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11.1 Introduction 
To quantify the association between two continuous variables, we can use the 
correlation coefficient. In this chapter (chapter 11), we consider hypothesis-testing 
methods for correlation coefficients to describe association among two continuous 
variables in the same sample. 
 

 
Hypertension Much discussion has taken place in the literature concerning the 
familial aggregation of blood pressure. In general, children whose parents have 
high blood pressure tend to have higher blood pressure than their peers. One way 
of expressing this relationship is by computing a correlation coefficient relating the 
blood pressure of parents and children over a large collection of families. 
 
11.7 The Correlation Coefficient 
In this section, we will introduce the concept of a correlation coefficient which will 
be used when we are interested in investigating whether or not there is a 
relationship (association) between two variables, a dependent variable (𝑦) and an 
independent variable (𝑥).  
 

 
Obstetrics Obstetricians sometimes order tests to measure estriol levels from 24-
hour urine specimens taken from pregnant women who are near term because 
level of estriol has been found to be related to infant birthweight. Therefore, the 
relationship between estriol level and birthweight relates the two variables. 
Birthweight is the dependent variable and estriol is the independent variable 
because estriol levels are being used to try to predict birthweight. 
 

 
Cardiovascular Disease Serum cholesterol is an important risk factor in the etiology 
of cardiovascular disease. Much research has been devoted to understanding the 
environmental factors that cause elevated cholesterol levels. For this purpose, 
cholesterol levels were measured on 100 genetically unrelated spouse pairs. We 
are interested in a quantitative measure of the relationship between their levels. 
We will use the correlation coefficient for this purpose. 
 

First, we discuss the related concept of covariance. The covariance is a 
measure used to quantify the relationship between two random variables. 
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Notations 

 It can be shown that if the random variables X and Y are independent, then 
the covariance between them is 0. 

 
 If large values of X and Y tend to occur among the same subjects (as well as 

small values of X and Y), then the covariance is positive. 
 

 If large values of X and small values of Y (or conversely, small values of X and 
large values of Y) tend to occur among the same subjects, then the 
covariance is negative.  

 
One issue is that, the covariance between two random variables X and Y is in 

the units of X multiplied by the units of Y. Thus, it is difficult to interpret the strength 
of association between two variables from the magnitude of the covariance. To 
obtain a measure of relatedness independent of the units of X and Y, we consider 
the correlation coefficient. 

 

 
Notations 
 Unlike the covariance, the correlation coefficient is: 

(1) A dimensionless quantity that is independent of the units of X and Y, and 
(2) Ranges between −1 and 1. 
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 For random variables that are approximately linearly related, a correlation 
coefficient of 0 implies independence.  

 
 A correlation coefficient close to 1 implies nearly perfect positive dependence 

with large values of X corresponding to large values of Y and small values of X 
corresponding to small values of Y.  

 
Example 
(1) A strong positive correlation is between forced expiratory volume (FEV), a 

measure of pulmonary function, and height.  
 
(2) A somewhat weaker positive correlation exists between serum cholesterol and 

dietary intake of cholesterol.  
 
 A correlation coefficient close to −1 implies ≈ perfect negative dependence, with 

large values of X corresponding to small values of Y and vice versa. 
 
Example 
The relationship between resting pulse rate and age in children under the age of 
10. A somewhat weaker negative correlation exists between FEV and number of 
cigarettes smoked per day in children. 
 
 For variables that are not linearly related, it is difficult to infer independence or 

dependence from a correlation coefficient. 
 
 It would be a mistake to assume that the random variables X and Y are 

independent if the correlation coefficient between them is 0, that is, 
𝐶𝑜𝑟𝑟(𝑋, 𝑌) = 0. 

 
11.7.1 Scatter Plot 
Many research projects are correlational studies because they investigate the 
relationships that may exist between variables. Prior to investigating the 
relationship between two quantitative variables, it is always helpful to create a 
graphical representation that includes both of these variables. Such a graphical 
representation is called a scatterplot. 
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Notation 
 It is the most useful graph for displaying the relationship between two 

quantitative variables.  
 The purpose of a scatterplot is to provide a general illustration of the 

relationship between the two variables. 
 
Definition 

 
 

Scatter Plot Example 
The scatter plot given below show the relationship between students’ achievement 
motivation and GPA: 
 

 
 The image given above is an example of a scatter plot and displays the data from 

the table. GPA scores are displayed on the horizontal axis (x) and motivation 
scores are displayed on the vertical axis (y).  

 

 Each dot on the scatter plot represents one individual from the data set. The 
location of each point on the graph depends on both the GPA and motivation 
scores. 
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 Scatter plots are not meant to be used in great detail because there are usually 
hundreds of individuals in a data set. 

 
Important Notation 
In Definition 11.16, we defined the population correlation coefficient ρ. In general, 
ρ is unknown and we have to estimate ρ by the sample correlation coefficient r. 
 

 
The sample correlation coefficient (Pearson’s correlation coefficient), usually we 
refer to it by 𝑟, of the data pairs (𝑥𝑖  , 𝑦𝑖), 𝑖 =  1,… , 𝑛 is defined by 

𝑟 =
𝐿𝑥𝑦

√𝐿𝑥𝑥 𝐿𝑦𝑦
 

 
where the following formulas are needed to calculate the value of the 

sample correlation coefficient (𝑟): 
 

(1)  𝐿𝑥𝑦 is the corrected sum of cross products defined by: 

𝐿𝑥𝑦 = 
 
= 

 
(2) 𝐿𝑥𝑥  is the corrected sum of squares for 𝒙 defined by: 

𝐿𝑥𝑥  = 

 

  

(3) 𝐿𝑦𝑦 is the corrected sum of squares for 𝒚 defined by: 

𝐿𝑦𝑦 = 

 

  

 
Notation  
The correlation is not affected by changes in location or scale in either variable and 
must lie between −1 and +1, that is, −1 ≤ 𝑟 ≤ +1.  
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The sample correlation coefficient can be interpreted in a similar manner to 
the population correlation coefficient (ρ) as in Equation 11.15 given bellow: 
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The data shown in the table below obtained in a study of age (𝑥), 𝑖𝑛 𝑦𝑒𝑎𝑟𝑠, and 
systolic blood pressure (𝑦), in mm Hg, (indicates how much pressure your blood is 
exerting against your artery walls when the heart contracts) for a random sample 
of six patients selected from the emergency room of Jordan University Hospital 
(JUH) in a given day: 
 

Age (𝑥) 
(𝑦𝑒𝑎𝑟𝑠) 

Systolic Blood Pressure (𝑦) 
(mm Hg) 

43 128 

48 120 

56 135 

61 143 

67 141 

70 152 

 
Answer the following: 
(a) Construct a scatter plot for the data? Conclusion? 
      Solution 
 

 
 
Conclusion 
From the scatter plot we can conclude that there is a strong positive linear 
relationship between the age and systolic blood pressure.  
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(b) Calculate the value of the correlation coefficient for the data? Conclusion? 
Solution 
 
Step (1): Make a worktable as shown below: 
 

 Age (𝒙) 
(𝒚𝒆𝒂𝒓𝒔) 

Systolic Blood Pressure (𝒚) 
(mm Hg) 

𝒙𝟐 𝒚𝟐 𝒙𝒚 

 43 128 1849 16384 5504 

 48 120 2304 14400 5760 

 56 135 3136 18225 7560 

 61 143 3721 30449 8723 

 67 141 4489 19881 9447 

 70 152 4900 23104 10640 

Total (Sum) 345 819 20399 112443 47634 

 
That is: 
 

𝑛 = 6    ;     ∑ 𝑥𝑖𝑦𝑖
6
𝑖=1 = 47634  

∑ 𝑥𝑖 = 3456
𝑖=1     ;    ∑ 𝑦𝑖 = 8196

𝑖=1   

∑ 𝑥𝑖
26

𝑖=1 = 20399     ;   ∑ 𝑦𝑖
26

𝑖=1 = 112443  

𝑥̅ = ∑ 𝑥𝑖
6
𝑖=1 6⁄ = 345 6⁄ = 57.5   ;    𝑦̅ = ∑ 𝑦𝑖

6
𝑖=1 6⁄ = 819 6⁄ = 136.5 

 

Step (2): The value of the correlation coefficient (𝑟) can be calculated by using 
the formula as follows:  

 

𝑟 =
𝐿𝑥𝑦

√𝐿𝑥𝑥 𝐿𝑦𝑦
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=
[47634 − ((345)(819) 6)]⁄

√[20399 − ((345)2 6⁄ )][112443 − ((819)2 6⁄ )]
 

 

=
541.5

√(561.5)(649.5)
 

 
                                                        = 0.897 
 
Conclusion 
From the sign and value of the Pearson’s correlation coefficient (𝑟) we can conclude 
that there is a strong positive linear relationship between the age (𝑥) and systolic 
blood pressure (𝑦). 
 
11.7.2 The Relationship Between the Sample Correlation Coefficient (r) and the 
Population Correlation Coefficient (ρ) 

 We can relate the sample correlation coefficient (𝑟) and the population correlation 
coefficient (ρ) more clearly by dividing the numerator and denominator of sample 
correlation coefficient (𝑟) by (𝑛 − 1) in Definition 11.17, where by: 

 
Equation 11.16 
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We note that: 

                                       and        
 
Furthermore, if we define the sample covariance by: 
 

 
 
Then we can re-express Equation 11.16 in the following form: 
 
Equation 11.17 

 
 

This is completely analogous to the definition of the population correlation 
coefficient (ρ) given in Definition 11.16 with the population quantities, Cov(X, Y), σx 
, and σy replaced by their sample estimates sxy, sx , and sy. 

 
Notations 

 The sample correlation coefficient (𝑟) will be unchanged by a change in the 
units of 𝑥 or 𝑦 (or even by which variable is designated as 𝑥 and which is 
designated as 𝑦). 

 
 Based on Equation 11.17, if every unit in the reference population could be 

sampled, then the sample correlation coefficient (𝑟) would be the same as 

the population correlation coefficient, denoted by ρ, which was introduced 

in Definition 11.16 (on p. 486). 

 

 The correlation coefficient is used when we simply want to describe the 

linear relationship (association) between two variables but are not 

interested in predicting one variable from another.   
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11.8 Statistical Inference for Correlation Coefficients 
In the previous section, we defined the sample correlation coefficient (𝑟). In this 
section, we discuss various hypothesis tests concerning correlation coefficients. 
That is, we will use 𝑟, which is computed from finite samples, to test various 
hypotheses concerning ρ. 
 
11.8.1 One-Sample t Test for a Correlation Coefficient (ρ) 
In this section, we want to test the hypothesis H0: ρ = 0 𝑣𝑠 H1: ρ ≠ 0, d, then the 
best procedure for testing the hypothesis is given as follows: 

Equation 11.20 

 

Notation 
The test statistic (𝑡) given in step (2) of the test procedure (Equation 11.20) can be 
re-expressed as follows: 
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Cardiovascular Disease Suppose serum-cholesterol levels in spouse pairs are 
measured to determine whether there is a correlation between cholesterol levels 
in spouses. Specifically, we wish to test the hypothesis: 

H0: ρ = 0 𝑣𝑠 H1: ρ ≠ 0 
Suppose that 𝑟 =  0.897 based on 𝑛 = 6 spouse pairs. Is this evidence enough to 
warrant rejecting H0? Perform a test of significance for the data in this Example? 
Use 𝛼 = 0.05? 
Solution 
Step (1): We have  𝑟 =  0.897 based on 𝑛 = 6. Thus, in this case, the value of the 
test statistic (𝑡) can be calculated as follows: 
 

𝑡 =
𝑟 √𝑛 − 2

√1 − 𝑟2
=
(0.897)√6 − 2

√1 − (0.897)2
=
1.794

0.442
= 4.056 

 
Step (2): The critical value will be obtained from Table 5 in the Appendix as follows:  
 

𝑡(𝑛−2 ,   1−𝛼 2⁄ ) = 𝑡(6−2 ,   1−0.05 2⁄ ) = 𝑡(4 ,   0.975) = 2.776 

 
Step (3): The decision will be to reject H0 because we get: 
 

𝑡 =
𝑟 √𝑛 − 2

√1 − 𝑟2
= 4.056 > 𝑡(𝑛−2 ,   1−𝛼 2⁄ ) = 𝑡(4 ,   0.975) = 2.776 

 
Step (4): The 𝑝-value because (𝑡 = 4.056 > 0) can be calculated as follows: 

                           𝑝-value = 2 × 𝑃(𝑡(4 ,   0.975) > 4.056) 

= 2 × [1 − 𝑃(𝑡(4 ,   0.975) ≤ 4.056)] 

                                          = 2 × [1 − 0.99] 
                                          = 2 × [0.01] 
                                          = 0.02 < 𝛼 = 0.05  
Conclusion  
We conclude there is a significant aggregation of cholesterol levels between 
spouses. This result is possibly due to common environmental factors such as diet. 
But it could also be due to the tendency for people of similar body build to marry 
each other, and their cholesterol levels may have been correlated at the time of 
marriage. 
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11.8.2 One-Sample Z Test for a Correlation Coefficient (ρ) 
In the previous section, a test of the hypothesis: 

H0: ρ = 0 𝑣𝑠 H1: ρ ≠ 0 
was considered. Sometimes the correlation between two random variables is 
expected to be some quantity ρ0 other than 0 and we want to test the hypothesis:  

H0: ρ = ρ0 𝑣𝑠 H1: ρ ≠ ρ0 

The problem with using the 𝑡 test formation in Equation 11.20 is that the sample 
correlation coefficient (𝑟) has a skewed distribution for nonzero ρ that cannot be 
easily approximated by a normal distribution. Fisher considered this problem and 
proposed the following transformation to better approximate a normal 
distribution: 

Equation 11.21 

 
 

 
Suppose the body weights of 100 fathers (𝑥) and first-born sons (𝑦) are measured 
and a sample correlation coefficient 𝑟 of 0.38 is found. We might ask whether or 
not this sample correlation is compatible with an underlying correlation of 0.5 that 
might be expected on genetic grounds. Compute the z transformation of 𝑟 = 0.38? 
Solution 
The z transformation can be computed from Equation 11.21 as follows: 

 
Alternatively, we could refer to Table 12 (Page 887) in the Appendix with 𝑟 = 0.38 
to obtain the z transformation to be z = 0.400 . 
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  The Fisher’s z transformation can be used to conduct the hypothesis test 
procedure for a two-sided level α test as follows: 

Equation 11.22 
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Perform a test of significance for the data in Example 11.35? Use 𝛼 = 0.05? 
Solution 
In this case 𝑟 = 0.38, 𝑛 = 100, ρ0 = 0.50, then from Table 12 in the Appendix, or 
by using formula given in Equation 11.21 we get: 

 
Hence, 

 
Now, because 𝜆 = −1.47 < 0, then the 𝑝-value can be calculated as follows: 
                                            𝑝-value = 2 × ϕ(𝜆) 

= 2 × ϕ(−1.47) 
                                                           = 2 × [1 − ϕ(1.47)] 
                                                           = 2 × [1 − 0.9292] 
                                                           = 2 × 0.0708 
                                                           = 0.1416 > α = 0.05 
Decision and Conclusion 
We accept H0 that the sample estimate of correlation coefficient 0.38 is compatible 
with an underlying correlation of 0.50. 
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Notation 
To sum up, the z test in Equation 11.22 is used to test hypotheses about nonzero 
null correlations, whereas the t test in Equation 11.20 is used to test hypotheses 
about null correlations of zero. The z test can also be used to test correlations of 
zero under the null hypothesis, but the t test is slightly more powerful in this case 
and is preferred. However, if ρ0 ≠ 0, then the one-sample z test is very sensitive to 
non-normality of either 𝑥 or 𝑦.  
 
11.8.3 Interval Estimation for Correlation Coefficients 
In the previous sections, we learned how to estimate a correlation coefficient (ρ) 
and how to perform appropriate hypothesis tests concerning correlation 
coefficient (ρ). It is also of interest to obtain confidence limits (intervals) for the 
correlation coefficient (ρ). An easy method for obtaining confidence limits for 
correlation coefficient (ρ) can be derived based on the approximate normality of 
Fisher’s z transformation of sample correlation coefficient (𝑟). This method is given 
as follows: 

Equation 11.23 

 

 
 

Note that: The interval (z1, z2) in Equation 11.23 can be derived in a similar manner 
to the confidence interval for the mean of a normal distribution with known 
variance which is given by: 
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Equation 11.24 

 
 

We then solve Equation 11.23 for 𝑟 in terms of 𝑧, whereby: 
 

Equation 11.25 

 
 

 We now substitute the confidence limits for zρ —that is, (z1, z2) in Equation 
11.24— into Equation 11.25 to obtain the corresponding confidence limits for the 
correlation coefficient (ρ) given by (ρ1, ρ2) in Equation 11.23. The transformation 
from 𝑧 to 𝑟 in Equation 11.25 is sometimes referred to as the inverse Fisher’s z 
transformation. 
 

 
Suppose that a sample correlation coefficient of 𝑟 = 0.38 was obtained between 
the body weights of fathers (𝑥) and first-born sons (𝑦) of 𝑛 = 100 pairs. Find the 
95% confidence interval for the underlying correlation coefficient (ρ)? 
Solution 
Step (1): From Example 11.36, the z transformation of 𝑟 = 0.38, is calculated as 

follows: 

 
 
Step (2): From step (2) of Equation 11.23, a two-sided (1 − 𝛼) × 100% confidence 

interval for (zρ) is (z1, z2) and given by: 
 

 
 
Thus, a 95% confidence interval for (zρ) given by (z1, z2) can be calculated as follows: 
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That is, a 95% confidence interval for z = (0.201, 0.599). 

 
Step (3): From step (3) of Equation 11.23, a two-sided (1 − 𝛼) × 100% confidence 

interval for (ρ) is (ρ 1, ρ 2) and given by: 
 

 
 

Thus, a 95% confidence interval for (ρ) given by (ρ 1, ρ 2) can be calculated as follows: 
 

CI =

(

 
 
 
 
 
 
 
 

, )

 
 
 
 
 
 
 
 

 

 
That is, a 95% confidence interval for ρ = (0.198, 0.536). 
 
Notice that 
The confidence interval for zρ, given by (z1, z2) = (0.201, 0.599), is symmetric about 
z = 0.400. However, when the confidence limits are transformed back to the original 
scale (the scale of ρ) the corresponding confidence limits for ρ are given by (ρ1, ρ2) 
= (0.198, 0.536), which are not symmetric around r = 0.38. The reason for this is 
that Fisher’s z transformation is a nonlinear function of r, which only becomes 
approximately linear when r is small (i.e., |r| ≤ 0.2). 
 
Problems: 11.32 – 11.35. 


