A Energy transfer

B Energy transport

C Energy consumption

D Energy coupling

Q2- Endergonic reaction ...?

A Delta G negative

B Spontaneous

C Release energy

D The products have more energy than the reactants

Q3- The last electron acceptor in ethanol fermentation is..?

A Oxygen

B pyruvate

C Acetaldehyde

D NAD+

Q4- In cellular respiration the four-carbon compound that reacts with acetyl CoA to

form citrate ..!

A malate

B Fumarate

C Succinate

D oxaloacetate

Q5- Sequence of cellular respiration..?

A.Glycolysis... oxidation of pyruvate..citric acid cycle

B.Glycolysis..citric acid cycle.. oxidation pyruvate

C. oxidiztion pyruvate..citric acid cycle.. glycolysis

Q6- Choose the false statement...

Answer: NAD+ has more chemical energy than NADH.

<

E. Binds to a noncompetitive inhibitor
Q8 - Which of the following is not a product from glycolysis ? A) H+ B) NADH C) FADH2 D) ATP
Q9. Which of the following statements describes the results of this reaction?
C _{H12} O ₄ + 6 O ₂ \rightarrow 6 CO ₂ + 6 H ₂ O + Energy A. C _{H12} O ₄ is oxidized and O ₂ is reduced B. O ₁ is oxidized and O ₂ is reduced C. CO ₃ is reduced and O ₃ is oxidized D. C _{H12} O ₄ is reduced and CO ₃ is oxidized E. O ₂ is reduced and CO ₃ is oxidized
Q10 . How many carbon dioxide release when oxidized 1mol of glucose in glycolysis
A) 0
B) 1
C) 2
D) 4
E) 6
Q11. If NAD+ accept hydrogen and an electon it will be A) Reduced

Q7- The active site of an enzyme is the region that \dots

A. Binds to substrate(s)
 B. Binds to a heme group
 C. Binds to an allosteric activator
 D. Binds to an allosteric inhibitor

B) OxidizedC) HydrolysisD) Hydrogenated

A.substate molecule binding to one active site in an enzyme trigger a shape change that increase activity active sites in all subunits

B. substate molecule binding to one active site in an enzyme trigger a shape change that inhibits active sites in all subunits

C. allostaric regulation binding to one active site in an enzyme trigger a shape change that increase activity in all subunits

Q13. Which of the following is mobile?

A)Protein Complex I

B)Protein Complex II

C)Protein Complex III

D)Ubiquinone

E)Protein Complex IV

Q14. The pumping of the proton ions from the mitochonrial matrix results in:

a. NAD+ reduction

b.NADH oxidation

c. proton motive force in the inter membrane space

d. proton motive force in the mitochondrial matrix

e. transport of electron

Q15. Oxidative phosphorylation occurs in:

a. mitochondrial matrix

b. inner membrane

c. intermembrane space

d. cvtosol

e. outer membrane

Q16. How much CO2 is produced from the oxudation of one Pyruvate?
α.1
b. 2
c. 3
d. 4
e. 6
Q17. what is the major redox reaction occur in glycolysis?
A)H2O
B)NADH
C)FADH2
D)ATP
E)fructose6phosphate
Q18. NAD+ is reduced to NADH during glycolysis by :
Ans : electrons coming from G3P
Q19. Organisms:
A) Close system
B) Open system
C) Large system
D) Small system
E) Free system
Q20. Which enzyme is used in this step:(fructose6-phosphate —-
>fructose-1,6bisphosphate)?
-A phosphofructokingse
-B phosphoglycerokingse
-C glucose dehydrogenase
Ans : phosphofructokinase

Q21. Most of the electron transport chain components are made of:

A lipids

B proteins

C metals

Q22. Oxygen that enters the cellular respiration is converted to:

Ans: water

Q23 . Glycolysis regenerate ATP by:

Ans: substrate level phosphorylation

Q24 Fermentation regenerate atp by:

A substrate level phosphorylation

B substrate level dephodphorylation

C oxidative phosphorylation

Q25 Citric acid cycle regenerate atp by:

A substrate level phosphorylation

B substrate level dephisphorylation

C oxidative phosphorylation

Q26. Which of the statements are false about NAD+:

A contains nitrogen

B the oxidized form of NADH

C has less energy than NADH

D denotes electrons to the electrons transport chain

Q27. The role of sulfate ion in angerobic respiration:

A accepts electrons in the end of electrons transport chain

B accepts electrons during citric acid cycle

C denotes electrons in the electrons transport chain

Q28. FADH2 denotes it's electrons in the electron transport chain to:

A protein complex |

B protein complex II

C protein complex |||

D cyt a3

Q29. Chemical work is defined as:

A pushing endergonic reactions which can not occur spontaneously by itself and make it spontaneous

B transport sodium against the gradient

C beating cilia

D muscle contractions

Q30. What does FAD+ accepts to be FADH2:

A-1electron 1proton

B- 2electrons 1proton

C- 2electrons 2protons

Q31. To enter acetyl-CoA to the citric acid cycle, it's binds to:

A citric acid

B Oxaloacetate

C alpha ketoglutrate

Q32. The active site of enzyme is where the:

A) the noncompetitive inhibitors bind

B) the competitive inhibitors bind


C) the allostric inhibitor bind

D) the substrate(s) bind

E) B&D

- Q33. Noncompetitive inhibitors inhibit the enzyme by: A) decreasing the activation energy B) binding to the active site C) changing the enzyme shape Q34: Which of the following is affecting the enzyme activity: A temperature Hq (B C) competitive inhibition D) noncompetitive inhibition E) all of the above
- Q35- The immediate energy form that drive ATP synthesis by ATP synthase:
- A) electron flow chain
- B) proton gradient across the mitochondrial membrane
- Q36- Which of the following is true about NAD+:
- A) is reduced to NADH during glycolysis, Pyruvate oxidation, citric acid cycle
- B) is oxidized by dehydrogenase
- C) denotes electrons to the electron transport chain
- D) glycolysis can occur without it
- Q37- Catabolic pathway:
- A) include glycolysis and citric acid cycle
- B) endergonic reaction
- C)non spontaneous reaction
- D) does not need catalytic enzymes
- Q38) If a certain reaction has delta G=-200, which of the statements is true:
- A) products has less energy than reactants
- B) reactants has less energy than products
- C) the reaction is endergonic

- Q39) Activation energy is defined as:
- A) the energy needed to break reactants bonds
- B) the energy needed to form products bonds
- C) the energy released from breaking reactants bonds
- Q40) Glycolysis:
- A. splitting glucose to pyruvate
- B. splitting glucose to acetyl CoA
- Q41) Which stage of cellular respiration occur outside the mitochondria:
- A)electron transport chain
- B)glycolysis
- C)oxidative phosphorylation
- D)Pyruvate oxidation
- Q42) If a reaction has delta G=-10, which of the following is true:
- A) exergonic reaction
- B) spontaneous reaction
- C) need a catalyst
- D) all of them
- Q43) Which of the following occur in aerobic respiration, anaerobic respiration, fermentation:
- A) alycolysis
- B) oxidative phosphorylation
 -) what is type of Reaction?

Bio second 2022 | By Farah Thaher

Q) How many FADH2 produce from one turn of citric acid cycle?

A)0

B)1

C)2

D)3

E)4

ANS: B

Q) How many electrons and protons respectively we need when FAD converted to FADH2?

- A) 1,1
- B) 1,2
- C) 2,2
- D) 2,1

ANS: c

Q)What is the enzyme that transforms fructose 6 phosphate to fructose 1,6 bisphosphate?

A)Hexokinase

B)Phosphoglucomutase

C)Phosphoglycerate kinase

D) Triose phosphate

E) Phosphofructokinase

ANS: E

- Q) When the saturated state is achieved, how we can increase the rate of reactions?
- A) Add competitive inhibitors
- B) Add more enzymes
- C) Add noncompetitive inhibitors
- D) Decrease temperature

ANS: B

- Q) how enzymes increase the rate of the reaction?
- A) Decrease the free energy
- B) Decrease reactant free energy
- C) Decrease product free energy
- D) Orienting substrate incorrectly
- E) Decrease Ea barrier

ANS: E

- Q) How many carbon in PYRUVATE molecule?
- A) 2
- B) 3
- C) 4
- D) 5
- E) 6

ANS:B

- Q) What is the end product of glycolysis?
- A) Glucose
- B) PYRUVATE
- C) DHAP
- D) GA3p
- E) Fructose

ANS: B

Part of cellular respiration that occurs out of mitochondria?

- A) Glycolysis
- B) Krebs cycle
- C) Electron transport chain
- D) Fermentation
- E) A+B

ANS: A

- Q) Cellular respiration can be summed up in the following reaction?
- A) 6CO2 +6H2O -> C6H12O6 +6O2
- B) C6H12O6 + 6CO2 -> 6O2 + 6H2O
- C) C6H12O6 + 6O2 -> 6CO2 + 6 H2O

ANS:C

- Q) process of cellular respiration can occur in aerobic and anaerobic condition?
- A) Glycolysis
- B) Krebs cycle
- C) Electron transport chain
- D) PYRUVATE dehydrogenase
- E) A+ C

ANS: A

- Q) Which of the following is false?
- A) Endergonic rxns consume energy
- B) Exergonic rxns have negative delta G
- C) Endergonic and exergonic need the same amount of energy
- D) Exergonic release energy

ANS: c

- Q) How many chemical step in glycolysis?
- A) 7
- B) 8
- C) 9
- D) 10
- E) 11

ANS: D

Biology | second exam

Doctor 2021

- in cellular respiration, the process that generates almost 90% of the ATP is.
 de-phosphorylation
 re-phosphorylation
 substrate-level phosphorylation
 phosphorylation
- 2. What is ATP made from?

E. oxidative phosphorylation

- A. adenosine + high energy electrons
- B. AMP + ALP
- C. ADP + phosphate
- D. Deoxy ribose and 3 phosphate groups
- E. None of choices are correct
- 3. The process oxidation of pyruvate to Acetyl Co-A, takes place... the citric acid cycle
- A. While
- B. After
- C. All given choices are incorrect
- D. All given choices are correct
- E. Before
- 4. Coenzymes are nonorganic enzyme cofactors
- A. True
- B. False
- 5. In alcohol fermentation, NAD+ is regenerated from NADH by
 - A. reduction of pyruvate to form lactate
 - B. reduction of acetaldehyde to form ethanol
 - C. reduction of ethanol to form pyruvate
 - D. oxidation of pyruvate to form acetyl COA
 - E. oxidation of acetaldehyde to form ethanol
- 6. Which of the following is FALSE about the using of proteins as fuel?
 - A. Firstly, they must be digested to their building blocks amino acids
 - B. Many of the amino acids are used by the organism to build new proteins
 - C. The nitrogenous waste is excreted from the animal in the form of ammonia (NH3). urea, or other waste products
 - D. After amino acids can feed into glycolysis or the citric acid cycle, their amino groups must be removed, a process called deamination
 - E. All of the options are false

7. A. B. C. D.	Glycolysis has steps, while citric acid cycle has steps Ten, eight Eight, ten Ten,two Two, ten Ten,eight
8.	In citric acid cycle, the Acetyl Co-A enters the cycle by reacting with
D.	Citrate Malonate Succinate Oxaloacetate Alpha Keto-glutarate
9.	In lactic acid fermentation, the final electron acceptor is A. Oxygen B. CO2 C. Alcohol D. Sugar E. Pyruvate
10.	What term is used to describe the transfer of free energy from exergonic reactions to endergonic pathways?
B. C. D.	Feedback regulation energy coupling entropy bioenergetics cooperativity
11.	Allosteric enzyme regulation is usually associated with A. The need for cofactors B. an enzyme with more than one subunit C. feeaback inhibition

D. lack of cooperativityE. activating activity

1	Œ
2	m L
3	ш
4	В
5	B
6	•
7	Α
8	D
9	E
10	В
11	В

Second 020

Chapter 6

- 1. Which of the following statements is true concerning catabolic pathways?
- A. They are spontaneous and do not need enzyme catalysis
- B. They are endergonic
- C. They supply energy, primarily in the form of ATP, for the cell's work
- D. They combine molecules into more energy-rich molecules
- E. They build up complex molecules such as protein from simpler compounds

Answer : C

- 2. The following can affect enzymatic activity, except:
- A. Temperature
- B. None of the choices
- C. Feedback inhibition
- D. Presence of coenzymes
- E. Cooperativity

Answer: B

3. Altered amino acids at the active site, can result in novel enzyme activity.

True/ False

A catalyst is a chemical agent that speeds up a reaction without being consumed by the reaction.

True/ False

- 5. A chemical reaction that has a positive delta G is correctly described as:
- A. Endergonic
- B. Exothermic
- C. Enthalpic
- D. Exergonic
- E. Spontaneous

Answer: A

Cooperativity is a form of allosteric regulation.

True/ False

7. Cells are always in equilibrium.

True/ False

- 8. Why is ATP an important molecule in metabolism?
- A. It provides energy coupling between exergonic and endergonic reactions
- B. Its terminal phosphate group contains a strong covalent bond that, when hydrolyzed, releases free energy
- C. It is one of the four building blocks for DNA synthesis
- D. Its hydrolysis provides an input of free energy for exergonic reactions
- E. Its terminal phosphate bond has higher energy than the other two

Answer: A

- 9. Which of the following best describes the beta oxidation?
- A. Catabolism of fatty acids
- B. Catabolism of proteins
- C. Catabolism of glucose
- D. Anabolism of fatty acids
- E. Anabolism of glucose

Answer: A

- 10. A solution of starch at room temperature does not readily decompose to form a solution of simple sugars because:
- A. Starch hydrolysis is nonspontaneous
- B. The starch solution has less free energy than the sugar solution
- C. The hydrolysis of starch to sugar is endergonic
- D. Starch cannot be hydrolyzed in the presence of so much water
- E. The activation energy barrier for this reaction cannot be overcome

Answer: E

- 11. The reaction A+ B —-> C has a delta G of C= 15 kcal/ mol. How many ATP molecules are needed to provide the energy needed:
- A. 15 ATP
- B. 0 ATP
- C. 2 ATP
- D. 3 ATP
- F. 1 ATP

Answer: C

12. An anabolic pathway in a cell releases free energy in a series of reactions.

True/ False

- 13. If an enzyme in solution is saturated with substrate, the most effective way to obtain a faster yield of products is to:
- A. Add more of the enzyme
- B. Add more substrate
- C. None of the choices
- D. Heat the solution to 80 C°
- E. Add a non competitive inhibitor

Answer: A

14. Cofactors are non protein enzyme helpers.

True/ False

15. ATP is composed of ribose, alanine and three phosphate groups

True/ False

16. The free energy change of a reaction tells us whether or not the reaction occurs spontaneously.

True/ False

17. The active site of an enzyme is the region that:

- A. Binds non competitive inhibitors of the enzyme
- B. Binds allosteric regulators of the enzyme
- C. Is involved in the catalytic reaction of the enzyme
- D. All of the options
- E. Is inhibited by the presence of the coenzyme or a cofactor

Answer: C

18. Allosteric inhibitors act at:

- A. Noncompetitive inhibitors
- B. Coenzymes
- C. Competitive inhibitors
- D. Cofactors
- E. Either competitive or non competitive inhibitors

Answer: A

- 19. ———— is when one substrate molecule primes an enzyme to act on additional substrate molecules more readily:
- A. Catalysis
- B. Cooperativity
- C. Catabolism
- D. Activation energy
- E. Feedback inhibition

Answer: B

Chapter 10

. In glycolysis a total of 4 ATP are formed after oxidation of one glucose molecule.

True/ False

- . Which of the following generates ATP by fermentation?
- A. Substrate level phosphorylation
- B. Aerobic respiration
- C. Oxidative phosphorylation
- D. Electron transport chain
- E. Chemiosmosis Answer : A
 - .. Kinases such as pyruvate kinase or hexokinase transfer:
- A. ATP from the matrix to the intermembrane space
- B. Electrons from NADH to gleceraldehyde
- C. A phosphate group from a substrate to ADP or from ATP to a substrate
- D. Gleceraldehyde 3- phosphate to 1,3 biphosphoglecerate during glycolysis
- E. A phosphate group from ADP to ATP

Answer : C

. In alcohol fermentation, NAD+ is regenerated from NADH through the reduction of pyruvate to form lactate.

True/ False

- ϵ . High level of citric acid inhibits phosphofructokinase. This is an example of:
- Feedforward inhibition
- B. The specificity of enzymes for their substrates
- C. Feedback inhibition
- D. Competitive inhibition
- E. Non competitive inhibition

Answer: C

- . In electron transport chain FADH2 donates electrons to:
- A. Iron sulfur within complex ll
- B. Ubiquinone
- C. Cytochrome C
- D. Complex l
- E. NADH

Answer: A

- . The products of the citric acid cycle include all of the following except:
- A. ATP
- B. NAD+
- C. CO2 D. FADH2
- E. GTP

Answer : B

- . During chemiosmosis in the mitochondria:
- A. The electrons are transported from cytochrome to oxygen
- B. Protons flow back from the intermembrane space to the matrix through the ATP synthase
- C. Protons are pumped from the matrix to the intermembrane space
- D. Electrons are transported from complex l to complex lll
- E. The pH in the matrix increases

Answer: B

. Oxidation of one NADH in the electron transport chain produces more H+ gradient than one FADH2 .

True/ False

- . In tricarboxylic acid cycle
- A. Two FADH2 are produced per one glucose molecules
- B. Succinate is combined to CO2 to produce FADH2
- C. One acetyl CoA is oxidized to produce 3 CO2
- D. One ATP is formed by oxidative phosphorylation
- E. Acetyl CoA is combined with succinate to form citric acid Answer: A

	In electron transport chain FADH2 donates electrons to:			
A. B. C. D. E.	Ubiquinone Iron sulfur with complex ll NADH Cytochrome C Complex l Answer : B			
	The partial degradation of sugars through alcohol fermentation produces CO2.			
<u>True</u> / False				
The products of the citric acid cycle include all of the following excep				
A. B. C. D. E.	NAD+ FADH2 GTP ATP CO2 Answer: A			
j	During aerobic respiration , electrons travel downhill in which sequence?			
A. B. C. D. E.	Food -> NADH -> electron transport chain-> oxygen Food -> citric acid cycle-> ATP -> NAD+ Glucose-> ATP -> electron transport chain-> NADH Food-> glycolysis-> citric acid cycle-> NADH-> ATP Glucose-> pyruvate-> ATP-> oxygen			
	Answer : A			
	During glycolysis aldolase directly splits glucose 6-phosphate into two 3-carbon compounds. $ \\$			
True	e/ False			
	Electrons donated by one FADH2 molecule to the electron transport chain create proton motive force enough to to produce ATP:			
A. B. C. D.	30 or 32 1 4 1.5 6 Answer : D			

The partial degradation of sugars through fermentation does not require on oxidizing agent.

True/ False

- . The enzyme that extracts electrons from food during cellular respirations is termed $\dot{}$
- A. Isomerase
- B. Aldolase
- C. Enolase
- D. Dehydrogenase
- E. Kinase

Answer: D

. Similar to oxidation of one glucose molecule, complete oxidation of two pyruvate molecules to CO2 and H2O yields up to 32 ATP

True/ False

The step of pyruvate oxidation to acetyl CoA in eukaryotic cells:

- Occurs upon entering the matrix of the mitochondria across the inner membrane
- B. Involves a kinase enzyme
- Occurs if oxygen is present or not
- D. Consumes NADH
- E. Produces NAD+ and CO2

Answer: A

. In alcohol fermentation, NAD+ is regenerated from NADH through the oxidation of ethanol to acetyl CoA.

True/ False

- . In the mitochondrial electron transport chain, the final electron acceptor is :
- A. 02
- B. CO2
- C. H2O
- D. Cvtochrome a3
- E. ADP

Answer: A

- . When muscles lack sufficient oxygen during intense exercises, which process will these muscles mainly use to regenerate ATP
- A. Lactic acid fermentation
- B. Only glycolysis, with NAD+ not utilized
- C. The citric acid cycle
- D. Alcohol fermentation
- E. Chemiosmosis

Answer: A

- . In cellular respiration, beta oxidation involves:
- Oxidation of pyruvate
- B. Oxidation of glucose
- C. Regulation of glycolysis
- D. Breakdown of fatty acids
 E. Production of alcohol
- Answer : D

. In cellular respiration 4 ATP (net) are produced by substrate level phosphorylation per one glucose molecule.

True/ False

- . Phosphofructokinase (PFK) catalyzes a regulatory step in cell respiration. PFK is stimulated by high level of which of the following molecules:
- A. ATP and citrate
- B. Citrate and CO2
- C. ATP
- D. Glucose and NAD+
- E. AMP

Answer: E

- .. In oxidative phosphorylation:
- A. Protons are pumped from the matrix to the intermembrane space
- B. Proton motive force forms around the inner membrane of the mitochondria
- C. The electrons are transported to oxygen
- D. All answers are correct
- Electrons are transferred from NADH to complex l

Answer : D

. The partial degradation of sugars through fermentation produces ATP without the use of oxygen.

True/ False

. In alcohol fermentation, NAD+ is regenerated from NADH through the reduction of acetaldehyde to ethanol (ethyl alcohol)

True/ False

. Some prokaryotes use anaerobic respiration to harvest more energy from sugar than fermentation can.

True/ False

-). During celllular respiration, the energy in glucose:
- A. Is used to produce oxygen
- B. Is released all at once
- C. Becomes stored in molecules of CO2
- Is released when electrons extracted from glucose flow in the electron transport chain
- E. Is stored in citric acid in Krebs cycle

Answer : D

.. Complete oxidation of one acetyl CoA in Krebs cycle produces 1 ATP by substrate level phosphorylation.

True/ False

- . Which of the following will happen when the cell has high level of citrate
- Inhibition of citrate synthase and the slowdown of Krebs cycle
- B. Stimulation of phosphofructokinase and the speed up of Krebs cycle
- C. High level of citrate does not affect cell respiration
- D. Inhibition of citrate synthase and the slowdown of glycolysis
- E. Inhibition of phosphofructokinase and the slowdown of glycolysis

Answer: E

10 2 4 6				
Ansv	Answer: B			
	en muscle becomes oxygen- deprived, muscle cells convert pyruvate to tate. What happens to the lactate in the muscle cells?			
B. It's C. It's D. It i	s converted to alcohol s taken to the liver and converted back to pyruvate s converted to NAD+ reduces FADH2 to FAD+ produces CO2 and water			
An	swer : B			
. The stator of the ATP synthase holds both the knob and the rod stationary (not rotating) during phosphorylation.				
True/ False				
. The partial degradation of sugars through fermentation produces less that ATP than cellular respiration.				
<u>True</u> / False				
. The yield of ATP after complete oxidation of one acetyl CoA to CO2 and water is				
C. D.	10 18 20 24 12			
	Answer : A			

. The number of protons estimated to be pumped by the complexes of the electron transport chain when electrons are donated by one NADH molecule:

14

A. B. C. D. E. 78. During glycolysis aldolase splits fructose 1,6 biphosphate into two 3- carbon compounds.

True/ False

- 79. In eukaryotic cells , the energy yield from the complete oxidation of one molecule of glucose:
- A. Is always 32 ATP
- B. Is always 10 protons
- C. Is 30 or 38 ATP
- Can vary depending on whether NADH from glycolysis passes electrons to NAD+ or FAD+
- E. Is less than the yield from fermentation Answer: D
- 80. In prokaryotic cells , enzymes for cellular respiration are located in mitochondria.

True/ False

- 81. Where is ATP synthase catalytic part located in the mitochondria?
- A. Mitochondrial matrix
- B. 'ntermembrane space
- C. Electron transport chain
- D. Inner membrane lipid core
 E. Outer membrane
 - Answer: A