

Example : 2 types of medication for hives are being tested to determine if there is a difference . Twenty out of a random sample of 200 adults given medication " A" still had lives 30 mintues after taking the medication . Twelve out of another Random sample of 200 adults given medication "B" still had hives 30 mins after taking the medication . Test using 1% significance level when :

users at baseline 13 women develops myocardial infarction (MI) over 3 years period wherease among (10 000) non OC users 7 asses the statistcal significance of the results

Example : police officers in new york city can stop a driver Who is not wearing their seat belt . In Boston , police officers can issue citafions to driver not wearing their seat belts only if the driver has been stopped for another violation Data from random samples of femal in 2002 is summarized as the following :

Is there compelling evidence to conclude a difference is Rate of drivers wear their seatbelts in Boston as compared to newyork? (Assume cotinunity corredction is applied , use a= 0.05)

Example : the following table list Results from an experiment designed to to test the ability of dogs to use their extraordinary sense of smell to detect malaria in samples of children's socks . The accompaying information shows the following :

	Maleria was present	Maleria wosn ^o t prosent	total
Dog was Correct	(23	3	254
Dog was wrong	52	14	66
total	175	145	320

The p-value ,and then state the conclusion about the null hypothesis .

Example -: suppose we want to know if the Rate of smoking in males is different from Females in a sample of 203 Jordanian the observed values set as the following :

Use a= 0.001

Example : Assess the OC- MI data for statistical significane, using confingency table approach ?

	MI incidence	e over 3 years	
OC-use group	Yes	No	Total
Current OC users	13	4987	5000
Never-OC users	7	9993	10,000
Total	20	14,980	15,000

NOTES:

() The purpose of Confingency table is to Summarize alarge set of data.

2 x² is Called yates - Corrected Chi squared.

```
3 Always the expected values are more than 5
```

The Contingency table is often used to determine If the two variable have an association

5 Ho: If they are independent H1: IF they are dependent

		łe	st	stat	•	م	تجد	. Im	Jej.	n lo	ه () ا	a	Q .	11	e	ചി			
				Cosr		1	L		÷		<u> </u>	,							

xample 300 pe	: Asse rsons	ss the giving	statis the fo	tical si Ilowing	gnifica g :	ance
	Ta	ble of (Observ	ed Valu	Ies	
Qualification / Martial status	Middle school	High school	Bochelors	Masters	ph.D	Total
Never married	18	36	21	٤ ـ	6	90
married	12	36	45	36	21	150
Divorced	6	9	3	3	3	30
Widowed	3	9	9	6	3	30
To tal	39	3 0	<u>ક્ષ</u>	54	33	300
		Ex	pecte	d		
Qualification / Martial status	Middle school	High school	Bochelor's	Masters	ph.D	Total
Vever married	11,7	27	25.2	16.2	g.g	00
married	19,5	45	42	27	16.5	150
Divorced	3,9	9	8-4	૬.ૡ	3.3	30
V): do d	3,9	9	8.y	ક્ર.પ	3.3	30
W10000e0						

Example : Assess the statistical significance of the data between 2 variables , the age of first birth and the prevefance of breast cancer

Data from the international study in Example 10.4 investigating the possible association between age at first birth and case-control status

-				Age at first birt	h			
_	Case-control status	<20	20-24	25-29	30-34	≥35	Total	
	Case	320	1206	1011	463	220	3220	
	Control	1422	4432	2893	1092	406	10,245	
	Total	1742	5638	3904	1555	626	13,465	
	% cases	.184	.214	.259	.298	.351	.239	

EXAMPLE 10.46

Hypertension Diastolic blood-pressure measurements were collected at home in a community-wide screening program of 14,736 adults ages 30–69 in East Boston, Massachusetts, as part of a nationwide study to detect and treat hypertensive people [6]. The people in the study were each screened in the home, with two measurements taken during one visit. A frequency distribution of the mean diastolic blood pressure is given in Table 10.20 in 10-mm Hg intervals.

We would like to assume these measurements came from an underlying normal distribution because standard methods of statistical inference could then be applied on these data as presented in this text. How can the validity of this assumption be tested?

TABLE 10.20 Frequency distribution of mean diastolic blood pressure for adults 30–69 years old in a community-wide screening program in East Boston, Massachusetts

متغط الدم الأنبساطي

	Group (mm Hg)	Observed frequency	Expected frequency	Group	Observed frequency	Expected frequency
	<50	57	69.0	≥80, <90	4604	4538.6
	≥50, <60	330	502.5	≥90, <100	2119	2545.9
/	≥60, <70	2132	2018.4	≥100, <110	659	740.4
	≥70, <80	4584	4200.9	≥110	251	120.2
				Total	14,736	14,736

Hypertension Compute the expected frequencies for the data in Table 10.20, assuming an underlying normal distribution.

Solution: Assume the mean and standard deviation of this hypothetical normal distribution are given by the sample mean and standard deviation, respectively ($\bar{x} = 80.68$, s = 12.00). The expected frequency within a group interval from *a* to *b* would then be given by

	1		Y																				
/		P (χ<	< 50)																		
/-	= p		Χ 4	≼ પ લ	5)																		
) ()	(<	49	. 5)	>		17	6	ug.	5_	80	68		\setminus								
							P					12											
								o^{1}	75		ົງ.	599											
									و ا	. 60	- 25		ف										
								5	202			ج عر	5										
							- (J. U.	027					2.	59		995	52		.0	048	}	
														2.	60		995	53	_	.0	047	' .	
																				7			
¢		اع ما	La		0	.000	17-4	14	736	=	69			2.	61		995	55	_	.0	045	;	
	کی	ب خا	ھ	⇒	0	.000	17-*	14. ~	736	=	69			2. 2.	61 62		995 995	5 56		0. 0.	045 044	5	
و	, s pect	نے بن ed ی	ھیا الانع	طله	0	.000	17*	4. ~ To	736 ral	=	69			2. 2.	61 62		995 995	55 56		.0 .0	045 044	;	
ر وي	r s S Pod	ب ک ed _	لیم ا کنہ	طله	0	.000	17-*	ע ~ דס	736 4 al	=	69			2. 2.	61 62		995 995	55 56		0. 0.	045 044		
 	, s pect	ed _	ھیا الاکنت	طله	0	.000	17-*	14. ~ To	736		69			2. 2.	61 62		995 995	55 56		.0 .0	045 044		
د وx	: pect	ed _	ه <u>م</u> ۱۱ ۲۰۰	طله	0	.000	17-*	4' ~ To	736		69			2. 2.	61 62		995 995	55 56		.0	045 044		
 	pect	ed _	هيا منا ا	طله	0	.00u	17*	4: ~ To	736 +J		69			2.	61		995 995	5 56		.0	045		
 	pect	ed _	هيا من ال	طله	0	.000	17-*	<u> Ψ</u> ~ To	736		6.9			2.	61		995	55		.0	045		
 	pect	ed _	المنه	طله	0	.000	17-*	14. ~~ To	736		6.9			2.	61		995	55		.0	045		
ex		ed _	یم ۱۱ ۲۰۰	طله	0	.000	44	[4] ~ To	736		6.9			2.	61		995	55		.0	045		
	pect	ed _	<u>م</u> ۱۱ ۲۰۰	طله	0	.000	4-*	14. ~~ To	736		6.9			2.	61		995	55		.0	045		

validity of this assumption be tested?

