Hypothesis Testing: One-Sample Inference

Solved Problems-Number (1)

One-Sample Inference

Hypothesis Testing for the Population Mean (μ)

7.1-Introduction

In chapter 6 we discuss the methods of point and interval estimation for population mean (μ) and population proportion (p) parameters of various distributions. In this chapter (chapter 7), some of the basic concepts of hypothesis testing are developed and applied to one-sample problems of statistical inference. In a one-sample problem, hypotheses are specified about a single distribution; in a two-sample problem, two different distributions are compared.

7.2- General Concepts

DEFINITION 7.1 The **null hypothesis**, denoted by H_{0} , is the hypothesis that is to be tested. The alternative hypothesis, denoted by H_{1} , is the hypothesis that in some sense contradicts the null hypothesis.

Notation

We will assume the underlying distribution is normal under either hypothesis.

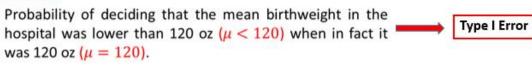
An example for how the two hypotheses H_0 and H_1 can be written is given as in the following form:

	versus
EQUATION 7.1	$H_0: \mu = \mu_0$ vs. $H_1: \mu < \mu_0$

Types of Errors in Statistical Hypotheses Testing

DEFINITION 7.2 The probability of a type I error is the probability of rejecting the null hypothesis when H_0 is true.

Example

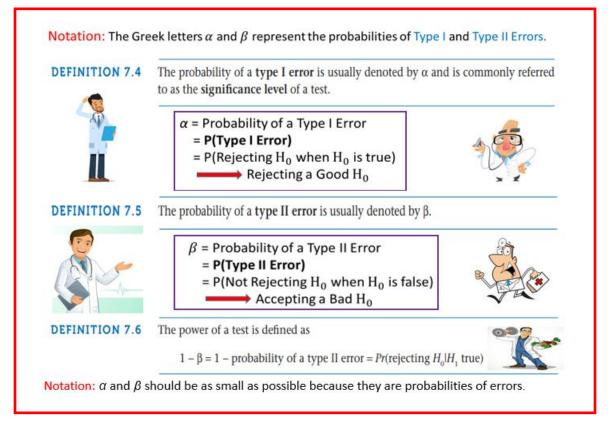


DEFINITION 7.3 The probability of a **type II error** is the probability of accepting the null hypothesis when *H*, is true. This probability is a function of μ as well as other factors.

Type II Error

Example

Probability of deciding that the mean birthweight in the hospital was lower than 120 oz ($\mu = 120$) when in fact it was 120 oz ($\mu < 120$).



Notation: Our general strategy in hypothesis testing is to fix α at some specific level (for example, 0.10, 0.05, 0.01, . . .) and to use the test that minimizes β or, equivalently, maximizes the power (1- β).

Types of Regions in Statistical Hypotheses Testing

DEFINITION 7.7	The acceptance region is the range of values of \bar{x} for which H_0 is accepted.
DEFINITION 7.8	The rejection region is the range of values of \overline{x} for which H_0 is rejected.

Types of Tests in Statistical Hypotheses Testing

DEFINITION 7.9 A **one-tailed test** is a test in which the values of the parameter being studied (in this case μ) under the alternative hypothesis are allowed to be either greater than or less than the values of the parameter under the null hypothesis (μ_0), *but not both*.

One-Tailed (Sided) Test Types

DEFINITION 7.15 A two-tailed test is a test in which the values of the parameter being studied (in this case μ) under the alternative hypothesis are allowed to be either *greater than or less than* the values of the parameter under the null hypothesis (μ_0).

Two-Tailed (Sided) Test $H_0: \mu = \mu_0 \ vs. \ H_1: \mu \neq \mu_0$

DEFINITION 7.12

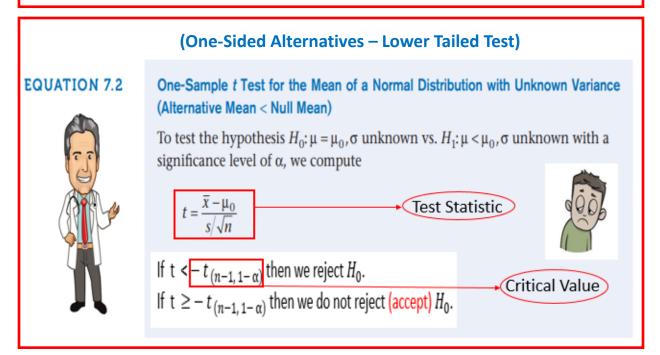
S.

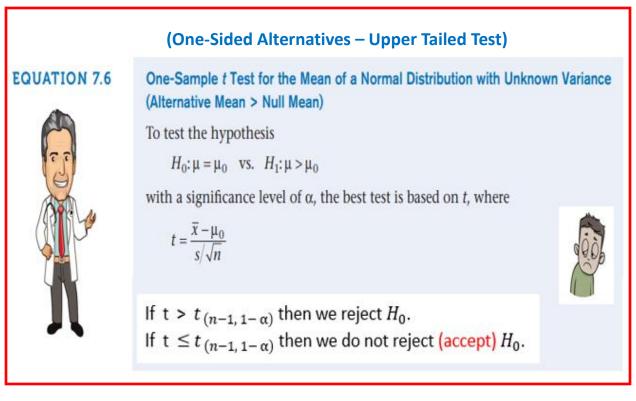
The general approach in which we compute a test statistic and determine the outcome of a test by comparing the test statistic with a critical value determined by the type I error is called the **critical-value method** of hypothesis testing.

7.3 One-Sample t-Test for the Mean of a Normal Distribution

Notation: The conditions to use this **Test Procedure** are: (1) Normal Distribution.

- (2) Population Standard Deviation $\sigma = \sqrt{\sigma^2}$ is Unknown.
- (3) The Sample size (n) is small (n < 30).





(Two-Sided Alternatives-TwoTailed)EQUATION 7.10One-Sample t Test for the Mean of a Normal Distribution with Unknown Variance
(Two-Sided Alternative)To test the hypothesis H_0 ; $\mu = \mu_0$ vs. H_1 : $\mu \neq \mu_0$, with a significance level of α , the
best test is based on $t = (\bar{x} - \mu_0)/(s/\sqrt{n})$.
If $|t| > t_{n-1,1-\alpha/2}$
then H_0 is rejected.
If $|t| \le t_{n-1,1-\alpha/2}$
then H_0 is accepted.

Question (1)

Suppose it is known that in a certain large human population cranial length is normally distributed. A random sample of size 10 is taken from this population showed that the sample mean (\overline{X}) is 186.1 mm and the standard deviation is 12.7 mm. Use the one-sample t-test to test the hypothesis:

$$H_0: \mu = 190 \text{ vs } H_1: \mu < 190$$

At level of significance $\alpha = 0.05$?

Solution

Conditions

(1) Normal Distribution.

- (2) Population Standard Deviation σ is Unknown (S = 12.7).
- (3) Sample size (n) is small (n = 10 < 30).

Test Statistic Value

$$t = \frac{\bar{x} - \mu_0}{S_{/\sqrt{n}}} = \frac{186.1 - 190}{12.7/\sqrt{10}} = -0.971$$

Rejection Rule (One-Sided Lower Tailed Test)

Reject H₀ at significance level $\alpha = 0.05$ if $t < -t_{(n-1,1-\alpha)}$ otherwise Accept H₀.

Critical Value

 $-t_{(n-1,1-\alpha)} = -t_{(9,0.95)} = -1.833$

Decision

We get $t = -0.971 > -t_{(9, 0.95)} = -1.833$ Then Accept H₀: $\mu = 190$ and therefore Reject H₁: $\mu < 190$ at $\alpha = 0.05$.

Question (2)

Suppose it is known that in a certain large human population cranial length is normally distributed. A random sample of size 10 is taken from this population showed that the sample mean (\overline{X}) is 196.1 mm and the standard deviation is 9.7 mm. Use the one-sample t-test to test the hypothesis:

 $H_0: \mu = 190 \text{ vs } H_1: \mu > 190$

At level of significance $\alpha = 0.05$?

Solution

Conditions

(1) Normal Distribution.

(2) Population Standard Deviation σ is Unknown (S = 9.7).

(3) Sample size (n) is small (n = 10 < 30).

Test Statistic Value

$$t = \frac{\bar{x} - \mu_0}{S_{/\sqrt{n}}} = \frac{196.1 - 190}{9.7/\sqrt{10}} = 1.989$$

Rejection Rule (One-Sided Lower Tailed Test)

Reject H₀ at significance level $\alpha = 0.05$ if $t > t_{(n-1,1-\alpha)}$ otherwise Accept H₀.

Critical Value

 $t_{(n-1,1-\alpha)} = t_{(9, 0.95)} = 1.833$

Decision

We get $t = 1.989 > t_{(9, 0.95)} = 1.833$ Then Reject H₀: $\mu = 190$ and therefore Accept H₁: $\mu > 190$ at $\alpha = 0.05$.

Question (3)

Suppose it is known that in a certain large human population cranial length is normally distributed. A random sample of size 28 is taken from this population showed that the sample mean (\overline{X}) is 188.5 mm and the standard deviation is 6.7 mm. Use the one-sample t-test to test the hypothesis:

$$H_0: \mu = 190 \text{ vs } H_1: \mu \neq 190$$

At level of significance $\alpha = 0.05$?

Solution

Conditions

- (1) Normal Distribution.
- (2) Population Standard Deviation σ is Unknown (S = 6.7).
- (3) Sample size (n) is small (n = 28 < 30).

Test Statistic Value

$$t = \frac{\bar{x} - \mu_0}{S_{\sqrt{n}}} = \frac{188.5 - 190}{6.7/\sqrt{28}} = -1.185$$

Rejection Rule (One-Sided Lower Tailed Test)

Reject H₀ at significance level $\alpha = 0.05$ if $|t| > t_{(n-1,1-\alpha/2)}$ otherwise Accept H₀.

Critical Value

 $t_{(n-1,1-\alpha/2)} = t_{(27, 0.975)} = 2.052$

Decision

We get $|t| = |-1.185| = 1.185 < t_{(27, 0.975)} = 2.052$ Then Accept H₀: $\mu = 190$ and therefore Reject H₁: $\mu \neq 190$ at $\alpha = 0.05$.

Exercises

Exercise (1)

A computer company claims that the mean time taken to learn how to use software is not more than 3 hours. A random sample of size 20 persons was selected and the data are taken shows that the sample mean is 3.23 hour and sample standard deviation is 0.51 hour. Conduct a hypothesis test using alpha = 0.05? Assume normal distribution.

Answer: $H_0: \mu = 3 \text{ vs } H_1: \mu > 3$; Reject the null hypothesis. This means that the company's claim is true.

Exercise (2)

A random sample of 15 households from Jordan showed that they spent on average JD350 per month on food with a standard deviation of JD50. Can you conclude that the mean food expenditure is different from JD400 using alpha = 0.1? Assume normal distribution.

Answer: H_0 : $\mu = 400$ vs H_1 : $\mu \neq 400$; Reject the null hypothesis. This means that the mean food expenditure is different from JD400.

Exercise (3)

Suppose we suspect that the mean height of a particular species of plant is less than the accepted mean height of 10 inches. Suppose we collect a random sample of plants with the following information:

• Sample size n = 25

• Sample mean = 9.5

• Sample standard deviation = 3.5

Test this hypothesis at significance level $\alpha = 0.05$?

Answer: We fail to reject the null hypothesis. We do not have sufficient evidence to say that the mean height for this particular plant species is less than 10 inches.
