mol O2</u> 1 mol O2 عندي 10 داستملکت (10.0 ع 10.0 ع) < 2 (10.0 عندي 10.2 ج= * 20.0(g) x <u>1 mol</u> x <u>2 HC1H3O2</u> <u>60.0</u> <u>44.1(g)</u> 2 CH3CHOS <u>1 mol</u> -> 27.21(g) HC2H3O2 was produced (q) B. The excess Reactant = 01 (10 - 7.26) = 2.7 gO2 (mass Remaining)

Exercise 3.18 In an experiment, 7.36 g of zinc was heated with 6.45 g of sulfur (Figure 3.16). Assume that these substances react according to the equation Answer = 11.09


$$8Zn + S_8 \longrightarrow 8ZnS$$

What amount of zinc sulfide was produced?

Exercise 3.19 New industrial plants for acetic acid react liquid methanol with carbon monoxide in the presence of a catalyst.

 $CH_3OH(l) + CO(g) \longrightarrow HC_2H_3O_2(l)$

In an experiment, 15.0 g of methanol and 10.0 g of carbon monoxide were placed in a reaction vessel. What is the theoretical yield of acetic acid? If the actual yield is 19.1 g, what is the percentage yield? See Problems 3.97 and 3.98.

Learning Objectives	Important Terms	
3.1 Molecular Weight and Formula Weight		
 Define the terms <i>molecular weight</i> and <i>formula weight</i> of a substance. Calculate the formula weight from a formula. Example 3.1 Calculate the formula weight from molecular models. Example 3.2 	molecular weight formula weight	
3.2 The Mole Concept		
 Define the quantity called the <i>mole</i>. Learn <i>Avogadro's number</i>. Understand how the <i>molar mass</i> is related to the formula weight of a substance. Calculate the mass of atoms and molecules. Example 3.3 Perform calculations using the mole. Convert from moles of substance to grams of substance. Example 3.4 Convert from grams of substance to moles of substance. Example 3.5 Calculate the number of molecules in a given mass of substance. Example 3.6 	mole (mol) Avogadro's number (N _A) molar mass	
3.7 Mass Percentages from the Formula		
 Define <i>mass percentage</i>. Calculate the percentage composition of the elements in a compound. Example 3.7 Calculate the mass of an element in a given mass of compound. Example 3.8 	percentage composition mass percentage	
3.4 Elemental Analysis: Percentage of Carbon, Hydrogen, and Oxygen		
 Describe how C, H, and O combustion analysis is performed. Calculate the percentage of C, H, and O from combustion data. Example 3.9 		
3.5 Determining Formulas Copyright 2017 Copyright 2017 Copyright Learning, All Register All Regi		
 Define <i>empirical formula</i>. Determine the empirical formula of a binary compound from the masses of its elements. Example 3.10 Determine the empirical formula from the percentage composition. Example 3.11 Understand the relationship between the molecular weight of a substance and its <i>empirical formula weight</i>. Determine the molecular formula from the percentage composition and molecular weight. Example 3.12 	empirical (simplest) formula	
3.6 Molar Interpretation of a Chemical Equation		
Relate the coefficients in a balanced chemical equation to the number of molecules or moles (<i>molar interpretation</i>).	stoichiometry	

37 Amounts of Substances in a Chemical Reaction	
 Use the coefficients in a chemical reaction to perform calculations. Relate the quantities of reactant to the quantity of product. Example 3.13 Relate the quantities of two reactants or two products. Example 3.14 	
3.9 Limiting Reactant; Theoretical and Percentage Yields	
 Understand how a <i>limiting reactant</i> or <i>limiting reagent</i> determines the moles of product formed during a chemical reaction and how much <i>excess reactant</i> remains. Calculate with a limiting reactant involving moles. Example 3.15 Calculate with a limiting reactant involving masses. Example 3.16 Define and calculate the <i>theoretical yield</i> of chemical reactions. Determine the <i>percentage yield</i> of a chemical reaction. 	limiting reactant (reagent) theoretical yield percentage yield
Key Equations	

Mass% $A = \frac{\text{mass of } A \text{ in the whole}}{\text{mass of the whole}} \times 100\%$ Percentage yield $= \frac{\text{actual yield}}{\text{theoretical yield}} \times 100\%$ $n = \frac{\text{molecular weight}}{\text{empirical formula weight}}$

Done by: Joud Jaber Ihank You T'M A DUCKTOR