Hypothesis Testing: Categorical Data

Additional Solved Problems

Problem (1)

A sample of 50 randomly selected men with high triglyceride levels consumed 2 tablespoons of oat bran daily for six weeks. After six weeks, 60% of the men had lowered their triglyceride level. A sample of 80 men consumed 2 tablespoons of wheat bran for six weeks. After six weeks, 25% had lower triglyceride levels. Is there a significance difference in the two proportions at $\alpha = 0.01$?

Solution

Since the statistics are given in percentages (proportions) then we have to use a two-sample problem comparing two binomial proportions as follows:

Let

- p1 = proportion of men consumed 2 tablespoons daily of oat bran who had lowered their triglyceride level after six weeks.
- p₂ = proportion of men consumed 2 tablespoons daily of wheat bran who had lowered their triglyceride level after six weeks.

Step (1): Sample Proportions

- Sample proportion of men consumed 2 tablespoons daily of oat bran is: $\hat{p}_1 = 60\% = 0.60$
- Sample proportion of men consumed 2 tablespoons daily of wheat bran is: $\hat{p}_2 = 25\% = 0.25$

Step (2): In order to compute \hat{p} , we must find x_1 and x_2 as follows:

$$x_1 = n_1 * \hat{p}_1 = (50)(0.60) = 30$$

 $x_2 = n_2 * \hat{p}_2 = (80)(0.25) = 20$

Step (3): Estimated common proportions \hat{p} and \hat{q} are obtained as follows:

 $\hat{p} = (30 + 20) / (50 + 80) = 50/130 = 0.385$

 $\hat{q} = 1 - \hat{p} = 1 - 0.385 = 0.615$

Step (4): Hypotheses to be tested are:

 $H_0: p_1 = p_2 vs. H_1: p_1 \neq p_2$

Step (5): Compute the Test Statistic (Z)

$$Z = \frac{|\hat{p}_1 - \hat{p}_2| - \left(\frac{1}{2n_1} + \frac{1}{2n_2}\right)}{\sqrt{\hat{p}\hat{q}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$
$$Z = \frac{|0.60 - 0.25| - \left(\frac{1}{2(50)} + \frac{1}{2(80)}\right)}{\sqrt{(0.385)(0.615)(\frac{1}{50} + \frac{1}{80})}} = \frac{0.33375}{0.08772} = 3.80$$

Step (6): Critical Value

$$Z_{1-(\alpha/2)} = Z_{1-(0.01/2)} = Z_{0.995} = 2.575 \approx 2.58$$

Step (7): Decision

Now by using the critical value method, we get Z = $3.80 > Z_{0.995} = 2.58$, then the decision will be reject H₀ and accept H₁ at level of significance $\alpha = 0.01$.

Conclusion

The results are highly significant. Therefore, we can conclude that there is enough evidence to support the claim that there is a difference in proportions.

Notations

- > $n_1 \hat{p} \hat{q} = (50)(0.385)(0.615) = 11.839 > 5$
- > $n_2 \hat{p} \hat{q} = (80)(0.385)(0.615) = 18.942 > 5$
- > The *p*-value = $2 \times [1 \Phi(3.80)] = 2 \times [1 0.9999] = 0.0001 < 0.05$

Problem (2)

A sample of 50 randomly selected men with high triglyceride levels consumed 2 tablespoons of oat bran daily for six weeks. After six weeks, 60% of the men had lowered their triglyceride level. A sample of 80 men consumed 2 tablespoons of wheat bran for six weeks. After six weeks, 25% had lower triglyceride levels. By using a 2 x 2 contingency-table approach can we conclude that there is a significance difference in the two proportions at $\alpha = 0.01$? Solution

Step (1): First compute the observed and expected tables as given below respectively:

Triglyceride	Type of consumed food for six weeks		Total
level	Oat bran Wheat bran		TOLAT
Lowered	30	20	50
Non-Lowered	20	60	80
Total	50	80	130

Observed Table

Expected Table

Triglyceride	Type of consumed food for six weeks		Total
level	Oat bran Wheat bran		Total
Lowered	19.231	30.769	50
Non-Lowered	30.769	49.231	80
Total	50	80	130

Note that the minimum expected value is 19.231, which is > 5.

Step (2): Use Table 6 (*Percentage points of the chi-square distribution*) page 880 in the Appendix to find the critical value $\chi^2_{(1, 1-\alpha)}$ as follows:

$$\chi^{2}_{(1, 1-\alpha)} = \chi^{2}_{(1, 1-0.01)} = \chi^{2}_{(1, 0.99)} = 6.63$$

Step (3): Thus, Equation 10.5, can be applied as follows:

$$X^{2} = \frac{\left(\left|O_{ij} - E_{ij}\right| - \frac{1}{2}\right)^{2}}{E_{ij}}$$

$$X^{2} = (|O_{11} - E_{11}| - .5)^{2} / E_{11} + (|O_{12} - E_{12}| - .5)^{2} / E_{12} + (|O_{21} - E_{21}| - .5)^{2} / E_{21} + (|O_{22} - E_{22}| - .5)^{2} / E_{22}$$

$$X^{2} = \frac{(|30 - 19.231| - 0.5)^{2}}{19.231} + \frac{(|20 - 30.769| - 0.5)^{2}}{30.796} + \frac{(|20 - 30.769| - 0.5)^{2}}{30.769} + \frac{(|60 - 49.231| - 0.5)^{2}}{49.231} = 5.483 + 3.427 + 3.427 + 2.142 = 14.299 \approx 14.30$$

Step (4): Decision and Conclusion

Because we get: $X^2 = 14.30 > \chi^2_{(1, 0.99)} = 6.63$ and $\rightarrow p < 1 - 0.99 \rightarrow p < 0.01$ therefore the results are highly significant. Thus there is a significant difference between the two proportions at $\alpha = 0.01$.

Problem (3)

A sample of 150 people from a certain industrial community showed that 80 people suffered from a lung disease. A sample of 100 people from a rural community showed that 30 suffered from the same lung disease. At $\alpha = 0.05$, is there a difference between the proportion of people who suffer from the disease in the two communities? Use normal theory test?

Answer

 $\hat{p}_1=0.533$, $\hat{p}_2=0.3$, $\hat{p}=0.44$, $\hat{q}=1-\hat{p}$ = 0.56 Hypotheses to be tested are: H_0: p_1 = p_2 vs. H_1: p_1 \neq p_2

Test Statistic: Z = 3.64

Decision: Reject H₀

Conclusion: There is enough evidence to support the claim that there is a significant difference in the two proportions.

Problem (4)

A recent study showed that in a sample of 80 surgeons, 45 smoked. In a sample of 120 general practitioners, 63 smoked. At $\alpha = 0.05$, by using a 2 x 2 contingency-table approach is there a difference in the two proportions?

Answer

Observed Table			
Due stitie were	Smoking Status		Tatal
Practitioner	Smoked	Not Smoked	Total
Surgeons	45	35	80
Non- Surgeons	63	57	120
Total	108	92	200

Expected Table

Dractitionar	Smokin	Total		
Practitioner	Smoked	Not Smoked	Total	
Surgeons	43.2	36.8	80	
Non- Surgeons	64.8	55.2	120	
Total	108	92	200	

 $\hat{p}_1 = 0.5625$, $\hat{p}_2 = 0.525$, $\hat{p} = 0.54$, $\hat{q} = 1 - \hat{p} = 0.46$ Hypotheses to be tested are: H_0 : $p_1 = p_2$ vs. H_1 : $p_1 \neq p_2$ Test Statistic: Z = 0.521Decision: Do Not Reject (Accept) H_0 Conclusion: There is not enough evidence to support the claim that there is a significant difference in the two proportions.

Problem (5)

A researcher wishes to determine whether there is a relationship between the gender (sex) of an individual and the amount of headache medications consumed. A sample of 69 people is selected, and the data in the following contingency table are obtained:

Gender	Headache Consumption			Total
Genuer	Low	Moderate	High	TOLAI
Male	10	9	8	27
Female	13	16	12	41
Total	23	25	20	68

Contingency Table

At $\alpha = 0.10$, can the researcher conclude headache consumption is related to gender?

Answer

H₀: The amount of headache medications consumes is independent of the individual's gender.

VS

H₁: The amount of headache medications consumes is not independent (dependent) of the individual's gender.

We have the following:

Expected Table				
Candar	Headache Consumption			Total
Gender	Low	Moderate	High	Total
Male	9.13	9.93	7.94	27
Female	13.87	15.07	12.06	41
Total	23	25	20	68

 $X^2 = 0.283$ follows a chi-square distribution with $df = (2 - 1) \times (3 - 1) = 2$.

Decision and Conclusion

Because we get:

 $\chi^2_{(2, 0.95)}$ = 4.605 > X² = 0.283, we have p < 1 - 0.95 = 0.05

Therefore, H_0 is not rejected (accepted) and H_1 is rejected, then the results shows that there is not enough evidence to support the claim that the amount of headache a person consumes is dependent on the individual's gender.

Exercise (6)

The frequency distribution of the weight in kg for a random sample of 200 patients ages 30–40 years selected from Jordan is given as follows:

Observed Table			
Group	Observed Frequency	Expected Frequency	
< 45	12	1.96	
45 – 49	44	48.54	
50 – 54	82	117.77	
55 – 59	53	30.96	
≥ 60	9	0.77	
Total	200	200	

Observed Table

Use the chi-square goodness-of-fit test to determine at $\alpha = 0.05$ if the weight data shown in the frequency distribution is normally distributed? Assume the mean and standard deviation of this hypothetical normal distribution are given by the sample mean ($\overline{x} = 52$ kg) and the sample standard deviation (s = 3 kg).

Answer

Step (1): Hypotheses

H₀: The weights data is normally distributed with mean 52kg and standard deviation 3 kg.

vs

H₁: The weights data is not normally distributed with mean 52kg and standard deviation 3 kg.

Weight Group	Observed Frequency	Expected Frequency	X^2 - Value
< 45	12	1.96	51.423
45 – 49	44	48.54	0.425
50 – 54	82	117.77	10.864
55 – 59	53	30.96	15.690
≥ 60	9	0.77	87.965
Total	200	200	166.367

Step (2): Chi-Square Test Statistic Value

Step (3):

- > Two parameters have been estimated from the data (μ , σ^2), and there are 5 groups. Therefore, k = 2, g = 5.
- > Under H₀, X² follows a chi-square distribution with df = 5 2 1 = 2.

Step (4): Decision and Conclusion Because we get:

$$\chi^2_{(2, 0.95)}$$
 = 5.99 < X² = 166.367

Therefore, H_0 is rejected and H_1 is accepted, then the results are very highly significant. Thus, the normal model does not provide an adequate fit to the data.
