

1 + Normal method:
Conditions: * N p* q* > 5 \$ m p* q* > 5
* Sample size is large, samples discrete and independent
D Ho: P₁ - P₂ = 0 Vs H₁: P₁ - P₂
$$\neq$$
 0
Test stat:
Lowin correction $Z_{corre} = \frac{\left(\hat{P}_{1} - \hat{P}_{2}\right) - \left(P_{1} - P_{2}\right)}{\sqrt{p^{*} q^{*}} * \sqrt{\frac{1}{n}} + \frac{1}{m}}$
Pooled proportion, $p^{*} = \frac{\chi + \gamma}{n + m}$
 $\chi: \hat{P}_{1} = \frac{\chi}{n}$
(3) Either p-value method or rejection region method

Let's compare between Ch8 two lest \$ Ch10 two test
Ch8: Given samples are independent and or \$\$ or antiacon. Test for \$\$;

$$t = \frac{\overline{X}_{1} - \overline{X}_{2}}{Sp \cdot \sqrt{\frac{1}{n} + \frac{1}{m}}} \quad \text{where } S_{1}p = \sqrt{\frac{S_{1}^{2}(n-1) + S_{2}^{2}(m-1)}{n + m - 2}}$$
Ch.10: Given samples are obscrete: large, and independent link for \$p:

$$\overline{Z} = \frac{\widehat{P}_{1} - \widehat{P}_{2}}{\sqrt{\frac{1}{n} + \frac{1}{m}}} \quad CB \quad Z_{corr} = \left| \widehat{P}_{1} - \widehat{P}_{2} \right| - \left(\frac{1}{2n} + \frac{1}{2m} \right)$$

$$p^{*} q^{*} \sqrt{\frac{1}{n} + \frac{1}{m}} \quad P^{*} q^{*} \sqrt{\frac{1}{n} + \frac{1}{m}}$$

$$p^{*} = \frac{X + Y}{n + m}$$

$$\Rightarrow S_{1} - \overline{X}_{2} \quad Us \quad P_{1} - \widehat{P}_{2} \quad or \quad \widehat{P}_{1} - \widehat{P}_{2} - \left(\frac{1}{2n} + \frac{1}{2m} \right)$$

$$\Rightarrow S_{2} \quad Vs \quad P^{*} q^{*}$$

$$\Rightarrow \sqrt{\frac{1}{n} + \frac{1}{m}} \quad Vs \quad \sqrt{\frac{1}{n} + \frac{1}{m}}$$
Standbard Error = $\sqrt{\frac{P_{1} \cdot P_{1}}{n} + \frac{P_{2} \cdot P_{2}}{m}}$

Example 1: $p_1 - p_2 \neq 0$ Two types of medication for hives are being tested to determine if there is a difference in the proportions of adult parent reactions. 20 out of a random sample of 200 adults given medication A still had hives 30 minutes after taking the medication. Twelve out of another random sample of 200 adults given medication B still had hives 30 mins after taking the medication. Test using 1% significance level when:

1-No continuity correction applied
2- Apply Zcorrected to your answer
1-No continuity correction applied
2- Apply Zcorrected to your answer
1-> ①
$$H_0: P_1 - P_2 = 0$$
 Vs $H_1: P_1 - P_2 \neq 0$
③ Test stat: $Z = \frac{\hat{P}_1 - \hat{P}_2}{\sqrt{p^4 q^4} * \sqrt{\frac{1}{n} + \frac{1}{m}}}$ $P^4 = \frac{x+y}{n+m}$
Somple n: $x = 20$ / $n = 200$ Sample m: $y = 12$ / $m = 200$
 $\hat{P}_1 = \frac{20}{200}$ $\hat{P}_1 = 0.1$ $\hat{P}_2 = \frac{12}{200}$ $\hat{P}_2 = 0.06$
 $P^4 = \frac{20 + 12}{400}$ $Q^4 = 0.92$
 $Z = \frac{0.1 - 0.06}{\sqrt{1008 \times 042}} = \frac{1.474}{\frac{1}{200} + \frac{1}{200}}$ $Q^{4} = 0.92$
③ Rejection region Method: -2^{676} P_1^{12} $Q = 0.005$

: Accept Ho

Reject H,

\$

$$\alpha = 2.575$$

$$2 \rightarrow \hat{p}_{1} : 0.1 \qquad p^{4} = 0.08 \qquad P=200$$

$$\hat{p}_{2} = 0.06 \qquad q^{4} = 0.92 \qquad P=200$$

$$E_{corr} = \frac{|\hat{p}_{1} - \hat{p}_{2}| - (\frac{1}{2n} + \frac{1}{2m})}{|p^{4} - q^{4}|} \qquad \pm \sqrt{\frac{1}{n} + \frac{1}{m}}$$

$$E_{corr} = \frac{|0.1 - 0.06|}{|0.08 \times 0.92} \quad \pm \sqrt{\frac{1}{2000} + \frac{1}{2000}} = \frac{1.29}{|0.08 \times 0.92|} \qquad = \frac{1.29}{|0.08 \times 0.92|}$$

$$\frac{0.003}{|120|} \qquad = \frac{0.005}{|2.875|} \qquad = Accept \qquad H_{0}$$
Reject H_{1}

Example 2:

A sample of 50 males had 35 smokers. A sample of 100 females had 55 smokers, we want to test if the males proportion is more than the females proportion. The value of the test statistic is? Use Z corrected

(1)
$$H_0: P_1 - P_2 = 0$$
 Vs
Hi: $P_1 - P_2 > 0$
right balled
(2) Test statistic:
 $p_1 = \frac{35}{90}$
 $p_2 = \frac{55}{100}$
 $p_1 = \frac{35}{90}$
 $p_2 = \frac{55}{100}$
 $p_2 = \frac{55}{100}$
 $p_1 = \frac{35 + 55}{50 + 100}$
 $p_1 = 0.7$
 $p_2 = 0.55$
 $p_1^* = 0.6$
 $p_1^* = 0.4$

$$Z = \frac{|0.7 - 0.55| - (\frac{1}{2\times60} + \frac{1}{2\times10^{\circ}})}{\sqrt{0.6\times0.4} + \sqrt{\frac{1}{50} + \frac{1}{100}}} = \frac{|.59|}{\sqrt{0.6\times0.4}}$$

Example 3:

The production of two items A and B is to be evaluated. A sample of **1200** items of type A showed 84 of them were defective. Another sample of 1500 of type B showed that 90 of them were defective. Testing the 1% significance level, can you conclude that the proportions of defective on two types are <u>different?</u> Use Z corrected P

test

 $P_1 \neq P_2$

02

$$\vec{p}_1 = 0.07$$
 $\vec{p}_2 = 0.06$ $p^* = 0.064$ $q^* = 0.936$

$$\overline{Z} = \frac{\left|0.07 - 0.06\right| - \left(\frac{1}{2 \times 1200} + \frac{1}{2 \times 1500}\right)}{\left(0.064 \times 0.936\right)} = 0.976$$

1%: | → | ½ ~ = 99 ½ C·I => 0.006 B or 0.99 A ⇒ Z = 2.575 $P(z > a) = 0.005 \Rightarrow a = 2.575$

Example 4:

Police officers in New York City can stop a driver who is not wearing their seat belt. In Boston, police officers can issue citations to drivers for not wearing their seat belts only if the driver has been stopped for another violation. Data from random samples of females in 2002 is summarized as the following:

City	Drivers	Wearing Seatbells
Boston	117 ⁿ	68 ×
New york	220 m	183 Y

Is there compelling evidence to conclude a difference in rate of drivers who wear their seat belts in Boston as compared to New York?

Assume continuity correction is applied and use significance level of 0.05 $\hat{p}_1 = \frac{68}{2} = 0.581$ $\hat{p}_2 = \frac{183}{2} = 0.832$

$$p^{*} = \frac{68 + 183}{117 + 220} = \frac{0.745}{220}$$

 $\bigcirc H_0: P_1 - P_2 = 0 \qquad V_S \qquad H_i: P_1 - P_2 \neq 0$

Example 5:

A study looked at the effects of OC use on heart disease in women 40 to 44 years of age. The researcher found that among 5000 current OC users at baseline, 13 women developed a myocardial infarction (MI) over a 3 year period, whereas among 10,000 never-OC users, 7 developed an MI over a 3 year period. Assess the statistical significance of the results

$$\hat{p}_{1} = \frac{13}{6000} = 0.0026 \qquad \hat{p}_{2} = \frac{7}{10000} = 0.0007$$

$$p^{*} = \frac{13 + 7}{15000} = 0.00019 \qquad q^{*} = 0.9987$$
Statistical significance => p-value
$$D H_{0} = p_{1} - p_{2} = 0 \qquad V_{S} \qquad H_{1} = p_{1} - p_{2} \neq 0$$

$$Q = \frac{1}{2} = \frac{|0.0026 - 0.0007|}{\sqrt{0.0013 \times 0.9987} \times \sqrt{\frac{1}{5000} + \frac{1}{10000}}}$$

$$Z = \frac{|0.0013 \times 0.9987 \times \sqrt{\frac{1}{5000} + \frac{1}{10000}}}{\sqrt{10000} + \frac{1}{10000}}$$

3 P-value method
$$P(Z > 2.77) = 0.0028$$

p-value $P-value = 0.0028 \times 2 = 0.0056$
-2.77 2.77 0.0056
0.001 0.05 0.10
Unit significant
Not significant
Not significant

Example 6:

The production of two items A and B is to be evaluated. A sample of 1200 items of type A showed 84 of them were defective. Another sample of 1500 of type B showed that 90 of them were defective. Testing the 1% significance level, can you conclude that the proportions of defective on two types are different? Use Z corrected

$$\hat{\rho}_{1} = \frac{34}{1200} \qquad \hat{\rho}_{2} = \frac{90}{1500} \qquad \rho^{*} = \frac{34 + 90}{1200 + 1600}$$

$$\hat{\rho}_{1} = 0.07 \qquad \hat{\rho}_{2} = 0.06 \qquad \rho^{*} = 0.0644 \qquad q^{*} = 0.9356$$

$$(1) \quad H_{0}: p_{1} - p_{2} = 0 \qquad Vs \qquad H_{1}: p_{1} - p_{2} \neq 0$$

$$H_{0}: p_{1} - p_{2} = 0 \qquad Vs \qquad H_{1}: p_{1} - p_{2} \neq 0$$

$$H_{0}: p_{1} - p_{2} = 0 \qquad Vs \qquad H_{1}: p_{1} - p_{2} \neq 0$$

$$H_{0}: p_{1} - p_{2} = 0 \qquad Vs \qquad H_{1}: p_{1} - p_{2} \neq 0$$

$$H_{0}: p_{1} - p_{2} = 0 \qquad Vs \qquad H_{1}: p_{1} - p_{2} \neq 0$$

$$H_{0}: p_{1} - p_{2} \neq 0$$

$$H_{0}: p_{1} - p_{2} = 0.06644 \qquad Q^{*} = 0.9356$$

$$\frac{2}{72} = \frac{0.073 - 0.066}{\sqrt{1200} + \frac{1}{2000} + \frac{1}{2000}} = 0.973$$

$$\frac{0.0044 \times 0.9356}{\sqrt{1200} + \frac{1}{1500}} \qquad \therefore Accept \qquad H_{0}$$

$$Reject \qquad H_{1}$$

$$H_{1}: p_{1} - p_{2} = 2.575$$

$$\frac{1}{120} = 2.575$$

$$Popodions \quad de delective are not different.$$

$$\frac{1}{120} = 0.005$$

$$q = 2.575$$

$2 \rightarrow Contingency - Table method (2 \times 2):$

Ex: Observed table (2×2)

Expected table: (2 x 2)

	Right-hand	Left-hand	To tal
Males	$\frac{87 \times 62}{100} = 45.24$	$\frac{13 \times 62}{100} = 6.76$	52
Females	87+48 41.76 100 E21	13×48 6.24 100 E22	48
Total	87 Totals always	13 The some for O and 1	100 E.
Expected :	E = <u>row sum</u> x grand tota	Column sum	

Example 1:

The following table lists results from an experiment designed to test the ability of dogs to use their extraordinary sense of smell to detect malaria in sample of children's socks. The accompanying information shows the following: $V_{se} \quad both \ z \ \xi \ z_{corr}$

Identify the test statistics and the p-value, and then state the conclusion about the null hypothesis.

	Malaria present	Malaria Not present	Total
Dog Correct	123 0"	131 012	254
)og Wrony	52 _{O21}	J4 O22	66
Total	175	46	-1 32

Ly Continuation of question.
P-value ? Test stat => your critical point

$$70.994$$
 d.f = 1
 70.994 d.f = 1
 10.494 ... p-value < 0.001
 10.494 ... 10.901 ... 10.901 ... 10.901 ... 0.9^2
 10.494 ... 10.901 ... 10.901 ... 10.901 ... 0.9^2
 10.994 ... 10.901 ... 10.901 ... 10.901 ... 0.9^2
 10.994 ... 10.901 ... 10.901 ... 10.901 ... 0.9^2
 10.994 ... 10.901 ... 10.901 ... 10.901 ... 0.9^2
 10.994 ... 10.901

Females

$$34$$
 \mathcal{O}_{21}
 53
 \mathcal{O}_{22}
 87

 Total
 106
 97
 203

E:
$$60.57 E_{11}$$
 $55.43 E_{12}$
 $45.43 E_{51}$ $41.57 E_{52}$
() $H_0: P_1 = P_2$ Vs $H_1: P_1 \neq P_2$
() $H_0: P_1 = P_2$ Vs $H_1: P_1 \neq P_2$
() $H_0: P_1 = P_2$ Vs $H_1: P_1 \neq P_2$
() $H_0: P_1 = P_2$ Vs $H_1: P_1 \neq P_2$
() $H_0: P_1 = P_2$ Vs $H_1: P_1 \neq P_2$
() $H_0: P_1 = P_2$ Vs $H_1: P_1 \neq P_2$
() $H_0: P_1 = P_2$ Vs $H_1: P_1 \neq P_2$
() $H_0: P_1 = P_2$ Vs $H_1: P_1 \neq P_2$
() $H_0: P_1 = P_2$ Vs $H_1: P_1 \neq P_2$
() $H_0: P_1 = P_2$ Vs $H_1: P_1 \neq P_2$
() $H_0: P_1 = P_2$ Vs $H_1: P_1 \neq P_2$
() $H_0: P_1 = P_2$ Vs $H_1: P_1 \neq P_2$
() $H_0: P_1 = P_2$ Vs $H_1: P_1 \neq P_2$
() $H_0: P_1 = P_2$ Vs $H_1: P_1 \neq P_2$
() $H_0: P_1 = P_2$ Vs $H_1: P_1 \neq P_2$
() $H_0: P_1 = P_2$ Vs $H_1: P_1 \neq P_2$
() $H_0: P_1 = P_2$ Vs $H_1: P_1 \neq P_2$
() $H_0: P_1 = P_2$ Vs $H_1: P_1 \neq P_2$
() $H_0: P_1 = P_2$ Vs $H_1: P_1 \neq P_2$
() $H_0: P_1 = P_2$ Vs $H_1: P_1 \neq P_2$
() $H_0: P_1 = P_2$ Vs $H_1: P_1 \neq P_2$
() $H_0: P_1 = P_2$ Vs $H_1: P_1 \neq P_2$
() $H_0: P_1 = P_2$ Vs $H_1: P_1 \neq P_2$
() $H_0: P_1 = P_2$ Vs $H_1: P_1 \neq P_2$
() $H_0: P_1 = P_2$ Vs $H_1: P_1 \neq P_2$
() $H_0: P_1 = P_2$ Vs $H_1: P_1 \neq P_2$
() $H_0: P_1 = P_2$ Vs $H_1: P_1 \neq P_2$
() $H_0: P_1 = P_2$ Vs $H_1: P_1 \neq P_2$
() $H_0: P_1 = P_2$ Vs $H_1: P_1 \neq P_2$
() $H_0: P_1 = P_2$ Vs $H_1: P_1 \neq P_2$
() $H_0: P_1 = P_2$ Vs $H_1: P_1 \neq P_2$
() $H_0: P_1 = P_2$ Vs $H_1: P_1 \neq P_2$
() $H_0: P_1 = P_2$ Vs $H_1: P_1 \neq P_2$
() $H_1: P_1 \neq P_2$
() $H_1: P_1: P_2$
() $H_1: P_2: P_2$
() $H_1: P_2: P_2$
() $H_$

Example 3:

The following table lists the number of females taken in a study to see whether there's an association between breast cancer and having first child after age 30. Assess the following data for statistical significance, using a contingency table approach.

 $E = \frac{C \times C}{1}$

Examp	ole 1: As	sess	the	statisti	cal sign	lificance	in 3	00 people.
Given	the fol	lowing	in form	nation:	Assumi	14 0	2= 0.05	. Test
the _	hypothesi	s?J	Table	of Observer	d Volues	7	-	
	Qualification / Marital Status	Middle School	High School	Bachelor's	Master's	Ph.D	Total	
	Never married	18	36	21	9	6	90	
	Married	12	36	45	36	21	150	
	Divorced	6	9	9	3	3	30	
	Widowed	3	9	9	6	3	30	
l	Total	39	90	84	54	33	300	

Qualification / Marital Status	Middle School	High School	Bachelor's	Master's	Ph.D
Never Married	$\frac{90 \times 39}{300} = 11.7$	$\frac{90 \times 90}{300} = 27$	25.2	16.2	9.9
Married	19.5	45	42	27	16.5
Divorced	3.9	9	8.4	5.4	3.3
Widowed	3.9	9	8.4	5.4	3.3

Ses	s the	following	statis	tical s	sign: ficance	e. And	find we the
	variables	are a	associated	Or	not:		
_	The second second	and the second s	A	ge at first bi	rth		
C	ase-control	<20	20-24	25-29	30-34	≥35	Total
st	atus	220	1206	1011	463	220	3220
	Case	1422	4432	2893	1092	406	10,245
т	Control	1742	5638	3904	1555	626	13,465
т -	Control Total	1742	5638	3904 3.6	1555 371.9	626	13,465
T -	Control Total 416.6 1325.4	1348.9 4289.5	5638 9 9 7 297	3904 3.6 0.4	1555 371.9 1183.1	626 49 47	13,465 .7 5.3
т -	Control Total 416.6 1325.4	1348.3 4289	5638 9 7 297	3904 3.6 0.4 Vs	1555 371.9 1183.1 H.: 0	626 49 47	13,465 .7 5.3

$\frac{A}{F} = \frac{B}{C} = \frac{C}{Totals}$ $\frac{A}{F} = \frac{B}{F}$ $\frac{B}{F} = \frac{C}{F} = \frac{C}{F}$ $\frac{A}{F} = \frac{C}{F} = \frac{C}{F}$ $\frac{A}{F} = \frac{C}{F}$ $\frac{B}{F} = \frac{C}{F}$ $\frac{B}{F} = \frac{C}{F}$ $\frac{C}{F} = \frac{C}{F}$ $\frac{B}{F} = \frac{C}{F}$ $\frac{C}{F} = \frac{C}{F}$ $\frac{C}{F}$ $\frac{C}{F} = \frac{C}{F}$ $\frac{C}{F}$	0:				Grade				
$E: \frac{18 \cdot 33}{12 \cdot 26} \frac{12}{32} \frac{32}{70}$ $E: \frac{18 \cdot 33}{26 \cdot 67} \frac{10}{12} \frac{21 \cdot 67}{30 \cdot 33}$ $H_0: \text{ independent} \qquad V_S \qquad H_1: \text{dependent} \qquad \text{not} \text{associated} \qquad associated$	F			A	B	C	Totals		
$E: 18.33 10 21.67$ $26.67 14 30.33$ $H_0: independent Us H_i: dependent$ $not associated associat$	S	School	x	18	12	32	70		
E: 18.33 10 21.67 26.67 14 30.33 Ho: independent Us H ₁ : dependent not associated associated $\frac{2}{E} = \frac{(O-E)^2}{E} = 0.0059.41 + O.4 + 0.129 + 0.004242 + 0.286 + 10004242 + 0.$		Totals		44	24	52	120		
E: 18.33 10 21.67 26.67 14 30.33 Ho: independent Us H _i : dependent not associated associated $\frac{2}{E} = \frac{(O-E)^2}{E} = 0.005941 + O.4 + 0.129 + 0.004242 + 0.286 + 0.28$									
$\frac{10}{26.67} \frac{14}{14} \frac{30.33}{30.33}$ Ho: independent Us H ₁ : dependent Not associated associated $\frac{12}{26.67} \frac{14}{14} \frac{30.33}{30.33}$ Ho: independent Us H ₁ : dependent not associated associated $\frac{12}{26.67} \frac{14}{20.33}$ $\frac{14}{20.33} \frac{14}{20.33}$	E:	18.3	3	10)	2	1.67		
Ho: independent Us H ₁ : dependent Not associated $2 = \frac{(O-E)^2}{E} = 0.005941 + O.4 + O.129 + 0.004242 + 0.286 + 0.286 + 0.912$		260	- · 7		1		0 22	-	
	not	associa	ated				assoc	inted	

X	Goo	dness-of	F- fił	examp	le:		(7	9
KAMPLE	10.46	Hypertension a community Massachusetts [6]. The peop ments taken o pressure is giv We would distribution b on these data	Diastolic b r-wide screeni s, as part of a ole in the stu- during one vi zen in Table 1 l like to assum ecause standa as presented	lood-pressur ing program nationwide s dy were each isit. A freque 0.20 in 10-m ne these mea ard methods in this text.	e measurements w of 14,736 adults as study to detect and a screened in the h ncy distribution of am Hg intervals. surements came fro of statistical inferen- How can the valio	vere collected ges 30–69 in l treat hyperter nome, with tw the mean dia om an underly nce could the lity of this ass	at home in East Boston, nsive people vo measure- stolic blood ying normal n be applied sumption be	
		tested?	lo: Normal	adequat	e Vs H ₁ : n	lormal not	adeguat	و
TABLE	10.20	Frequency dis a community-v	tribution of m wide screenir	iean diastolic ig program in	blood pressure for East Boston, Mass	adults 30–69 achusetts	years old in	
		Group (mm Hg)	Observed frequency	Expected frequency	Group	Observed frequency	Expected frequency	
		<50 ≥50, <60 ≥60, <70 ≥70, <80	57 330 2132 4584	69.0 502.5 2018.4 4200.9	≥80, <90 ≥90, <100 ≥100, <110 ≥110 Total	4604 2119 659 <u>251</u> 14,736	4538.6 2545.9 740.4 <u>120.2</u> 14,736	
We	Want	to	test	the	assumption	n that	the	clata
Came	. K	rom a	norma	-olishi b	ution.			
How	to tim	nd erpe	cted?		•	7.0		
How E =	р(хс Ю	d erpe 60) x]	cted? Total Ol	bserveel	frequence	for	ficst	ĩow
How E =	ho fin P(X C oliscre	nd екре 50) X Ţ te	cted? Total Ol	bserveel	frequence	J] for	ficst (1000-
How E=	ho fin P(X C poliscre	nd erpe 50) x] te. (49.6)	cted? Total O	bserveel	frequence = <u>5</u> f 2 n -> 5F	J]for	ficst (x = 80.	i estimate 68
	ho fin P(X C P(SCre P(X	nd erpe 60) x 7 te < 49.5)	cted ? <u>Total</u> Ol × 1473	bserveel (x 6::	frequence = Efre n -> Ef	j] for	$first$ $r \neq P^{0}$ $\overline{X} = 80.$ $r = 10$	1 estimate 68 Doint estimate
FIOW E = 	P(X C p(X C pliscre P(X P(Z	nd erpe 50) × 7 te. ≤ 49.5) > 2.60)	cted ? Fotal Ol × 1473	bserveel $\left(\overline{X} \\ \overline{X} \\ 6 \right)$ $\left(5^2 \right)$	$\frac{frequence}{2}$ $= \frac{\Sigma f x}{n \rightarrow \Sigma F}$ $= \frac{\Sigma x^{2}}{2}$	$\left(\sum_{k=1}^{2} \kappa\right)^{2}$	$\frac{\text{first}}{x = 80.}$	1 estimate 68 Dout estimate
FIOW E = 	10 fin P(χ ζ oliscre = P(χ = P(ζ	nd erpe 60) × 7 te < 49.5) > 2.60)	cted ? Fotal Ol × 1473	bserveel $\left(\begin{array}{c} \bar{\mathbf{x}}\\ $	$\frac{frequence}{n \rightarrow SF}$ $\frac{\Sigma x^{2}}{n-1} = 0$	$\int \int for$ $\left(\sum_{k=1}^{2} \mathcal{X}\right)^{2}$	$\frac{first}{x = 80.}$	1 estimate 68 2
FIOW E = 	 10 fin P(X < 2) oliscre P(X P(X P(Z 0.004) 	nd erpe 50) × 7 te ≤ 49.5) > 2.60) 7 × 14736	cted ? Total O × 1473 × 1473 = 69	bserveel $\left\langle \overline{X} \\ \overline{X} \\ 6 \\ \vdots \\ 6 \\ \vdots \\ 5 \\ 2^{2} =$	$\frac{frequence}{n \rightarrow SF}$ $\frac{\sum x^{2}}{n-1} = \frac{1}{n}$	$\int \int for$ $\left(\sum_{k=1}^{2} \varkappa\right)^{2}$ $\left(\sum_{k=1}^{2} \varkappa\right)^{2}$ $\left(\sum_{k=1}^{2} \varkappa\right)^{2}$	$\frac{\text{first}}{X = 80.}$ $\frac{t^{2} \text{ s}^{\mu} \text{ s}^{\mu}}{S = 12}$	2
How E = L E = L E = F = E =	10 fin P(X C 01iscre P(X P(Z 0.004)	nd erpe 60) × 7 te ≤ 49.5) > 2.60) 7 × 14736	cted ? Total O × 1473 × 1473 = 69	bserveel $\left\langle \overline{X} \\ \overline{X} \\ 6 \\ \vdots \\ 6 \\ \vdots \\ 5 \\ 2 \\ \vdots \\ 5 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	$\frac{frequence}{n-1}$ $\frac{\xi^{1} f x}{n \rightarrow \xi^{2}}$ $\frac{\xi^{2} x^{2}}{n-1}$ $\frac{\xi^{2} x^{2}}{n-1}$	$\int \int for$ $\left(\sum_{n=1}^{2} \varkappa\right)^{2}$ $\left(\sum_{n=1}^{2} \varkappa\right)^{2}$	$\frac{\text{first}}{X = 80.}$ $\frac{1}{S = 12}$	1 estimate 68 22
FIOW E = 2 2 2 2 2 2 2 2 2 	ho fin P(X C oliscre P(X P(Z 0.004 nol se	nd expe 50) x 7 te < 49.5) > 2.60) 7 x 14736 cond cou	cted ? Total O × 1473 × 1473 = 69	bserveel $\left(\overline{X} \\ \overline{X} \\ 6 \\ \vdots \\ 6 \\ \vdots \\ 5 \\ 2 \\ \vdots \\ 5 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	$\frac{frequence}{n \rightarrow SF}$ $\frac{\sum x^{2}}{n-1}$ $\frac{\sum x^{2}}{n-1}$	$\int \int for$ $\left(\sum_{n=1}^{2} \mathcal{X}\right)^{2}$ $\left(\sum_{n=1}^{2} \mathcal{X}\right)^{2}$ $\left(\sum_{n=1}^{2} \mathcal{X}\right)^{2}$ $n(n-1)$	$\frac{\text{first}}{X = 80.}$ $\frac{1}{S = 12}$	2
FIOW E = 1 Lets fi E = F	 10 fin P(x < oliscre P(x P(x P(x P(x P(x Cooliscre P(x Sepont Sepont<	nd expe 60) x 7 1e < 49.5) > 2.60) 7 x 14 736 cond cou x < 60)	cted? Total O × 1473 × 1473 = 69 × 04	bserveel $\left(\overline{X} \\ \overline{X} \\ 6 \right) \\ 5 \\ \cdot \\ \cdot$	$\frac{frequence}{n \rightarrow SF}$ $\frac{\sum x^{2}}{n-1}$ $\frac{\sum x^{2}}{n-1}$ $\frac{\sum x^{2}}{n-1}$	$\int \int for$ $\left(\sum_{n=1}^{2} \varkappa\right)^{2}$ $\left(\sum_{n=1}^{2} \varkappa\right)^{2}$ $\left(\sum_{n=1}^{2} \varkappa\right)^{2}$ $n(n-1)$ $9.5) \times C$	ficst r→ ^μ P ^{on} x = 80. r→ ^σ f S = 12	2
FIOW E = 	P(X < p(X	nd expe 50) × 7 te < 49.5) > 2.60) 7 × 14736 cond cou (× < 60) .765) -	cled? \overline{otal} O × 1473 × 1473 = 69 × 04 P(z >	bserveel $\left(\overline{X} \\ \overline{X} \\ 6 \right) \\ 5 \\ \overline{Y} \\ 5 \\ \overline{Y} \\ $	$\frac{frequency}{n \rightarrow SF}$ $\frac{\sum x^{2}}{n-1}$ $\frac{\sum x^{2}}{n-1}$ $\frac{\sum x^{2}}{n-1}$ $\frac{\sum x^{2}}{n-1}$	$\frac{\int 2}{(2\pi)^{2}}$ $\frac{(\sum \pi)^{2}}{(n-1)}$ $\frac{(\sum \pi)^{2}}{n(n-1)}$ $\frac{(\sum \pi)^{2}}{n(n-1)}$ $9.5) \times C$ 0.0388	$\frac{\text{first}}{x = 80.}$ $\frac{1}{x = 80.}$ $\frac{1}{x = 12}$	062 11 estimate 68 2022

* Degree of freedom: g - k - 1/group - point - 1 estimators

*	The	SUM	of	the	expected	should	egual	the	Sam	
of	obse	rved				-				

Example 2: The mean weights of a sample of 200
patients is 52 kg and the standard deviation is 3 kg.
Weight
$$\omega < 45$$
 455 w <50 505 w <60 $\omega > 60$
frequency 12 44 82 53 9
frequency 12 44 82 53 9
frequency 12 44 82 63 9
frequency 12 44 82 63