Chapter (12) practice questions

Q1 The following table summarizes the results of the analysis of variance, fill the missing values:

Source	Sum of squares	d.f	Mean square	F
Between	459.18	2	229.59	5.05
Within		15		
Total	1141.68			

Q2 The following set of data values was obtained from a study of people's perceptions on whether the color of a person's clothing is related to how intelligent the person looks. The subjects rated the person's intelligence on a scale of 1 to 10. Group 1 subjects were randomly shown people with clothing in shades of blue and gray. Group 2 subjects were randomly shown people with clothing in shades of brown and yellow. Group 3 subjects were randomly shown people with clothing in shades of pink and orange. The results follow. Using 5% significance level.

Group 1	Group 2	Group 3
8		4
7	8	9
7	7	6
7		7
8	5	9
8	8	8
6	5	5
$\bar{X}_1 = 7.29$	$\bar{X}_2 = 6.71$	$\bar{X}_{3} = 6.86$
$S_1^2 = 0.57$	$S_2^2 = 1.57$	$S_3^2 = 3.81$

- A) Use ANOVA to test for any significant differences between the means.
- B) What is the purpose of this study?

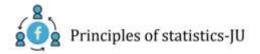
Q3 True or False:

- 1) In the analysis of variance, the null hypothesis should be rejected only when there is a significant difference between all pairs of means.
- 2) The F test does not use the concept of degrees of freedom.
- 3) When the F test value is close to 1, the null hypothesis should be rejected.
- 4) We wish to have small values of F test when performing the analysis of variance.
- 5) The F test can also be used to test the equality of two means. But since it is equivalent to the t test in this case, the t test is usually used instead of the F test when there are only two means.
- 6) In the analysis of variance, the populations from which the samples were obtained must be normally or approximately normally distributed.
- 7) In the analysis of variance, the variances of the populations must be equal.
- 8) The between-group variance measures the variability within each group, regardless of the differences in group means.
- 9) The within-group variance measures the variability within each group, regardless of the differences in group means.
- 10) When three or more means are compared, you use the Z technique.
- 11)The sample sizes need not be equal.

Q4 choose the correct answer:

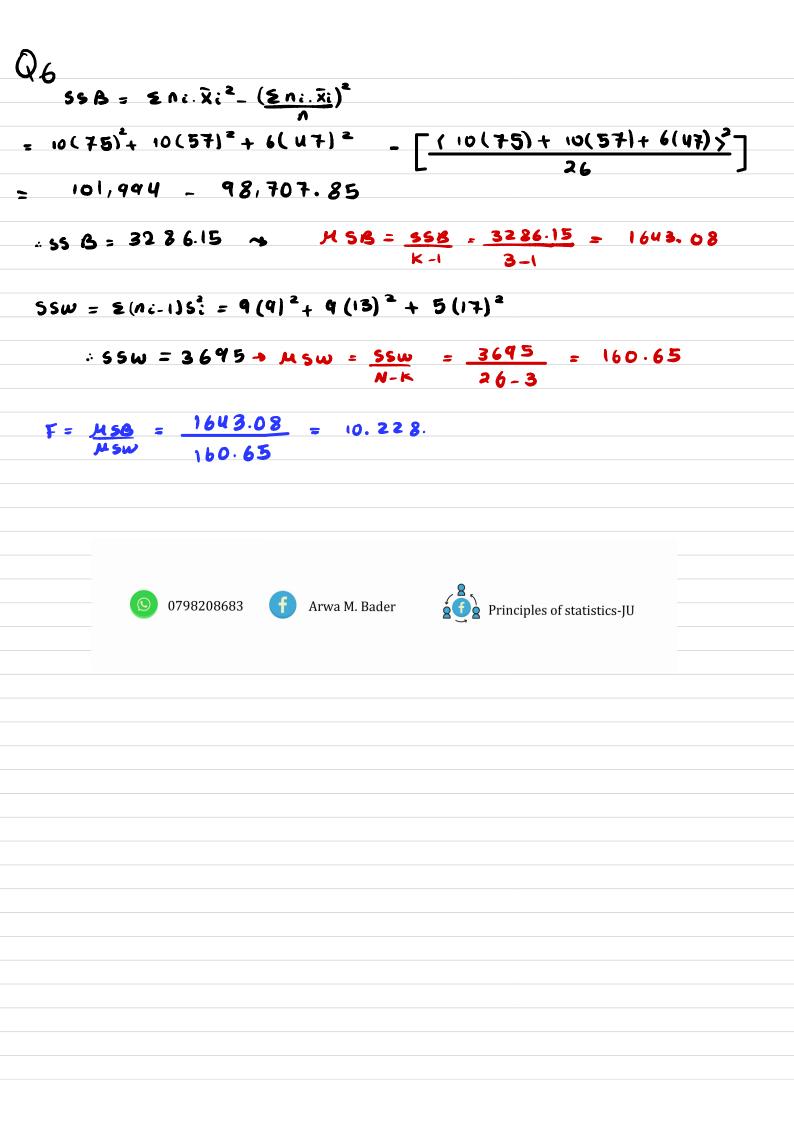
- 1) Analysis of variance uses the test: a) Z b) F c) t d) χ^2
- 2) The null hypothesis in ANOVA is that all the means are:a) Equalb) Variablec) Unequald) None
- 3) F test has degree of freedom:
 a) (K-1, N-1)
 b) (N-k,k-1)
 c) (k-1, N-k)
 d) (N, K)
- 4) For a test of the difference among three or more means, the following hypotheses should be used:
- a) $H_0: \mu_1 = \mu_2 = \dots = \mu_k$ $H_1:$ At least one mean is different from the others.
- b) H₀: $\mu_1 \neq \mu_2 \neq \cdots \neq \mu_k$ H₁: At least one mean is different from the others.
- c) $H_0: \mu_1 \neq \mu_2 = \cdots = \mu_k$ $H_1:$ At least one mean is different from the others.
- d) H₀: At least one mean is different from the others. H₁: $\mu_1 = \mu_2 = \cdots = \mu_k$

Q5 complete the following ANOVA table, and at 10% significance level, would you reject H0? (hint: $F_{0.90}(2,942) = 2.31$)


Source	Sum of squares	d.f	Mean square	F
Between	2403.5	2		
Within	193237.4	942		
Total	195640.8	944		

Q6 Researchers compared protein intake among three groups of postmenopausal women: (1) women eating a standard American diet (STD), (2) women eating a lactoovo-vegetarian diet (LAC), and (3) women eating a strict vegetarian diet (VEG). Perform a statistical procedure to compare the means of the three groups.

Group	Mean	sd	п
STD	75	9	10
LAC	57	13	10
VEG	47	17	6



chapter (12) solutions e-
Q ₁ $I.F = \mu SB => 5.05 = \frac{229.59}{\mu Sw} \rightarrow \mu Sw = 45.463.$
2. $d \cdot S_{(total)} = 2 + 15 = 17$.
3. 557 = 558 + 55W 1141.68 = 439.18 + 550 353W = 682.5.
Q2.
A) $SSB = Eni \tilde{X}i^2 - (Eni \tilde{X}i)^2$
$= 7(7 \cdot 29)^{2} + 7(6 \cdot 71)^{2} + 7(6 \cdot 86)^{2} - \left[\frac{(7(7 \cdot 29) + 7(6 \cdot 71) + 7(6 \cdot 8))^{2}}{21}\right]$
= 1016.546 - 1015.326
∴55 B = 1.22 → HSB = <u>55B</u> = <u>1.22</u> = 0.61 K-1 3-1
$SSW = \Xi(Ai-1)S_i^2 = G(0.57) + G(1.57) + G(3.21)$
* 55W = 35.7 + MSW = <u>55W</u> = <u>35.7</u> = 1.983 N-K 21-3
$F = \underbrace{\mu s g}_{\mu s w} = \underbrace{0.61}_{1.983} = 0.308.$
$\partial_{x} f = (2, 18)$ with $\alpha = 0.05$
∴wedon't rej Ho. 3.55

B) To determine if the color if a person's cluthing is related to people's perceptions of how intelligent the person looks.

Q31) False, at least one.
2) False, It has two d.f.s.
3) False, smaller F-test indicute that we tend to
Support Ho.
W True.
5) True
6) True.
7) True.
8) False, within group variability.
9) True
10) False, ANOVA.
1) True.
Qu) b 2) a 3) c 4) a
$Q_5 \ \mu SB = \frac{SSB}{K-1} = \frac{2403.5}{2} = (201.75)$
$\mu sw = \underline{SSw} = \underline{193237.9} = 205.19$
N-K 942
F = MSB = (201.75 = 5.86) MSW 205.14
we rej Ho.
2-31

