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10.1 Introduction 
If the variable under study is not continuous but is instead classified into categories, 
which may or may not be ordered, then different methods of inference should be 
used, for example: 
 

 
 
In this chapter (chapter 10), methods of hypothesis testing for comparing two or 
more binomial proportions are developed. Methods for testing the goodness of fit 
are also considered.  
 
10.2 Two-Sample Test for Binomial Proportions 
In this section, we discuss the problem of testing for some constant p (population 
proportion) for a two-sample problem comparing two binomial proportions p1 and 
p2 the following hypothesis: 
 

H0: p1 = p2 = p vs. H1: p1 ≠ p2 

 
Two approaches for testing the hypothesis are presented: 
 

 The first approach uses normal-theory methods similar to those developed 
in Chapter 8.  

 The second approach uses contingency-table methods. 
 
Note that 
These two approaches are equivalent in that they always yield the same p-values, 
so which one is used is a matter of convenience. 
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10.2.1 Normal-Theory Method 
In this section, the following test procedure for a two-sample problem comparing 
two binomial proportions is suggested: 
 

 

 

 
 

 
Cancer A hypothesis has been proposed that breast cancer in women is caused in 
part by events that occur between the age at menarche (the age when 
menstruation begins) and the age at first childbirth. The hypothesis is that the risk 
of breast cancer increases as the length of this time interval increases. If this theory 
is correct, then an important risk factor for breast cancer is age at first birth. This 
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theory would explain in part why the incidence of breast cancer seems higher for 
women in the upper socioeconomic groups, because they tend to have their 
children relatively late in reproductive life. 

An international study was set up to test this hypothesis. Breast cancer cases 
were identified among women in selected hospitals in the United States, Greece, 
Yugoslavia, Brazil, Taiwan, and Japan. 

Controls were chosen from women of comparable age who were in the 
hospital at the same time as the cases but who did not have breast cancer. All 
women were asked about their age at first birth. 

The set of women with at least one birth was arbitrarily divided into two 
categories:  

 
(1) Women whose age at first birth was ≤ 29 years, and  
(2) Women whose age at first birth was ≥ 30 years. 
 
 The following results were found among women with at least one birth: 

 683 of 3220 (21.2%) women with breast cancer (case women). 
 1498 of 10,245 (14.6%) women without breast cancer (control 

women) had an age at first birth ≥ 30. 
 Let  

p1 = the probability that age at first birth is ≥ 30 in case women with at 
least one birth 

p2 = the probability that age at first birth is ≥ 30 in control women with 
at least one birth.  

 
The question is whether the underlying probability of having an age at 

first birth of ≥ 30 is different in the two groups (we want to compare the proportion 
of women in each group who have a first birth at a late age). How can we assess 
whether this difference is significant or simply due to chance? Assess the statistical 
significance of the results from this international study? Use 𝛼 = 0.05? 

 
Solution 
Step (1): Sample Proportions 

 Sample proportion of case women whose age at first birth was ≥ 30 is: 
                                                   �̂�1 = 683/3220 = 0.212  

 Sample proportion of control women whose age at first birth was ≥ 30 is: 
                                                  �̂�2 = 1498/10245 = 0.146 
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Step (2): Hypotheses to be tested are: 
H0: p1 = p2 vs. H1: p1 ≠ p2 

 
Step (3): Estimated common proportions �̂� and �̂� are obtained as follows: 
                �̂� = (683 + 1498) / (3220 + 10245) = 2181/13465 = 0.162 
                �̂� = 1 – 0.162 = 0.838 
 
Step (4): Test Statistic (Z) 

 
 
Step (5): Critical Value 

𝑍1−(𝛼 2⁄ ) = 𝑍1−(0.05 2⁄ ) = 𝑍0.975 = 1.96 

 
Step (6): Decision 
Now by using the critical value method, we get Z = 8.8 > 𝑍0.975 = 1.96 , then the 
decision will be reject H0 and accept H1 at level of significance 𝛼 = 0.05. 
 
Conclusion 
The results are highly significant. Therefore, we can conclude that women with 
breast cancer are significantly more likely to have had their first child after age 30 
than are comparable women without breast cancer. 
 
Notations 

 𝑛1�̂��̂� = (3220)(0.162)(0.838) = 437 ≥ 5 
 𝑛2�̂��̂� = (10245)(0.162)(0.838) = 1391 ≥ 5 
 The 𝑝-value = 2 × [1 − Φ (8.8)]= 2 × [1 − 1] = 0 < 0.05 

------------------------------------------------------------------------------------------------------------- 

 
Cardiovascular Disease A study looked at the effects of OC use on heart disease in 
women 40 to 44 years of age. The researchers found that among 5000 current OC 
users at baseline, 13 women developed a myocardial infarction (MI) over a 3-year 
period, whereas among 10,000 never-OC users, 7 developed an MI over a 3-year 
period. Assess the statistical significance of the results? Use 𝛼 = 0.05? 
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The 𝑝-value is given by 2 × [1 − Φ(2.77)] =2 × [1 – 0.9972] = 0.0056 ≈ 0.006. 
 
Decision 
Now by using the 𝑝-value method, we get 𝑝-value = 0.006 < 𝛼 = 0.05, then the 
decision will be reject H0 and accept H1 at level of significance 𝛼 = 0.05.  
 
Conclusion 
There is a highly significant difference between MI incidence rates for current OC 
users versus never-OC users. In other words, OC use is significantly associated with 
higher MI incidence over a 3-year period. 
------------------------------------------------------------------------------------------------------------- 
10.2.2 Contingency-Table Method 

 
A 2 × 2 contingency table is a table composed of two rows cross-classified by two 
columns and it is an appropriate way to display data that can be classified by two 
different variables, each of which has only two possible outcomes. One variable is 
arbitrarily assigned to the rows and the other to the columns. Each of the four cells 
represents the number of units (frequencies), with a specific value for each of the 
two variables.  
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Notations 
(1) The cells are sometimes referred to by number as follows: 

 The (1, 1) cell being the cell in the first row and first column. 
 The (1, 2) cell being the cell in the first row and second column. 
 The (2, 1) cell being the cell in the second row and first column. 
 The (2, 2) cell being the cell in the second row and second column. 

 
(2) The observed number of units in the four cells are likewise referred to as O11, 

O12, O21, and O22, respectively. 
 
(3) Furthermore, it is customary to total 

 The number of units in each row and display them in the right margins, which 
are called row marginal totals or row margins.  

 The number of units in each column and display them in the bottom margins, 
which are called column marginal totals or column margins. 

 The total number of units in the four cells, which is displayed in the lower 
right hand corner of the table and is called the grand total. 

 

 
Cardiovascular Disease A study looked at the effects of OC use on heart disease in 
women 40 to 44 years of age. The researchers found that among 5000 current OC 
users at baseline, 13 women developed a myocardial infarction (MI) over a 3-year 
period, whereas among 10,000 never-OC users, 7 developed an MI over a 3-year 
period. Display the MI data in this example in the form of a 2 × 2 contingency table? 
Solution 
We studied 5000 current OC users, of whom 13 developed MI and 4987 did not. 
We studied 10,000 never-OC users, of whom 7 developed MI and 9993 did not. 
Thus, the contingency table should look like Table 10.2 given as follows: 
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Note that in the OC−MI data in Example 10.8 there are two independent samples 
of women with different contraceptive-use patterns, and we want to compare the 
proportion of women in each group who develop an MI. In both instances, we want 
to test whether the proportions are the same in the two independent samples. This 
test is called a test for homogeneity of binomial proportions. In this situation, one 
set of margins is fixed (e.g., the rows) and the number of successes in each row is a 
random variable. For example, in Example 10.4 (p. 373) the total number of breast 
cancer cases and controls is fixed, and the number of women with age at first birth 
≥ 30 is a binomial random variable conditional on the fixed-row margins (i.e., 3220 
cases and 10,245 controls). 
 
Notation 
Another possible design from which contingency tables arise is in testing for the 
independence of two characteristics in the same sample when neither 
characteristic is particularly appropriate as a denominator. In this setting, both sets 
of margins are assumed to be fixed. The number of units in one particular cell of 
the table [e.g., the (1, 1) cell] is a random variable, and all other cells can be 
determined from the fixed margins and the (1, 1) cell. An example of this design is 
given in Example 10.9. A test used in this case is called a test of independence or a 
test of association between the two characteristics. 
 
Notation 
The same test procedure is used whether a test of homogeneity or a test of 
independence is performed. 
 

Expected Table 
For a contingency table or an observed table, to determine statistical significance, 
we need to develop an expected table, which is the contingency table that would 
be expected if there were no relationship between the two variables, for example, 
between breast cancer and age at first birth. In general, the following rule can be 
applied to find the expected value: 
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Cancer Compute the expected table for the breast cancer data of Example 10.4 
given in Table 10.1 (p. 377) that gives the observed table for these data and shown 
below: 

 
Solution 

 The row totals are 3220 and 10245. 
 The column totals are 2181 and 11,284. 
 The grand total is 13465. 

 
Thus, the four expected values can be calculated as follows: 
E11 = expected number of units in the (1, 1) cell 
      = [(3220)(2181)]/[13,465]  
      = 521.6 
 
E12 = expected number of units in the (1, 2) cell 

= [(3220)(11,284)]/[13,465] 
      = 2698.4  
 
E21 = expected number of units in the (2, 1) cell 
      = [(10,245)(2181)]/[13,465]  
      = 1659.4  
 
E22 = expected number of units in the (2, 2) cell  
      = [(10,245(11,284)]/[13,465]  
      = 8585.6 
 
Note that 
E11 + E12 + E21 + E22 = 521.6 + 2698.4 + 1659.4 + 8585.6 = 13,465 = Grand Total  
 
These expected values are shown in Table 10.5 given below: 
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Exercise: Study Example 10.11 page 381. 
 
Notation 
We can show from Equation 10.4 that the total of the expected number of units in 
any row or column should be the same as the corresponding observed row or 
column total. This relationship provides a useful check that the expected values are 
computed correctly. 
 

 
Check that the expected values in Table 10.5 are computed correctly? 
Solution 
(1) The total of the expected values in the first row  
      = E11 + E12  
      = 521.6 + 2698.4 = 3220  
      = First row total in the observed table.  
(2) The total of the expected values in the second row  
      = E21 + E22  
      = 1659.4 + 8585.6  
      = 10,245  
      = Second row total in the observed table.  
(3) The total of the expected values in the first column  
     = E11 + E21  
     = 521.6 + 1659.4  
     = 2181  
     = First column total in the observed table.  
(4) The total of the expected values in the second column  
      = E12 + E22  
      = 2698.4 + 8585.6  
      = 11,284  
      = Second column total in the observed table. 
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Objective: We now want to compare the observed table in Table 10.1 (p. 377) with 
the expected table in Table 10.5. Then: 

 If the corresponding cells in these two tables are close, then H0 will be 
accepted. 

 If the corresponding cells in these two tables are differ enough, then H0 will 
be rejected. 

 
Question: How should we decide how different the cells should be for us in order 

to reject H0? 
Answer: It can be shown that the best way of comparing the cells in the two tables 

is to use the statistic (O − E)2/E, where O and E are the observed and 
expected number of units, respectively, in a particular cell. This is usually 
referred to as the Pearson Chi-Square Statistic. 

 
Notations 

 In particular, under H0 it can be shown that the sum of (O − E)2/E over the 4 
cells in the contingency table approximately follows a chi-square distribution 
with 1 degree of freedom (𝑑𝑓 = 1). 

 
 H0 is rejected only if this sum is large and is accepted otherwise because small 

values of this sum correspond to good agreement between the two tables, 
whereas large values correspond to poor agreement.  

 
 This test procedure will be used only when the normal approximation to the 

binomial distribution is valid. In this setting the normal approximation can be 
shown to be approximately true if no expected value in the table is less 
than 5 (sometimes known as “the rule of five”). 

 
 Under certain circumstances a version of this test statistic with a continuity 

correction yields more accurate p-values than does the uncorrected version 
when approximated by a chi-square distribution.  

 

 For the continuity-corrected version, the statistic 
(|O − E|− 

1

2
)

2

E
 rather than      

(O − E)2/E is computed for each cell and the preceding expression is summed 
over the four cells. This test procedure is called the Yates-Corrected              
Chi-Square. 
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Yates-Corrected Chi-Square Test 

 

 

 
 

 
Note that: The Yates-corrected chi-square test is a two-sided test even though the 
critical region, based on the chi-square distribution, is one-sided. The rationale is 

that large values of |O𝑖𝑗 − E𝑖𝑗| and, correspondingly, of the test statistic X2 will be 

obtained under H1 regardless of whether p1 < p2 or p1 > p2. Small values of X2 are 
evidence in favor of H0. 
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𝒑-value 
The computation of the 𝑝-value is illustrated in Figure 10.4 shown below: 
 

 

 
Cancer Assess the breast cancer data in Example 10.4 for statistical significance, 
using a contingency-table approach? 
 
Solution 
 

 First compute the observed and expected tables as given in Tables 10.1 and 
10.5, respectively.  

 
 Check that all expected values in Table 10.5 are at least 5 (≥ 𝟓), which is 

clearly the case. 
 

 Use Table 6 (Percentage points of the chi-square distribution) page 880 in the 
Appendix to find the critical value ꭓ(1,   1 − 𝛼)

2 . 

 
Thus, Equation 10.5, can be applied as follows: 
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Decision and Conclusion 
Because we get: 

ꭓ(1,   0.999)
2 = 10.83 < X2 = 77.89, and we have p < 1 − 0.999 = 0.001 

the results are extremely significant. Thus, breast cancer incidence is significantly 
associated with having a first child after age 30. 
------------------------------------------------------------------------------------------------------------- 

 
Cardiovascular Disease Assess the OC−MI data in Example 10.6 for statistical 
significance, using a contingency-table approach? 
Solution 

 First compute the observed and expected tables as given in Tables 10.2 and 
10.6, respectively. 

 
 Note that the minimum expected value in Table 10.6 is 6.7, which is ≥ 5. 

 
 Use Table 6 (Percentage points of the chi-square distribution) page 880 in the 

Appendix to find the critical value ꭓ(1,   1 − 𝛼)
2 . 

 
Thus, Equation 10.5, can be applied as follows: 
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Decision and Conclusion 
Because we get: 

ꭓ(1,   0.99)
2 = 6.63,  ꭓ(1,   0.995)

2 = 7.88 and 6.63 < 7.67 < 7.88 

→ 1 - 0.995 < p < 1 − 0.99 
                                                         → 0.005 < p < 0.01 
and therefore the results are highly significant. The exact 𝑝-value obtained from 
Excel = 0.006. Thus there is a significant difference between MI incidence rates for 
current OC users and never-OC users among 40- to 44-year-old women, with 
current OC users having higher rates. 
------------------------------------------------------------------------------------------------------------- 
Important Notations 

 The test procedures in Equation 10.3 and Equation 10.5 are equivalent in the 
sense that they always give the same p-values and always result in the same 
decisions about accepting or rejecting H0.  

 Which test procedure is used is a matter of convenience. Most researchers 
find the contingency-table approach more understandable, and results are 
more frequently reported in this format in the scientific literature. 

 At this time statisticians disagree widely about whether a continuity 
correction is needed for the contingency-table test in Equation 10.5. Thus, 
results obtained are slightly less significant than comparable results obtained 
without using a continuity correction.   

 Generally, p-values obtained using the continuity correction are slightly 
larger. 

 The difference in results obtained using the two methods should be small for 
tables based on large sample sizes. 

 The Yates-corrected test statistic is slightly more widely used in the applied 
literature and therefore is used in this section. 

 Another possible approach for performing hypothesis tests based on 2 × 2 
contingency tables is to use Fisher’s exact test. This procedure is discussed in 
Section 10.3. 

 In this section, we have discussed the two-sample test for binomial 
proportions. This is the analog to the two-sample t test for comparing means 
from two independent samples introduced in Chapter 8, except that here we 
are comparing proportions instead of means. 

 In this chapter, we use either the two-sample test for binomial proportions 
(Equation 10.3) or the equivalent Chi-Square test for 2 × 2 contingency tables 
(Equation 10.5). 
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10.6 R × C Contingency Tables 
Tests for Association for R × C Contingency Tables 
In this section of this chapter, methods of analyzing data that can be organized in 
the form of an R × C contingency table—that is, one or both variables under study 
have more than two categories —were studied.  
 

 
 

 
Cancer Suppose we want to study further the relationship between age at first birth 
and development of breast cancer, as in Example 10.4 (p. 373). In particular, we 
would like to know whether the effect of age at first birth follows a consistent 
trend, that is: 

(1) More protection for women whose age at first birth is < 20 than for 
women whose age at first birth is 25−29, and 

(2) Higher risk for women whose age at first birth is ≥ 35 than for women 
whose age at first birth is 30−34.  

The data are presented in Table 10.16, where case−control status is indicated along 
the rows and age at first birth categories are indicated along the columns. The data 
are arranged in the form of a 2 × 5 contingency table because case−control status 
has two categories (R = 2) and age at first birth has five categories (C = 5): 

 

 
 
Object (Aim): We want to test for a relationship between age at first birth and 

case−control status. 
Question: How should this be done? 
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Now, the expected table for an R × C contingency table under Ho can be formed in 
the same way as for a 2 × 2 contingency table as follows: 

 

 

 
 

 
Cancer Compute the expected table for the data in Table 10.16? 
Solution 

 
 
All 10 expected values are given in Table 10.17: 
 

 
 
Note that: The sum of the expected values across any row or column must equal 
the corresponding row or column total, as was the case for 2 × 2 tables. This fact 
provides a good check that the expected values are computed correctly. The 
expected values in Table 10.17 fulfill this criterion except for round off error. 



18 
 

Notations 
 We again want to compare the observed table with the expected table.  

 
 The more similar these tables are, the more willing we will be to accept the 

null hypothesis H0: that there is no association between the two variables. 
The more different the tables are, the more willing we will be to reject H0. 

 
 Again the criterion (O − E)2/E is used to compare the observed and expected 

counts for a particular cell.  
 

 Furthermore, (O − E)2/E is summed over all the cells in the table to get an 
overall measure of agreement for the observed and expected tables. 

 
 Under H0, for an R × C contingency table, the sum of (O − E)2/E over the RC 

cells in the table will approximately follow a chi-square distribution with        
𝑑𝑓 = (R − 1) × (C − 1).  
 

 H0 will be rejected for large values of this sum and will be accepted for small 
values. 
 

 Generally speaking, the continuity correction is not used for contingency 
tables larger than 2 × 2 because statisticians have found empirically that the 
correction does not help in the approximation of the test statistic by the     
chi-square distribution. 
 

 As for 2 × 2 contingency tables, this test should not be used if the expected 
values of the cells are too small.  
 

 Cochran [4] has studied the validity of the approximation in this case and 
recommends its use if: 

(1) No more than 1/5 of the cells have expected values < 5, and 
(2) No cell has an expected value < 1. 

 
 
Now, the test procedure for an R × C contingency table can be summarized as 

follows: 
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Test Procedure 
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------------------------------------------------------------------------------------------------------------- 

 
Cancer Assess the statistical significance of the data in Example 10.38 between the 
two variables: 
 
H0: There is no association between the age at first birth and prevalence of breast 

cancer (the two variables are independent). 
𝑣𝑠 

H1: There is association between the age at first birth and prevalence of breast 
cancer (the two variables are not independent or dependent). 

 
Solution 
From Table 10.17 we see that all expected values are ≥ 5, so the test procedure in 
Equation 10.19 can be used. From Tables 10.16 and 10.17, we have the following: 
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Under H0, 𝑋2 follows a chi-square distribution with 𝑑𝑓 = (2 − 1) × (5 − 1) = 4. 
 
Decision and Conclusion 
Because we get: 
 

ꭓ(4,   0.999)
2 = 18.47 < X2 = 130.30, we have p < 1 − 0.999 = 0.001 

 
Therefore, H0 is rejected and H1 is accepted, then the results are very highly 
significant. Thus, we can conclude that there is a significant relationship (not 
independent) between the two variables under study age at first birth and 
prevalence of breast cancer. However, although this result shows some 
relationship between breast cancer and age at first birth, it does not tell us 
specifically about the nature of the relationship. 
------------------------------------------------------------------------------------------------------------- 
Notation 
In this section, we have discussed tests for association between two categorical 

variables with R and C categories, respectively, where either R > 2 and / or C > 2. If 

both R and C are > 2, then the chi-square test for R × C contingency tables is used. 

------------------------------------------------------------------------------------------------------------- 
10.7 Chi-Square Goodness-of-Fit Test 
In our previous work on estimation and hypothesis testing, we usually assumed the 

data came from a specific underlying probability model and then proceeded either 

to estimate the parameters of the model or test hypotheses concerning different 

possible values of the parameters. This section presents a general method of 

testing for the goodness-of-fit of a probability model. Consider the problem in 

Example 10.46 given below: 

 
Hypertension Diastolic blood-pressure measurements were collected at home in a 
community-wide screening program of 14,736 adults ages 30−69 in East Boston, 
Massachusetts, as part of a nationwide study to detect and treat hypertensive 
people. The people in the study were each screened in the home, with two 
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measurements taken during one visit. A frequency distribution of the mean 
diastolic blood pressure is given in Table 10.20 in 10-mm Hg intervals.  
 

 
 
We would like to assume these measurements came from an underlying normal 
distribution because standard methods of statistical inference could then be 
applied on these data as presented in this text.  
Question: How can the validity of this assumption be tested? 
Answer: This assumption (measurements came from an underlying normal 

distribution) can be tested by: 
 First computing what the expected frequencies would be in each group if the 

data did come from an underlying normal distribution.  
 Then comparing these expected frequencies with the corresponding 

observed frequencies. 
 

Computation of the Expected Frequencies 
The expected frequency can be calculated using three rules as follows:  
 
(1) The expected frequency within a group interval from 𝑎 to 𝑏 can be given by:  

 
 

(2) The expected frequency less than 𝑎 can be given by: 

14,736 {Φ [(𝑎 −
1

2
−  𝜇) 𝜎⁄ ]} 

 
(3) The expected frequency greater than or equal to 𝑏 can be given by:  

14,736 {1 − Φ [(𝑏 −
1

2
−  𝜇) 𝜎⁄ ]} 
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Hypertension Compute the expected frequencies for the data in Table 10.20, 
assuming an underlying normal distribution: 
 

 
Solution 

 Assume the mean and standard deviation of this hypothetical normal 
distribution are given by the sample mean (�̅� = 80.68) and the sample 
standard deviation (s = 12.00). 

 The expected frequency within the ( ≥ 50 , < 60) group would be computed 
as follows: 

 
 The expected frequencies for all the groups in Table 10.20 are computed and 

given also in Table 10.20. 
------------------------------------------------------------------------------------------------------------- 
Notations 

 We use the same measure of agreement between the observed and 
expected frequencies in a group that we used in our work on contingency 
tables, namely, (O − E)2/E. 

 The agreement between observed and expected frequencies can be 
summarized over the whole table by summing (O − E)2/E over all the groups. 

 If we have the correct underlying model, then this sum will approximately 
follow a chi-square distribution with (𝑑𝑓 = g − 1 − k), where: 

 g = the number of groups. 
 k = the number of parameters estimated from the data used to 

compute the expected frequencies. 
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 This approximation will be valid only if the expected values in the groups are 
not too small.  

 In particular, the requirement is that no expected value can be < 1 and not 
more than 1/5 of the expected values can be < 5. 

 If there are too many groups with small expected frequencies, then some 
groups should be combined with other adjacent groups so the preceding rule 
is not violated. 

 
The test procedure for the Chi-Square Goodness-of-Fit Test can be summarized as 

follows: 

Test Procedure 
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Hypertension Test for goodness of fit of the normal-probability model using the 
data in Table 10.20 given as follows: 
 

 
 
That is, test the following hypothesis: 
 

H0: The normal model (distribution) provide an adequate fit to the data. 
𝑣𝑠 

H1: The normal model (distribution) does not provide an adequate fit to the data. 
 
Solution 

 Two parameters have been estimated from the data (µ, σ2), and there are 8 
groups. Therefore, k = 2, g = 8. 

 Under H0, X2 follows a chi-square distribution with 𝑑𝑓 = 8 − 2 − 1 = 5. 
 The test statistic (X2) can be calculated as follows: 

 
Decision and Conclusion 
Because we get: 
 

ꭓ(5,   0.999)
2 = 20.52 < X2 = 326.2, we have p < 1 − 0.999 = 0.001 

 
Therefore, H0 is rejected and H1 is accepted, then the results are very highly 
significant. Thus, the normal model does not provide an adequate fit to the data. 
The normal model appears to fit fairly well in the middle of the distribution 
(between 60 and 110 mm Hg) but fails badly in the tails, predicting too many blood 
pressures below 60 mm Hg and too few over 110 mm Hg. 
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Notation 
The test procedure in Equation 10.22 can be used to assess the goodness of fit of 
any probability model, not just the normal model. The expected frequencies would 
be computed from the probability distribution of the proposed model, and then 
the same goodness-of-fit test statistic as given in Equation 10.22 would be used. 
Also, the test procedure can be used to test for the goodness of fit of both a model 
in which the parameters are estimated from the data set used for testing the model 
as described in steps 1 through 7 and a model in which the parameters are specified 
a priori as in step 8. 
 
Summary 
This chapter discussed the most widely used techniques for analyzing qualitative 
(or categorical) data. First, the problem of how to compare binomial proportions 
from two independent samples was studied. For the large-sample case, this 
problem was solved in two different (but equivalent) ways: using either the two-
sample test for binomial proportions or the chi-square test for 2 × 2 contingency 
tables. The 2 × 2 contingency-table problem was extended to the investigation of 
the relationship between two qualitative variables, in which one or both variables 
have more than two possible categories of response. A chi-square test for R × C 
contingency tables was developed, which is a direct generalization of the 2 × 2 
contingency-table test. Also, we studied how to assess the goodness-of-fit of 
probability models using the chi-square goodness-of-fit test. Finally, in chapters 8 
and 10, we considered the comparison between two groups for variables measured 
on a continuous and categorical scale, respectively. 
------------------------------------------------------------------------------------------------------------- 
 
Problems: 10.5, 10.21 -10.24 


