EBBING - GAMMON

7.5 Quantum Numbers and Atomic Orbitals

Define atomic orbital.

- Define each of the quantum numbers for an atomic orbital.
- State the rules for the allowed values for each quantum number.
- Apply the rules for quantum numbers. Example 7.6
- Describe the shapes of s, p, and d orbitals.

atomic orbital

principal quantum number (n) angular momentum quantum number (l) magnetic quantum number (m_i) spin quantum number (m_s)

General Chemistry ELEVENTH EDITION

Quantum **Theory of The Atom**

اللهم صلّ وسلّم على نبينا محمد وعلى آله وصحبه أجمعين

©2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use.

> Note: This is a summary of the lecture. Much more was discussed during the lecture!

> Quantum Numbers:

Letter

- ✓ The allowed values and general meaning of each of the four quantum numbers of an electron in an atom are as follows:
- 1. Principal Quantum Number((n) Positive value / integer This quantum number is the one on which the energy of an electron in an atom principally depends.

it can have any positive value: 1, 2, 3, and so on

 $\frac{K}{1} < \frac{L}{2} < \frac{M}{3} < \frac{N}{4} \cdots Enougy$ 2. Angular Momentum Quantum Number((I))(Also Called) **Azimuthal Quantum Number)**

This quantum number distinguishes orbitals of given n having different shapes. It can have any integer value from 0 to n - 1.

3. Magnetic Quantum Number (m_l)

This quantum number distinguishes orbitals of given n and I,that is, of given energy and shape but having a different orientation in space; the allowed values are the integers from -I(to)+I.

 \checkmark There are 2*I* + 1 orbitals in each subshell of quantum number *I*.

4. Spin Quantum Number (m_s))

This quantum number refers to the two possible orientations of the spin axis of an electron; possible values are +1/2 and -1/2

(Q) State whether each of the following sets of quantum numbers is permissible for an electron in an atom. If a set is not permissible, explain why. Example 7.6

a.
$$n = 1, l = 1, m_l = 0, m_s = +\frac{1}{2}$$

b. $n = 3, l = 1, m_l = -2, m_s = -\frac{1}{2}$
c. $n = 2, l = 1, m_l = 0, m_s = +\frac{1}{2}$
d. $n = 2, l = 0, m_l = 0, m_s = 1$

Table 7.1		Permissible Values of Quantum Numbers for Atomic Orbitals		
п	/	<i>m</i> ,*	Subshell Notation	Number of Orbitals in the Subshell
1	0	(0) 10 rbital	1 <i>s</i>	1
2	0	0	2 <i>s</i>	1
2	1	(-1, 0, +1) 30 rbital	2 <i>p</i>	3
3	0	0	3 <i>s</i>	1
3	1	-1, 0, +1	3 <i>p</i>	3
3	2	(-2, -1, 0, +1, +2)	sital ³ d	5
4	0	0	4 <i>s</i>	1
4	1	-1, 0, +1	4 <i>p</i>	3
4	2	-2, -1, 0, +1, +2	4 <i>d</i>	5
4	3	(-3, -2, -1, 0, +1, +2, +3)	70rbital	7

Exercise 7.7 Explain why each of the following sets of quantum numbers is not permissible for an orbital.

7.7 The value of *n* must be a positive whole number greater than zero. The values of *l* range from 0 to n - 1. Here, *l* has a value greater than *n*. The values for m_l range from -l to +l. Here, m_l has a value greater than that of *l*. The values for m_s are $+\frac{1}{2}$ or $-\frac{1}{2}$, not 0.

a.
$$n = 0, l = 1, m_l = 0, m_s = +\frac{1}{2}$$

b. $n = 2, l = 3, m_l = 0, m_s = -\frac{1}{2}$
c. $n = 3, l = 2, m_l = +3, m_s = +\frac{1}{2}$
d. $n = 3, 1 = 2, m_l = +2, m_s = 0$

Example 7.6 Applying the Rules for Quantum Numbers

Gaining Mastery Toolbox

Critical Concept 7.6

An electron in an atom is described by four quantum numbers: the principal quantum number (n), the angular momentum quantum number (l), the magnetic quantum number (m_i), and the spin quantum number (m_s). You need to know the allowed values of each quantum number.

Solution Essentials:

Allowed values of the quantum numbers of an atom: n, l, m_l , and m_s

State whether each of the following sets of quantum numbers is permissible for an electron in an atom. If a set is not permissible, explain why.

a. $n = 1, l = 1, m_l = 0, m_s = +\frac{1}{2}$ b. $n = 3, l = 1, m_l = -2, m_s = -\frac{1}{2}$ c. $n = 2, l = 1, m_l = 0, m_s = +\frac{1}{2}$ d. $n = 2, l = 0, m_l = 0, m_s = 1$

Problem Strategy Apply the rules for quantum numbers in order, first to n, then to l and m_l , and finally to m_s . A set of quantum numbers is impermissible if it disobeys any rule.

Solution

- a. Not permissible. The *l* quantum number is equal to *n*; it must be less than *n*.
- b. Not permissible. The magnitude of the m_l quantum number (that is, the m_l value, ignoring its sign) must not be greater than l_{l}
- c. Permissible.

d. Not permissible. The m_s quantum number can be only $+\frac{1}{2}$ or $-\frac{1}{2}$.

Answer Check Check that *n* is a positive integer (it cannot be zero). Also, check that *l* is a positive integer (but zero is allowed) and that m_l is an integer whose magnitude (its value except for sign) is equal to or less than *l*. The m_s quantum number can be only $+\frac{1}{2}$ or $-\frac{1}{2}$.

Exercise 7.7 Explain why each of the following sets of quantum	See Problems 7.69
numbers is not permissible for an orbital.	and 7.70.
a. $n = 0, l = 1, m_l = 0, m_s = +\frac{1}{2}$	I
b. $n = 2, l = 3, m_l = 0, m_s = -\frac{1}{2}$	1
c. $n = 3, l = 2, m_l = +3, m_s = +\frac{1}{2}$	1
d. $n = 3, 1 = 2, m_l = +2, m_s = 0$	

Atomic Orbital Shapes

Quantum Numbers Done by Mas Nafouk

• Angular momentum Q.No L · Magnetic Q. No mi · Principle Quantum No. n "Azimuthal" -> refers to Energy -8 Size ->refers to Shape of the Orbitals -> refers to Orientation -> Allowed Values + ive values [T, 2,] -> Allowed values [0, n-1] -> Allowed values 3 4 ... M N ... 12 KL n =0 [+1, -1]0 1 2 3 ... Spectroscopic S P d F ... terminology= n +-1 -> each <u>J</u> "subshell" -> n x E x size of Orbitals · Energy of c sharp, principle, diffuse, Fundamental has 22+1 Orbitals -> Some n = different 1 = different subshell $\rightarrow E_{x}: P = +1, 0, +2$ 5 1emore than 1e--> S, P, d, P has distinctive shapes **Borbitals** only depends depends on n -> Shell with Q No n has L same E on and - same shape n n different Kinds of F different X orientation. orbitals H, Het Litz Fe · Spin Q. No Ms ->vellers to Orientation of the Spin axis of an e--> Same n = Jame Shell. \rightarrow Allowed Ualues + 1/2, - 1/2

