(b)	What is the appropriate procedure to test for a significant difference in means between the two groups?
	two-sample <i>t</i> test for independent samples with unequal variances
	F test for the equality of two variances
	opaired t test
	two-sample t test for independent samples with equal variances
(c)	Implement the procedure in (b) using the critical-value method. (Use α = 0.05.)
	State the null and alternative hypotheses (in $ln[calcium intake (mg)]$). (Enter != for \neq as needed.)
	$H_0: \qquad \mu_1 = \mu_2$
	μ_1 : $\mu_1! = \mu_2$
	Find the test statistic. (Round your answer to two decimal places.)
	-1.69
	Use technology to find the rejection region. (Round your answers to two decimal places. If the test is one-sided, enter NONE for the unused region.)
	test statistic > 2.00
	test statistic < -2.00
	State your conclusion.
	Fail to reject H_0 . There is sufficient evidence to conclude that there is a significant difference in means between the two groups.
	• Fail to reject H_0 . There is insufficient evidence to conclude that there is a significant difference in means between the two groups.
	Reject H_0 . There is sufficient evidence to conclude that there is a significant difference in means between the two groups.
	Reject H_0 . There is insufficient evidence to conclude that there is a significant difference in means between the
	two groups.
	✓
(d)	Use technology to find the p -value corresponding to your answer to (c)? (Round your answer to four decimal places.) p -value = 0.0954
(e)	Compute a 95% CI (in ln[calcium intake (mg)]) for the difference in means between the two groups. (Enter your answer using interval notation. Round your numerical values to two decimal places.)

-0.65, 0.05

(6)	What is the appropriate test procedure to test for significant differences in mean white blood cell count between people who do and people who do not receive a bacterial culture?
	two-sample t test for independent samples with unequal variances
	two-sample t test for independent samples with equal variances
	F test for the equality of two variances
	opaired t test
	✓
(c)	Perform the procedure in (b) using the critical-value method. (Use $\alpha = 0.05$.)
	State the null and alternative hypotheses (in thousands). (Enter $!=$ for \neq as needed.)
	μ_0 : $\mu_1 = \mu_2$
	μ_1 : $\mu_1! = \mu_2$
	Find the test statistic. (Round your answer to two decimal places.)
	1.41
	Use technology to find the rejection region. (Round your answers to two decimal places. If the test is one-sided, enter NON for the unused region.)
	test statistic > 2.07 vtest statistic < -2.07
	State your conclusion.
	Reject H_0 . There is sufficient evidence to conclude that there is a significant difference in mean white blood cell count between people who do and people who do not receive a bacterial culture.
	Fail to reject H_0 . There is sufficient evidence to conclude that there is a significant difference in mean white blood cell count between people who do and people who do not receive a bacterial culture.
	• Fail to reject H_0 . There is insufficient evidence to conclude that there is a significant difference in mean white blood cell count between people who do and people who do not receive a bacterial culture.
	Reject H_0 . There is insufficient evidence to conclude that there is a significant difference in mean white blood cell
	count between people who do and people who do not receive a bacterial culture.
(d)	What is the p -value corresponding to your answer to (c)? (Round your answer to four decimal places.)
	<i>p</i> -value = 0.1721 •
(e)	Compute a 95% CI (in thousands) for the true difference in mean white blood cell count between the two groups. (Enter your answer using interval notation. Round your numerical values to two decimal places.)

-1.00, 5.26

	o paired t test
	\bigcirc two-sample t test for independent samples with equal variances
	\bigcirc two-sample t test for independent samples with unequal variances
	F test for the equality of two variances
	✓
(b)	Perform the test in part (a) using the raw scale, and report a p -value. (Use $\alpha = 0.05$.)
	State the null and alternative hypotheses (in g/24 hr). (Enter != for # as needed.)
	μ_0 : $\mu_d = 0$
	μ_1 : $\mu_d! = 0$
	Find the test statistic. (Round your answer to two decimal places.) -3.45 ✓
	Use technology to find the p -value. (Round your answer to four decimal places.) p -value = 0.0072
	State your conclusion.
	Fail to reject H_0 . There is sufficient evidence to conclude that there is a significant change in mean urinary protein over the 8-week period.
	Fail to reject H_0 . There is insufficient evidence to conclude that there is a significant change in mean urinary protein over the 8-week period.
	$lacktriangledown$ Reject H_0 . There is sufficient evidence to conclude that there is a significant change in mean urinary protein over the 8-week period.
	Reject H_0 . There is insufficient evidence to conclude that there is a significant change in mean urinary protein over the 8-week period.
	Perform the test in (a) using the In scale, and report a p -value. (Use $\alpha = 0.05$.)
	State the null and alternative hypotheses (in $g/24$ hr). (Enter != for \neq as needed.)
	H_0 : $\mu_d = 0$
	μ_1 : $\mu_d! = 0$
	Find the test statistic. (Round your answer to two decimal places.) -3.58
	Use technology to find the <i>p</i> -value. (Round your answer to four decimal places.) $p\text{-value} = \boxed{0.0059}$
	State your conclusion.
	Fail to reject H_0 . There is insufficient evidence to conclude that there is a significant change in mean $\ln(\text{urinary protein})$ over the 8-week period.
	Fail to reject H_0 . There is sufficient evidence to conclude that there is a significant change in mean In(urinary protein) over the 8-week period.
	• Reject H_0 . There is sufficient evidence to conclude that there is a significant change in mean In(urinary protein over the 8-week period.
	Reject H_0 . There is insufficient evidence to conclude that there is a significant change in mean $\ln(\text{urinary protein})$ over the 8-week period.

period? (You may need to use the Distribution Calculators page in SAL1 to check conditions.)