

(1) The normal method
$$\binom{nPq_{2}>5}{mPq_{2}>5}$$

Ho: $P_{1} = P_{2}$ Vs. Hi: $P_{1} \neq P_{2}$

$$\frac{test stat}{\sqrt{P^{*}q^{*}(\frac{1}{n} + \frac{1}{m})}}$$

$$P^{*}: pooled Proportion = \frac{X+Y}{n+m}$$

$$\frac{X: n + \hat{P}_{1}}{\sqrt{P^{*}q^{*}(\frac{1}{n} - \hat{P}_{2})} - (\frac{1}{2n} + \frac{1}{2m})}$$

$$\frac{q^{*} = 1 - p^{*}}{\sqrt{P^{*}q^{*}(\frac{1}{n} + \frac{1}{m})}}$$

Example) Two types of medication for hives are being tested to determine if there is a difference in the proportions of adult patient Reactions. Tuenty out of a vandom sample of 200 adults given medication "A" still had hive 30 minutes affer taking the medication. Twelve out of another Random Sample of 200 adults given medication "B" still had hives 30 mins after taking the medication. Test using 1%. Significance level when: $\alpha = 0.01$ 1) no Confinuity Correction applied $H_0 \cdot P_1 = P_2 \qquad \forall s. \quad H_1 \cdot P_1 \neq P_2$ Pi= A $=\frac{20}{200}$ test stat $P^{*} = \frac{X+g}{N+m}$ $\hat{P}_2 = \frac{\forall}{m} \left[\vec{z} = \frac{(\hat{P}_1 - \hat{P}_2) - 0}{(\hat{P}_1 - \hat{P}_2) - 0} \right]$ $= \frac{20 + 12}{200 + 200}$ = 0.08

$$= 0.06 = \frac{0.1 - 0.06}{\sqrt{0.08 \times 0.92 \times (\frac{1}{200} + \frac{1}{200})}} = 1.47$$

$$\frac{0.00}{\sqrt{2} = 0.005} = \frac{0.00}{\sqrt{1111}} = \frac{0.00}{\sqrt{1111}}$$

$$\frac{0.00}{\sqrt{2} = 0.005} = \frac{0.00}{\sqrt{1111}} = \frac{0.00}{\sqrt{11111}} = \frac{0.00}{\sqrt{111111}} = \frac{0.00}{\sqrt{111111}} = \frac{0.00}{\sqrt{111111}} = \frac{0.00}{\sqrt{111111}} = \frac{0.00}{\sqrt{11111111}} = \frac{0.00}{\sqrt{11111111}} = \frac{0.00}{\sqrt{11111111}} = \frac{0$$

$$H_{o}: P_{1} = P_{2} \quad \forall s. \quad H_{1}: P_{1} \neq P_{2}$$

$$\frac{1}{2} \frac{e_{sh}}{e_{sol}} \frac{s_{h}}{s_{h}} = \frac{1}{1} \frac{\hat{p}}{\hat{p}} - \frac{\hat{p}}{\hat{p}} - \frac{\hat{p}}{\hat{p}} - \frac{1}{2n} + \frac{1}{2m}}{\sqrt{p^{*}q^{*}(\frac{1}{n} + \frac{1}{m})}}$$

$$= \frac{10.0026 - 0.00071 - (\frac{1}{2\pi 5000} + \frac{1}{2\pi 10000})}{\sqrt{0.0033 \pm 0.99867}(\frac{1}{5000} \pm \frac{1}{10000})}$$

= 2.77

$$\hat{P}_{1} = \frac{13}{5000} = 0.0026 , \quad \hat{P}_{2} = \frac{7}{1000} = 0.007$$

$$P^{*} = \frac{X + Y}{n + m} = \frac{13 + 7}{5000 + 10000} = 0.00133$$

$$d = 0.05$$

$$\frac{q}{2} = 0.025$$

$$\frac{111}{-1.96}$$

$$\frac{1.96}{1.96}$$
8 we Reject Ho and accept Hi

0.0028<u>1111</u> -2.77 2.772.77

Guidelines for Judging the Significance of a *p*-Value

If $.01 \le p < .05$, then the results are *significant*. If $.001 \le p < .01$, then the results are *highly significant*. If p < .001, then the results are *very highly significant*. If p > .05, then the results are considered *not statistically significant* (sometimes denoted by NS). However, if .05 , then a trend toward statistical significance is sometimes noted.

		ers in new york City Can
stop a	driver who	is not wearing their seaf
		fficers Can issue Citations
to drive	er for not u	wearing their seat belts only
		en stopped for another violation
Data	from Random	Samples of femal in 2002
		the following:
C:łj	Drivers	wearing seaf belts
Boston	117	68
New York	220	\ 83
IS the a diffe	ere Compelli L Evence in R	ng evidence to conclude afe of drivers wear their
		as compared to new york?

Assume Continuity Correction is applied, use d=0.05)

$$H_{0} \cdot P_{1} = P_{2} \quad N_{s} \quad H_{1} \cdot P_{1} \neq P_{2}$$

$$\frac{Ee4}{2} \frac{54a4}{4}$$

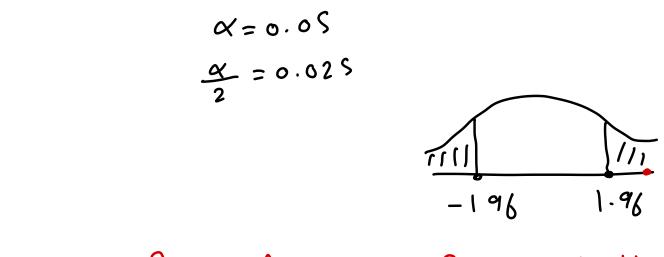
$$E_{corr} = \frac{|\hat{P}_{1} - \hat{P}_{2}| - (\frac{1}{2n} + \frac{1}{2m})}{\sqrt{P^{*} 2^{*} (\frac{1}{n} + \frac{1}{m})}}$$

$$= \frac{|\circ.58 - \circ.83| - (\frac{1}{2* 112} + \frac{1}{2* 220})}{\sqrt{\circ.74} \times 0.26 \times (\frac{1}{117} + \frac{1}{220})}$$

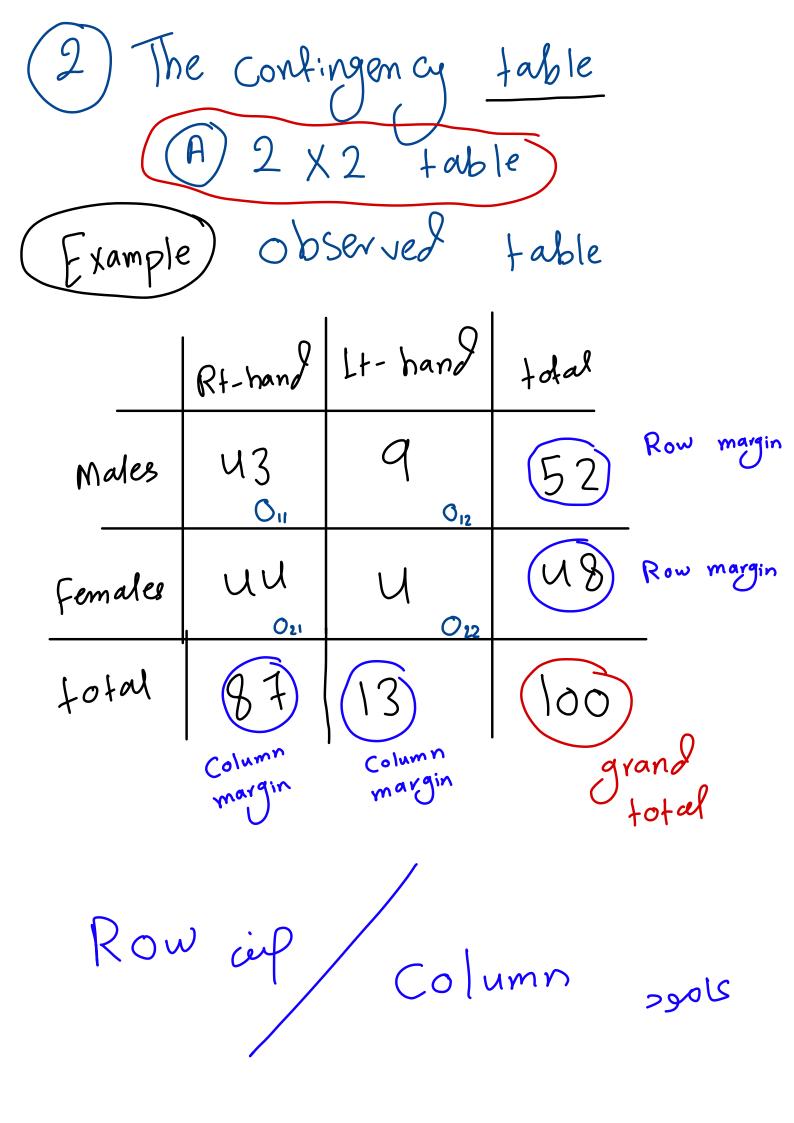
$$= 4 \cdot 8S$$

$$\hat{P}_{1} = \frac{68}{117} = 0.58 \quad , \quad \hat{P}_{2} = \frac{183}{220} = 0.83$$

 $P^* = \frac{X+Y}{n+m} = \frac{68+183}{117+220} = 0.74$



so we Reject Ho and accept Hi



Expected table

	Rt-hand	Lt-hand	total
males	<u>52*87</u> = U5.2u Joo E ₁₁	$\frac{52 * 13}{100} = 6.76$	52
Femalos	<u>U8* 87</u> = U1.76 100 E21	$\frac{48 \times 13}{100} = 6.24$	48
fotal	87	13	100

NOTE
$$E = \frac{R * C}{grand total}$$

 $H_0: P_1 = P_2$ V_s . $H_i: P_1 \neq P_2$

Lest stat

& Chi-Squared ⇒ Skewed to the Right All values are positive ⇒ => degree of freedom $d \cdot f = (R - 1)(C - 1)$ NOTE Always d.f in 2×2 Confingency

table is equal to () * General notes p • Always the test failed test is Right 2 Lest statisfics $\mathcal{K}^2 = \sum \frac{(o-E)^2}{F}$ $= \frac{(O_{11} - E_{11})^{2}}{E} + \frac{(O_{12} - E_{12})^{2}}{E} + \frac{(O_{21} - E_{21})^{2}}{E} + \frac{(O_{22} - E_{22})^{2}}{E}$ $\chi^{2} = \sum \left(\frac{\left| 0 - E \right| - \frac{1}{2} \right)^{2}}{E}$ (3) Always the Expected values

are	more than	$\overline{(5)}$	
Exam	ple) The follow	ing table lists	Results
from	an experiment d	lesigned to test	- the
	g dogs to use ell to defect m		
Childre	en's socks. The	e accompaying in	Aormation
	the following:		
	Malaria was present	Malavia wasn't present	total
Dog was Corvect	123	131	254
Dog was wrong	52	14	66
Total	175	145	320

Idenfify the test statistics and

the P-value, and then state the
Conclusion about the null hypothesis.

$$\frac{1}{2} = \sum \frac{(0-E)^2}{E}$$

$$\frac{1}{2} \frac{254 \times 175}{320}$$

$$\frac{254 \times 175}{320}$$

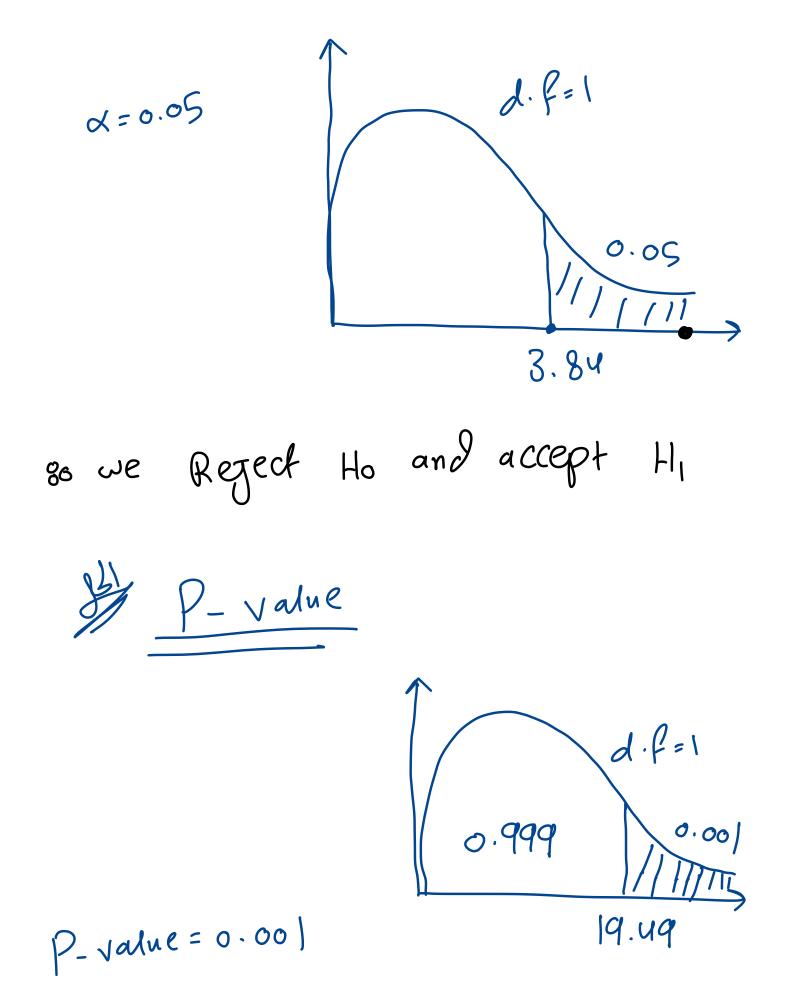
$$\frac{254 \times 175}{320}$$

$$\frac{1}{320} \frac{66 \times 175}{320}$$

$$\frac{66 \times 105}{320}$$

$$\frac{1}{320} \frac{264 \times 175}{320}$$

$$\frac{1}{320} \frac{1}{320} \frac{1}{320$$



$\chi^2 = Covr$	(123 - 1 13	$38.91 \left -\frac{1}{2} \right ^2 (1)$	131 - 115 115.0	$\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^2$
	(52 - 2 3	36.09 (- ½) ² + 56.09	(114-29-91) 29.91	$(-\frac{1}{2})^2$
	= 19.5			
Example	2) Suppos	se we want	to know	if the
Rate J	Smoking	g in males	is differe	nt from
Females	in a g	sample of s	203 Jor	danian
the ob	served	Johnes set	as the :	following:
	Smoker	Non Smoker	fotal	(USE 0=0.00)
Males	72	sample g Jahres sef Non Smoker UU	116	
Females		53	87	-
fotal	106	97	203	

$$\frac{|Smoker| Non Smoker| fotal}{|Nales| 60.57 55.03 116}$$

$$\frac{Females}{|I06| 97 57.03 116}$$

$$\frac{Females}{|I06| 97 203}$$

$$\mathcal{J}_{corv}^{2} = \sum \frac{(|0-E|-\frac{1}{2})^{2}}{E}$$

$$= \frac{(|72-60.57|-\frac{1}{2})^{2}}{60.57} + \frac{(|uu-55.u3|-\frac{1}{2})^{2}}{55.u3}$$

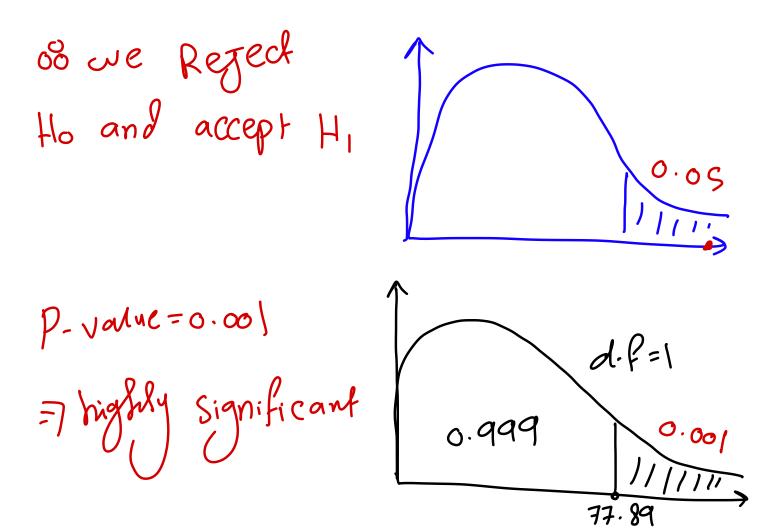
$$+ \frac{(|3u-u5.u3|-\frac{1}{2})^{2}}{US.u3} + \frac{(|53-u1.57|-\frac{1}{2})^{2}}{UI.57}$$

= 12.74

	Regect Ho Cept Hi	0.999	10.83 Critical Nalme
Example	Compute	the expect	fed table
for the	breast Canc	er dafa	Shown in the
following	fable:		
	7,30	< 29	
Casl	683	2537	3220
Control	1498	8747	10245
	2181	11284	13 4 65

xpected			
XVO	7,30	< 29	
Casl	521.6	2698.4	3220
Control	1659.4	8585.6	10245
	2181	11284	13 4 65

 $\chi^2 = 77.89$



Example) Assess the OC-MI data for Statisfical Significance, using Confingency table approach ?

2×2 contingency table for the OC–MI data in Example 10.6

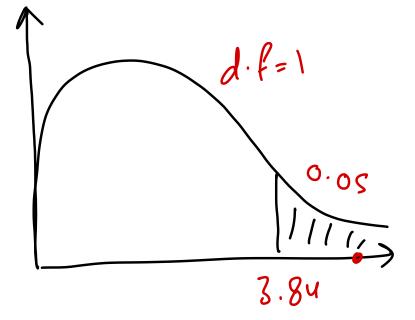
	MI incidence		
OC-use group	Yes	No	Total
Current OC users	13	4987	5000
Never-OC users	7	9993	10,000
Total	20	14,980	15,000

2×2 contingency table for the OC–MI data in Example 10.6

	MI incidenc		
OC-use group	Yes	No	Total
Current OC users	6.7	u993.3	5000
Never-OC users	13.3	9986.7	10,000
Total	20	14,980	15,000

 $\mathcal{K}_{Corr}^{2} = \frac{\left(\left|13-6.7\right|-\frac{1}{2}\right)^{2}}{6.7} + \frac{\left(\left|4987-49933\right|-\frac{1}{2}\right)^{2}}{4} + \frac{\left(\left|4987-49933\right|-\frac{1}{2}\right)^{2}}{4}$

$$+ \frac{(|7 - 13.3| - \frac{1}{2})^2}{13.3} + \frac{(|9993 - 9986.7| - \frac{1}{2})^2}{9986.7}$$



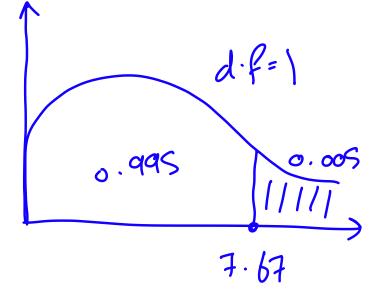
Guidelines for Judging the Significance of a *p*-Value

- If $.01 \le p < .05$, then the results are *significant*.

If $0.01 \le p < 0.05$, then the results are significant. If p < .001, then the results are highly significant. If p < .001, then the results are considered *not statistically significant* (sometimes h p = 0.05, then in terms are considered not satisficanly $S_{A}(p)$ (sometimes denoted by NS). However, if .05 < p < .10, then a trend toward statistical significance is sometimes noted.

0.001 -0.005 -0.01

=> highly significant



NOTES

(1) The purpose of Confingency table is to Summarize a large set of data

2) χ^2_{covr} is called Yates-covrected chi Squared.

3 Always the Expected Jalues are more than 5

(4) The confingency table is often used to determine if the two Jariable have an association independent 5 Ho: if they are

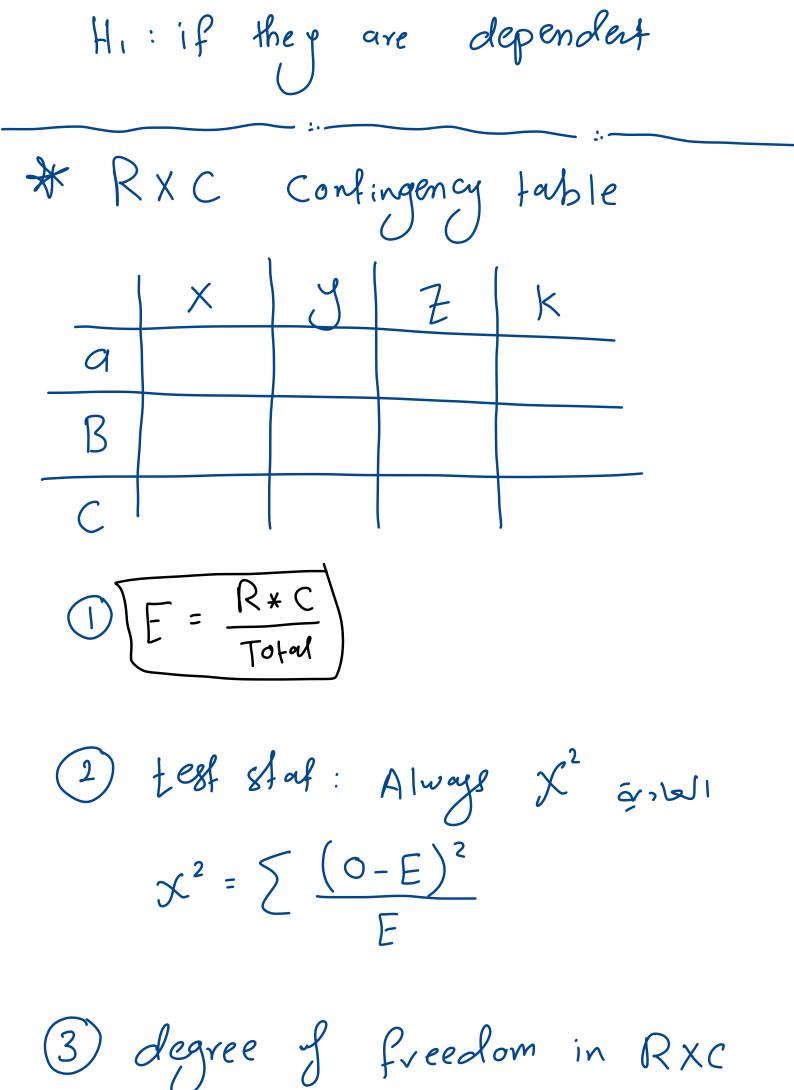


table is calculated as the following: (R-1)*(C-1)(4) The Conditions of the table: A No cell has an exepected <1 B) No more than 1 of the cells have expected value less than 5 (Example) Assess the Statisfical Significance in 300 persons, giving the following:

Table of	Observed	Val	lues
----------	----------	-----	------

Qualification / Marital Status	Middle School	High School	Bachelor's	Master's	Ph.D	Total
Never married	18	36	21	9	6	90
Married	12	36	45	36	21	150
Divorced	6	9	9	3	3	30
Widowed	3	9	9	6	3	30
Total	39	90	84	54	33	300

Ho: Marital status independent from gualification

11

Hı: // //

dependent "

Qualification / Marital Status	Middle School	High School	Bachelor's	Master's	Ph.D
Never Married	$\frac{90 \times 39}{300} = 11.7$	$\frac{90 \times 90}{300} = 27$	25.2	16.2	9.9
Married	19.5	45	42	27	16.5
Divorced	3.9	9	8.4	5.4	3.3
Widowed	3.9	9	8.4	5.4	3.3

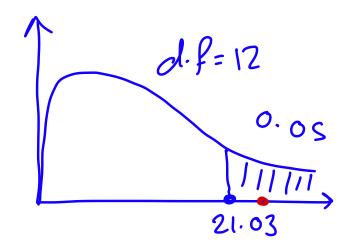
Test stat $\chi^{2} = \sum_{i=1}^{\infty} \frac{(0-E)^{2}}{E}$

$$= 23.57$$

$$d.f = (u-1)(5-1)$$

$$= 3 * 4$$

$$= 12$$



so we Reject the and accept Hi Example) Assess the statisfical significance the data between 2 variables, the age Y I first birth and the prevelance of

breast cancer.

TABLE 10.16 Data from the international study in Example 10.4 investigating the possible association between age at first birth and case-control status

		Age at first birth				
Case-control status	<20	20-24	25-29	30-34	≥35	Total
Case	320	1206	1011	463	220	3220
Control	1422	4432	2893	1092	406	10,245
Total	1742	5638	3904	1555	626	13,465
% cases	.184	.214	.259	.298	.351	.239

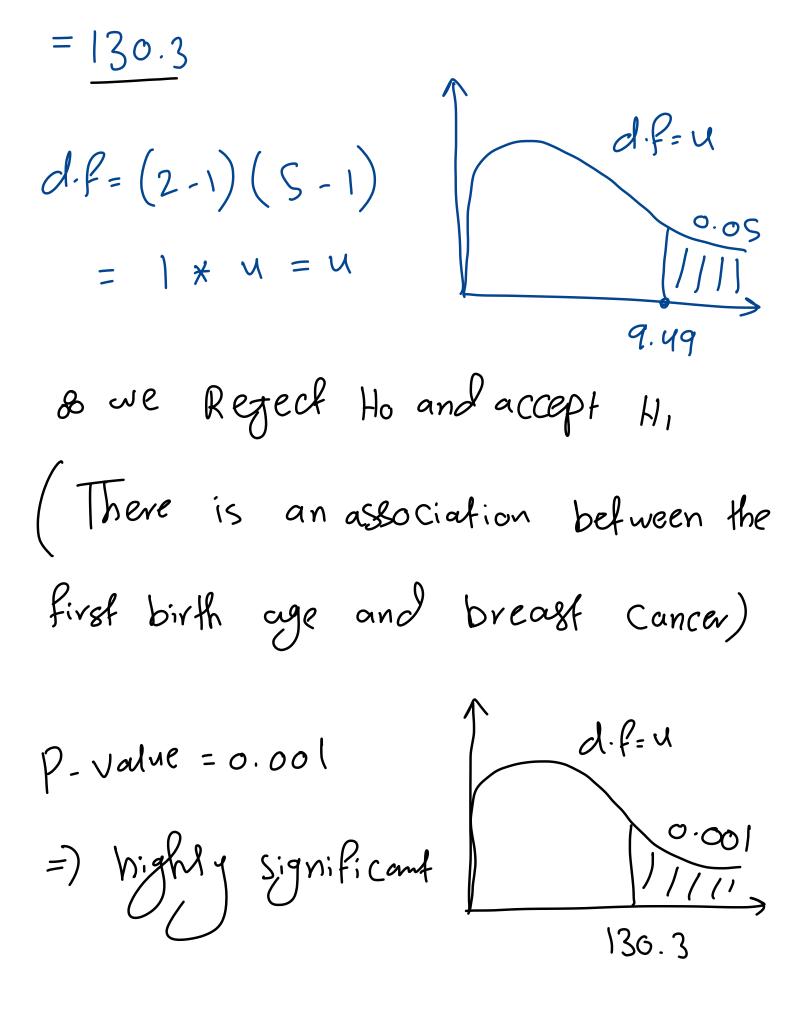
+ (406-476.3

Source: Based on WHO Bulletin, 43, 209-221, 1970.

Stat

 $\chi^2 = \sum \frac{(o-E)^2}{E}$

 $=(320 - M16.6)^2$ 416.6



(Example) Défermine to the 51. Significance level whether School and grade are

dependent.

		Grade			
		A	В	С	Totals
School	X	18	12	20	50
	Y	26	12	32	70
Totals		44	24	52	120

Ho: School is independent from

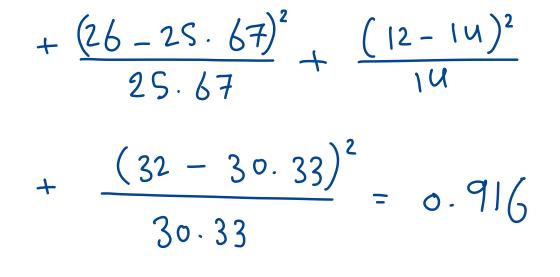
the Grade

Hi: School is dependent on grade

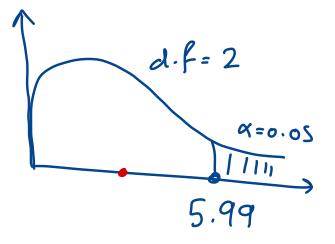
		E · recter				
		Grade				
		A	В	С	Totals	
School	X	$\frac{50 \times 44}{120} = 18.33$	$\frac{50 \times 24}{120} = 10$	$\frac{50 \times 52}{120} = 21.67$	50	
	Y	$\frac{70 \times 44}{120} = 25.67$	$\frac{70 \times 24}{120} = 14$	$\frac{70 \times 52}{120} = 30.33$	70	
Totals		44	24	52	120	

 $\chi^2 = \sum \frac{(0-E)^2}{E}$

 $= \frac{(18 - 18 \cdot 33)^2}{18 \cdot 33} + \frac{(12 - 10)^2}{10} + \frac{(20 - 21 \cdot 67)^2}{21 \cdot 67}$



& we accept Ho and reject Hi



* Goodness of fit test (Chi - Squared)

ے کر ختبا کی حسبہ کر لما بغ

=> Approximation of discrete Randon Javiable to Confinous Random variable $(D) \longrightarrow (b)$ $\Rightarrow P(X < 16) [Discrete]$ (_مين) P(X ≤ I5) (= ⇒ P(X ≤ 15.5) [Continuity correction NOTE $() P(X \leq a) \Rightarrow P(X \leq a + o.s)$ $(2) P(X \ge a) \Rightarrow P(X \ge a - o.S)$ $(3) P(a \le x \le b) \Rightarrow P(a \cdot a \cdot s \le b + o \cdot s)$

Fxamples) () P(X > 18)Discrete = P(X ≥ 19) = P(X > 18.5)(2) P(18 < X < 26) $= P(19 \leq X \leq 2S)$ $= P(18.5 \leq X \leq 25.5)$ $(3) P(18 \le \times < 26)$ $= P(18 \leq X \leq 2S)$ $= P(17.5 \le X \le 25.5)$

(4) $P(18 < X \leq 25)$ $= P(19 \le X \le 2S)$ $= P(18.5 \le X \le 25.5)$ Example) If the $\mathcal{M} = 20$, $\sigma^2 = 16$ find: $\bigcirc P(X < 26)$ $= P(X \leq 2S) \implies P(X \leq 2S.S)$ $\Rightarrow P(Z \leq \frac{2S.S - 20}{2S})$ $= P(Z \le 1.38) = 0.9162$ $(2) p(18 < X \leq 26)$ $= P(19 \le x \le 26) \Rightarrow P(18.5 \le x \le 26.5)$

 $= P(X \le 26.S) - P(X \le 18.S)$ $= P(Z \leq \frac{26.S - 20}{u}) - P(Z \leq \frac{18.S - 20}{u})$;

EXAMPLE 10.46

= P(X < 50)

 $= P(X \leq uq)$

Hypertension Diastolic blood-pressure measurements were collected at home in a community-wide screening program of 14,736 adults ages 30–69 in East Boston, Massachusetts, as part of a nationwide study to detect and treat hypertensive people [6]. The people in the study were each screened in the home, with two measurements taken during one visit. A frequency distribution of the mean diastolic blood pressure is given in Table 10.20 in 10-mm Hg intervals.

We would like to assume these measurements came from an underlying normal distribution because standard methods of statistical inference could then be applied on these data as presented in this text. How can the validity of this assumption be tested?

TABLE 10.20 Frequency distribution of mean diastolic blood pressure for adults 30–69 years old in a community-wide screening program in East Boston, Massachusetts

Group (mm Hg)	O <u>bse</u> rved frequency	Expected frequency	Group	Observed frequency	Expected frequency
<50 <u>≥50, <60</u> ≥60, <70 ≥70, <80	57 330 2132 4584	<u>69.0</u> <u>502.5</u> 2018.4 4200.9	≥80, <90 ≥90, <100 ≥100, <110 ≥110 Total	4604 2119 659 251 14,736	4538.6 2545.9 740.4 120.2 14,736

x=80.68 S = 12

 $P(X \le uq.S) \Rightarrow P(Z \le uq.S - 80.68)$

$$= P(Z \le -2.60)$$

$$= 0.0047$$

$$0.0047 \times 14736 \simeq 69$$

$$\Rightarrow P(50 \le x \le 60)$$

$$= P(50 \le x \le 59)$$

$$\Rightarrow P(49.5 \le x \le 59.5)$$

$$\Rightarrow P(x \le 59.5) - P(x \le 49.5)$$

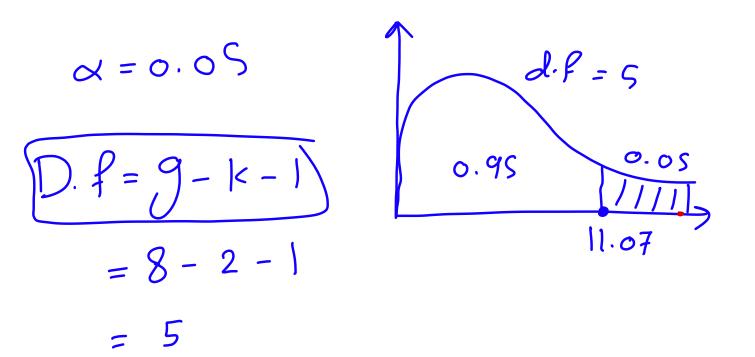
$$= P(Z \le \frac{59.5 - 80.68}{12}) - P(Z \le \frac{495 - 80.68}{12})$$

$$= P(Z \le -1.77) - P(Z \le -2.598)$$

$$= 0.0337 \times 14736 \simeq 502.5$$

lest stat $\chi^2 = \sum \frac{(o-E)^2}{-}$

= 326.2



so are Reject Ho and accept H,

provide an > normal method doesn't adequate fit to the data. NOTES 1) we study the fit of the test to a dafa 2 Expected B Continuity Correction © probability D probability * grand total (3) $\chi^2 = \sum_{i=1}^{\infty} \frac{(o-E)^2}{E}$ 4) D.f= g- k-1

(Ex	ample	The	γγ	nean weig	hts	ł	0	Sample
af	200	patie	enf	s is E	52	$ < G_{s}$	5	and
the	Sfanc	lard	de	eviation	is	3	k(\mathcal{G}_{S} .
		1						
weight	w < 45	45 <u>-</u> ~~ < !	50	50 ≤ W< 55	55 s	いく	60	~ >, 6o
frequency	12	UU		82	53		9	
				ke to			I	
				from the				
How	Can	the	J	alidity	ef .	this	a	Sumption
be	tested	2		\bigcirc				

weight	х у < ч5	<mark>זר</mark> 45 <u>-</u> <∽< 50	50 ≤ W< 55	55 < w < 60	~ >, 60
	12				9
Expecto	1.24	39.42	118.7	39.42	1.24

 $= P(X \leq UY)$ $= P(X \leq uu.s) \Rightarrow P(Z \leq uu.s-52)$ $= P(\overline{2} \leq -2.5)$ = 0.0062

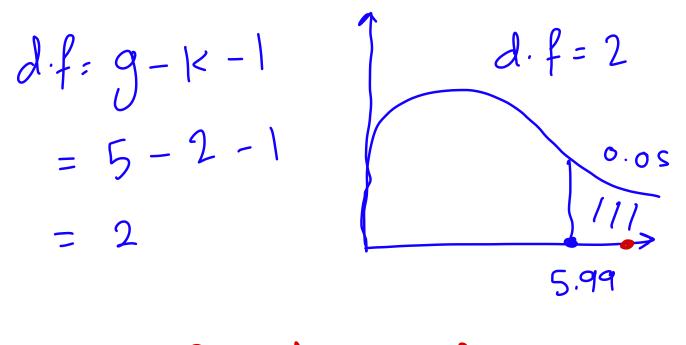
p(x<us)

 $0.0062 \times 200 = 1.24$

 $\exists P(US \leq X < 50)$ $\Rightarrow P(U5 \leq X \leq U9)$ $\Rightarrow P(uu.S \leq X \leq uq.S)$ $= P(X \leq UQ.S) - P(X \leq UU.S)$ $= P(Z \le \frac{uq.5 - 52}{3}) - P(Z \le \frac{uu.5 - 52}{3})$ $= P(Z \leq -0.83) - P(Z \leq -2.5)$ = 0.2033 - 0.0062= 0.1971 $0.1971 \times 200 = 39.42$

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

= 158.49



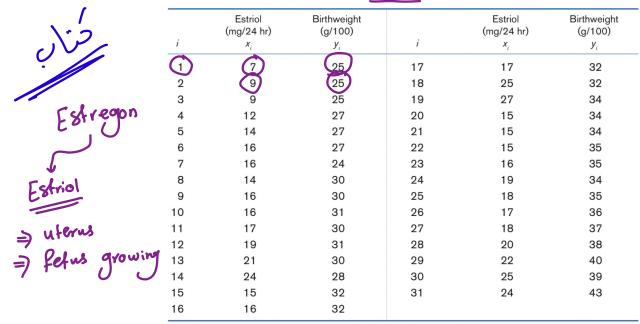
So we Reject to and accept H,

chapter Regression and Correlation 11 Method ⇒ for guanfitative data ∉ 1) Scaffer (2) Correlation Coefficient plot 3) Hypothesis (4) Confidence inferval Jesting * Correlation \Leftarrow (علدقة) J numerical Graph:cal بالأرقام *ی*سومان

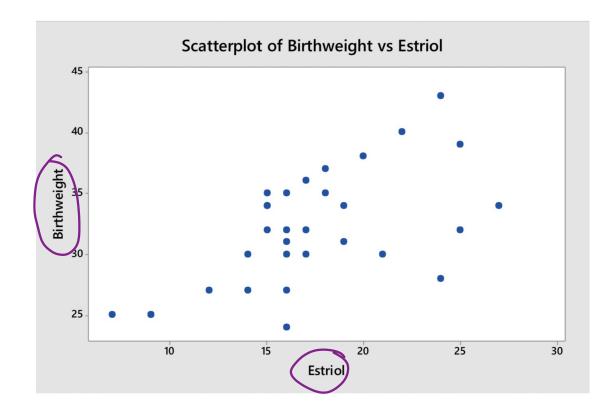
D Graphical (Correlation) "Scatter plot"

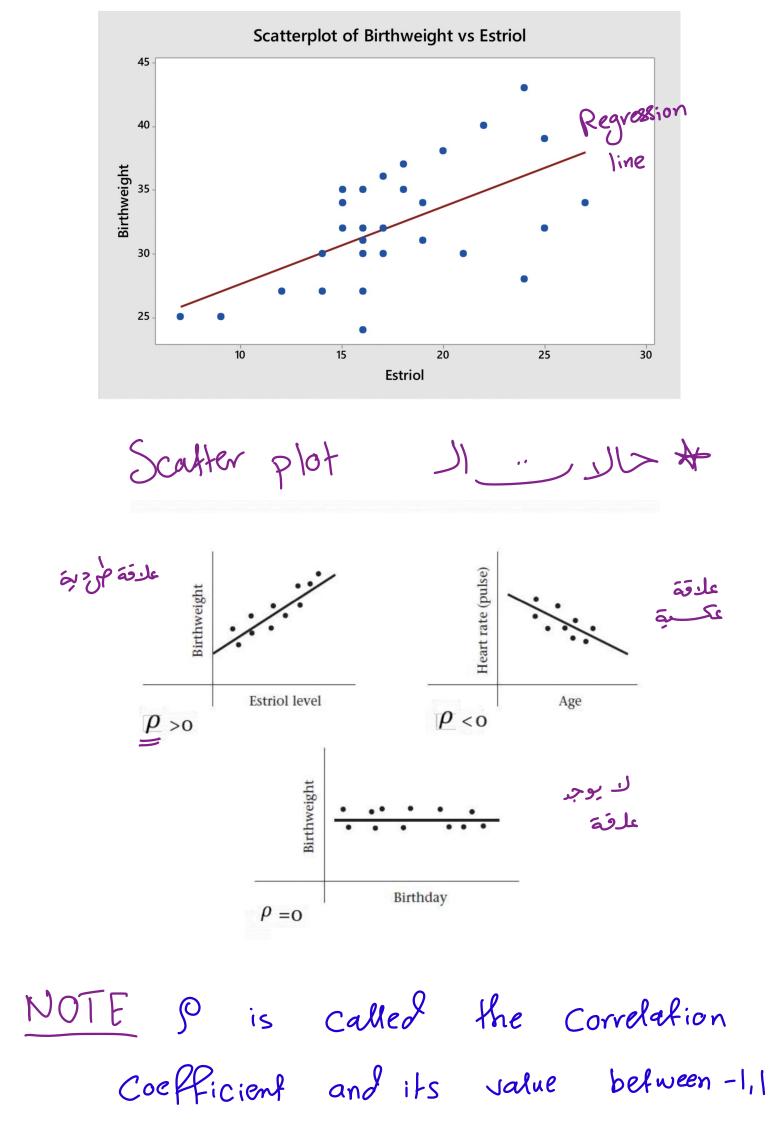
TABLE 11.1

Sample data from the Greene-Touchstone study relating birthweight and estriol level in pregnant women near term



Source: Based on the American Journal of Obstetrics and Gynecology, 85(1), 1-9, 1963.

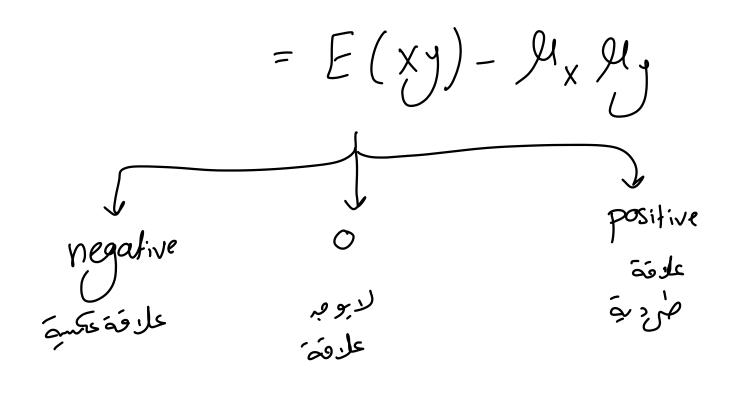


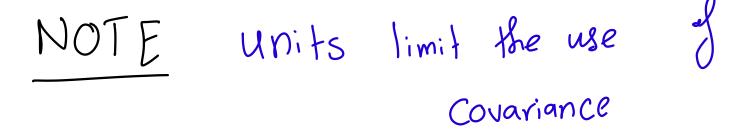


$$\frac{\text{Negative}}{\text{Relationship}} \qquad \begin{array}{l} \text{positive} \\ \text{Relationship} \\ \text{NO} \\ \text{Relationship} \\ \end{array}$$

$$\frac{\text{NOTE}}{\text{P}} = 1 \qquad \left[\begin{array}{c} \text{perfect positive} \\ \text{Relation 8hip} \end{array} \right] \\ \mathcal{P} = -1 \qquad \left[\begin{array}{c} \text{perfect negative} \\ \text{Relation 8hip} \end{array} \right] \\ \mathcal{P} = -1 \qquad \left[\begin{array}{c} \text{perfect negative} \\ \text{Relation 8hip} \end{array} \right] \\ \end{array}$$

$$\left(\begin{array}{c} 2 \end{array} \right) \\ \text{Numerical Method} \\ \text{t Covariance} \\ \\ \text{Cov}(x,y) = E\left((x - \mathcal{A}_x)(y - \mathcal{M}_y) \right) \end{array}$$





X = KGy= mmHg $E\left((X-\mathcal{H}_{X})(Y-\mathcal{H}_{Y})\right)$

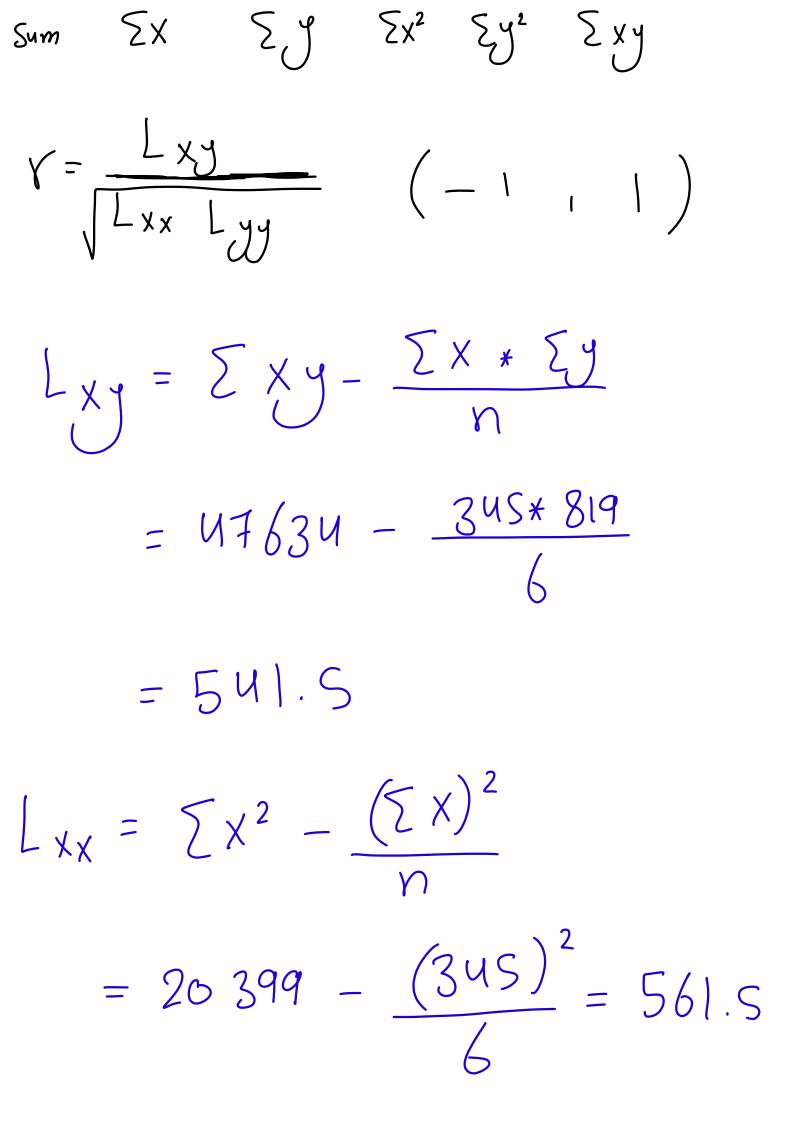
* Correlation Coefficient P: population Correlation Coefficient $\int = \frac{Cov(x,y)}{\sigma_x \sigma_y}$ Y: Sample Correlation Coefficient 11 pearson's Correlation Coefficient" $Y = \frac{L \times y}{\sqrt{L \times x L y}}$ $\int_{-\infty}^{2} \frac{\sum x^{2}}{n-1} - \frac{(\sum x)^{2}}{n(n-1)}$ $L_{XY} = \sum X_{Y} - \frac{\sum x * \sum y}{n}$ $L_{XX} = \sum_{X} X^2 - \frac{(\sum_{X})^2}{n}$

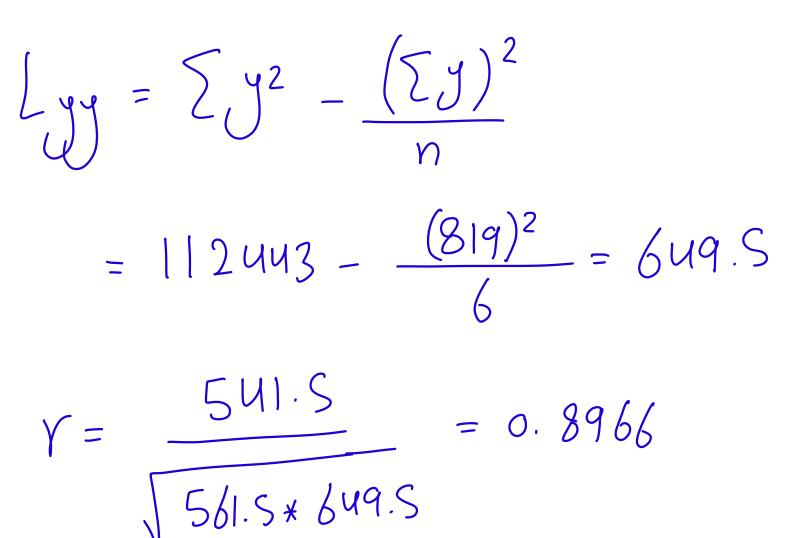
 $L_{yy} = \Sigma y^2 - \frac{(\Sigma y)^2}{\eta}$ NOTES 1) Lxx and Lyy never ever be negative (2) r will be unchanged by a change in the unit of X, y (Example) The Data shown in the table below obtained in a study of age (x) in years and Systolic blood pressure (y) in mmHg for Random Sample J Six patients selected from the emergency of

JUH	in a given day:	
Age	Systolic Blood pressure	
43	128	
u8	(20	
56	135	
61	143	
67	141	
70	152	

Calculate the value of the correlation Coefficient for data? and give a conclusion?

X Age	y SBP	2 X	y²	ХJ
43	128	1849	16384	5504
u8	120	2304	14400	57 60
56	135	3136	18225	7560
61	143	3721	30 UN9	8723
67	141	uu 89	(988)	9 4 47
70	152	U900	23104	10 640





80 There is a strong correlation between the age and SBP.

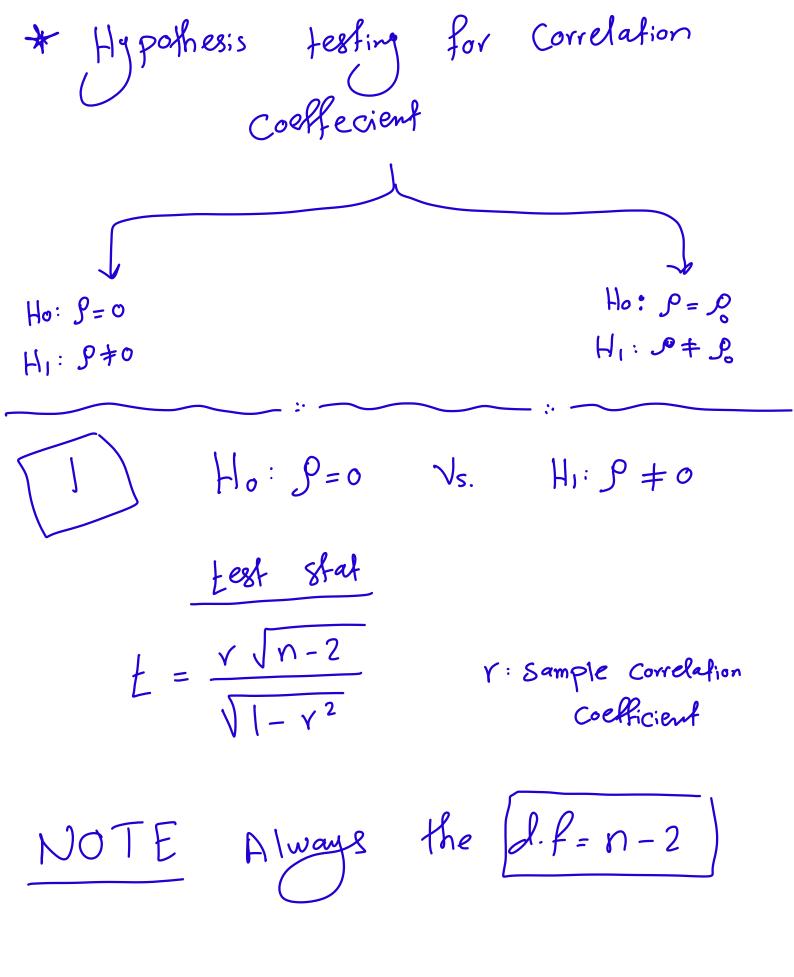
Coef	ficien	r of	the	given	Correlation data:
X	12	15	18	21	27
y	2	Ч	6	8	12

	SI								
1	×	12	15	18	21	27			
	Y	2	Ч	6	8	12			
	\times^2	JUU	225	32 u	NNI	729			
	<u>ع</u> و	ч	16	36	64	JUU			
-	XY	24	60	108	168	324			
	2x=93, 2y=32, Exy=684								
	$\xi x^2 = 1863, \xi y^2 = 264$								

 $= \frac{88.8}{\sqrt{133.2 \times 59.2}}$ $\chi =$ $\sum xy$ Lxx Lyy $L_{XY} = \sum XY - \frac{\sum X * \sum y}{x}$ $= 670 - \frac{93 \times 32}{5} = 88.8$ $L \times x = \Sigma x^2 - (\Sigma x)^2$ $= 1863 - (93)^2 = 133.2$ $L_{y} = \Sigma_{y}^{2} - (\Sigma_{y})^{2}$ $= 264 - \frac{(32)^2}{5} = 59.2$

So perfect positive Relationship (Example) Calculate the Correlation Coefficient of the given data: X5051525354Y3.13.23.33.43.5 Ans. r=) perfect positive Relationship] NOTE $L_{XX} = (n-1) * S_{X}^{2}$ $S_X^2 = \frac{L_{XX}}{n-1} , \quad S_y^2 = \frac{L_{yy}}{n-1}$

 $\int_{XY} = \frac{Lxy}{n-1}$ (Sample Covariance) Sxy (A-1) Sxy Sx * Sy Sx * Sý Istr (g=t) A Stafisfical inference for correlation Coefficent Confidence Hypothesis testing inferval



Example Suppose serum cholestrol levels in sponse pairs are measured to determine whether there is a correlation between cholesterol levels in spouses. Specifically, we wish to test: $H_0: \mathcal{P}=0$ V_s . $H_1: \mathcal{P}=0$ Suppose that r=0.897 based on n=6 spouse pairs. Is there enough evidence to warrent Rejecting Ho? $(usl \alpha = 0.0S)$ Ho: $\mathcal{S} = 0$ \sqrt{s} . $\{1, : \mathcal{P} \neq 0$ test stat $f = \frac{\sqrt{n-2}}{\sqrt{1-r^2}}$

$$= 0.897 * \sqrt{6-2} = 4.056$$

$$\sqrt{1-0.897^{2}}$$

$$\alpha = 0.05$$

$$\frac{4}{2} = 0.025$$

$$\frac{0.975}{-2.776} = 0.025$$

 $H_0: P=0$ Vs. $H_1: P \neq 0$ Fest stat $E = \frac{r \sqrt{n-2}}{\sqrt{1-\gamma^2}} =$ 0.825×113-2 $\sqrt{1 - 0.825^2}$ = 5.27| $\alpha = 0.05$ d.f= 11 0.025 x = 0.025 0.975 0.025 IIII - 2.20 2.201 8 28 Reject to and accept HI "There is a Correlation between" the hour studies and the grade

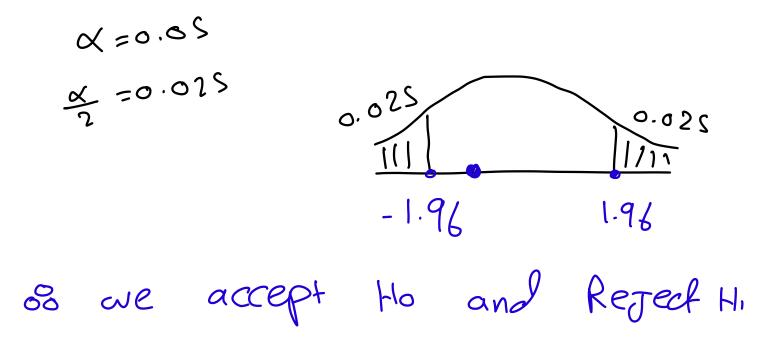
 $\langle 2 \rangle$ Ho: $\beta = \beta_0$ Vs. H₁: $\beta \neq \beta_0$ test stat $\mathcal{T} = (Z - Z_0) \sqrt{n - 3}$ Z transformation = $\frac{1}{2} \ln \frac{(1+r)}{(1-r)}$ $Z_{0} = \frac{1}{2} \ln \frac{(1+p)}{(1-p)}$ NOTE "fisher's Z transformation" (Example) Suppose the Body weights of 100 father (X) and first born son(y)

are measured and a sample correlation Coefficient r of 0.38 is found. we might ask whether or not this sample correlation is compatible with an underlying Correlation of 0.5 that might be expected on genefic grounde. Perform a test f Significance, use d=0.05 $H_0: \mathcal{S} = 0.5 \quad \forall s. \quad H_1: \mathcal{S} \neq 0.5$ test stat $\lambda = (Z - Z_0)\sqrt{N-3}$ $\overline{Z} = \frac{1}{2} \ln \frac{(1+r)}{(1-r)} = \frac{1}{2} \times \ln \left(\frac{1+0.38}{1-0.38} \right)$ = 0. U

 $Z_{0} = \frac{1}{2} \ln \frac{(1+p)}{(1-p)} = \frac{1}{2} \ln \left(\frac{1+0.5}{1-0.5}\right)$

= 0.549

 $\lambda = (Z - Z_0)\sqrt{n-3}$ = (0.4 - 0.549) \sqrt{100-3} = -1.47



7, Jes, r=0.38 is compatible with Correlation of P = 0.5(Example) van compcin is an antibiotic used to treat C. difficile bacteria that cause pseudomembromous colitis A study was done on a sample of 120 patients showed a sample Correlation Coefficient of 0.775 between the dose of vancomycin and the percentage of bacteria in the Colon test whether it suitable to the underlying Correlation of 0.7? $(use \alpha = 0.05)$?

$$\frac{1}{10} \quad H_{0}: \ \mathcal{P} = 0.7 \qquad \text{Ns.} \quad H_{1}: \ \mathcal{P} = 0.7$$

$$\frac{1}{2} \frac{1}{2} \frac{1}{2} \left(\frac{1+r}{1-r} \right)$$

$$= \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right)$$

$$= \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right)$$

$$= \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right) = 1.032$$

$$Z_{0} = \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right) = 0.87$$

$$Q = (1.032 - 0.87) \times \sqrt{120.3}$$

$$= 1.75$$

$$\alpha = 0.05$$

$$\frac{11}{-1.96} \qquad 1.96$$

so we accept Ho and reject H,
P-value = 2×0.040)
= 0.0802 0.0401 0.0401 $1/17$
-1.75 1.75
NOTE you can find the
fisher's Z transformation by this
table:

TABLE 12Fisher's z transformation

r	Ζ	r	Ζ	r	Ζ	r	Z	r	Z
.00	.000								
.01	.010	.21	.213	.41	.436	.61	.709	.81	1.127
.02	.020	.22	.224	.42	.448	.62	.725	.82	1.157
.03	.030	.23	.234	.43	.460	.63	.741	.83	1.188
.04	.040	.24	.245	.44	.472	.64	.758	.84	1.221
.05	.050	.25	.255	.45	.485	.65	.775	.85	1.256
.06	.060	.26	.266	.46	.497	.66	.793	.86	1.293
.07	.070	.27	.277	.47	.510	.67	.811	.87	1.333
.08	.080	.28	.288	.48	.523	.68	.829	.88	1.376
.09	.090	.29	.299	.49	.536	.69	.848	.89	1.422
.10	.100	.30	.310	.50	.549	.70	.867	.90	1.472
.11	.110	.31	.321	.51	.563	.71	.887	.91	1.528
.12	.121	.32	.332	.52	.576	.72	.908	.92	1.589
.13	.131	.33	.343	.53	.590	.73	.929	.93	1.658
.14	.141	.34	.354	.54	.604	.74	.950	.94	1.738
.15	.151	.35	.365	.55	.618	.75	.973	.95	1.832
.16	.161	.36	.377	.56	.633	.76	.996	.96	1.946
.17	.172	.37	.388	.57	.648	.77	1.020	.97	2.092
.18	.182	.38	.400	.58	.662	.78	1.045	.98	2.298
.19	.192	.39	.412	.59	.678	.79	1.071	.99	2.647
.20	.203	.40	.424	.60	.693	.80	1.099		

interval for correlation Confidence fisher's 7 $\left(\begin{array}{c} \mathcal{P}_{1} \\ \mathcal{P}_{2} \end{array}\right)$ Transformation (Z_1, Z_2) NOTES $(1) (1 - \alpha) = CI$ for fisher's Z transformation 2 $(\overline{2}, \overline{2})$ $\overline{Z}_1 = \overline{Z} - \frac{\overline{Z}_{\frac{\alpha}{2}}}{\sqrt{n-3}}$

$$Z_{2} = Z + \frac{Z_{\frac{2}{3}}}{\sqrt{n-3}}$$

$$\overline{Z} \pm \frac{Z}{\sqrt{n-3}} \quad Z = \frac{1}{2} \ln \frac{(1+r)}{(1-r)}$$
(3) for population Correlation

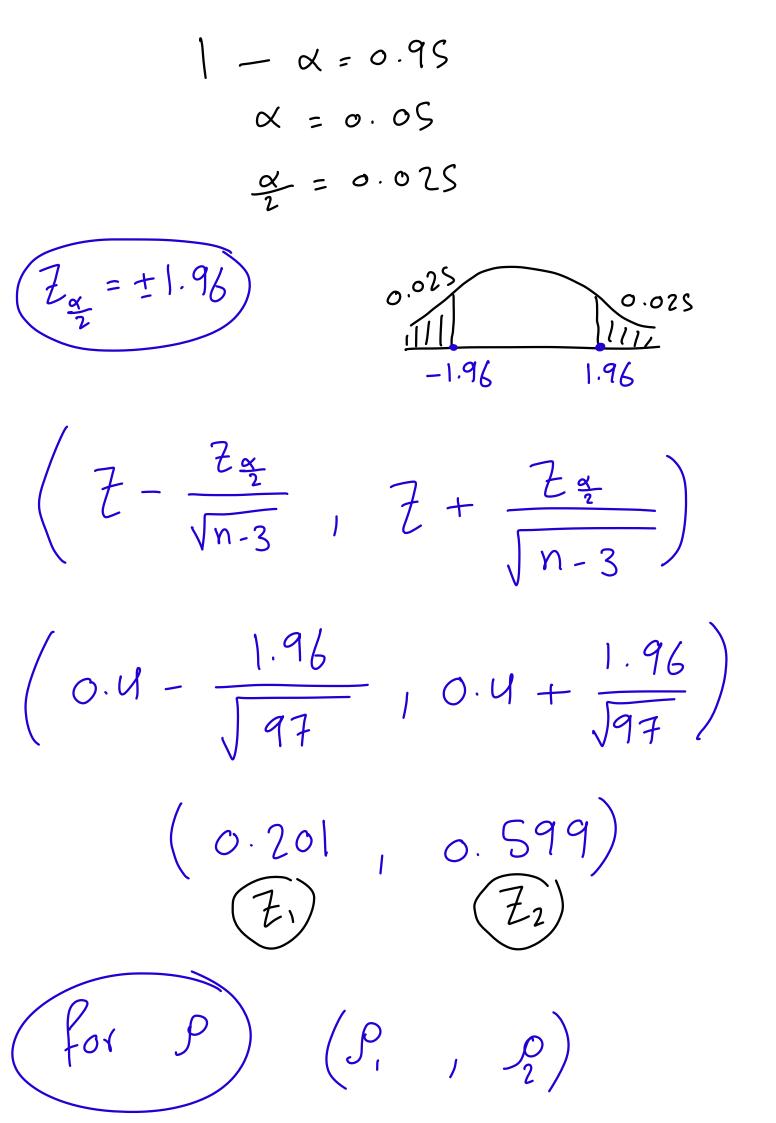
$$Coefficient (P)$$

$$(P_{1}, P_{2})$$

$$P_{1} = \frac{e^{2Z_{1}}}{e^{2Z_{1}}} + 1$$

$$P_{2} = \frac{e^{2Z_{2}} - 1}{e^{2Z_{2}}} + 1$$

(Example) Suppose the Body weights f 100 father (x) and first born son(y) have a Sample Correlation Coefficient $\int v = 0.38$, find 0.95 Confidence for the underlying Correlation? inferval SI $\overline{Z} \pm \overline{Z} + \overline{Z} + \overline{Z} + \overline{\sqrt{n-3}}$ Y = 0.38 CI = 0.95 $Z = \frac{1}{2} \ln \frac{(1+r)}{(1-r)}$ n = 100 $= \frac{1}{2} * \ln\left(\frac{1+0.38}{1-0.38}\right)$ = 0.4

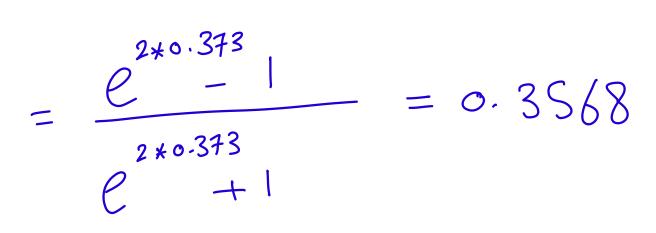


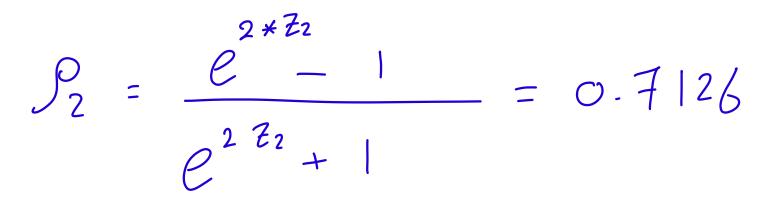
$$\begin{split} \mathcal{J}_{1} &= \frac{e^{2Z_{1}} - 1}{e^{2Z_{1}} + 1} \\ &= \frac{e^{2 \times 0.201} - 1}{e^{2 \times 0.201} + 1} = 0.198 \\ \mathcal{J}_{2} &= \frac{e^{2Z_{2}} - 1}{e^{2Z_{2}} + 1} \\ &= \frac{e^{2X_{2}} - 1}{e^{2X_{2}} + 1} \\ &= \frac{e^{2 \times 0.599} - 1}{e^{2 \times 0.599} + 1} = 0.536 \\ &= 1000 + 1000 \\ &= 0.536 \end{split}$$

Example Suppose we want to estimate the Correlation Coefficient between height and weight I Residents in a certain Country. We select a random Sample 3 60 Residents and find the following information: · Sample Size n=60 • Sample Correlation Coefficient v = 0.56find a 95%. Confidence interval for the Correlation? JS' $Z \pm \frac{Z_{\frac{\varphi}{2}}}{\sqrt{n-3}}$ r = 0.56n = 60



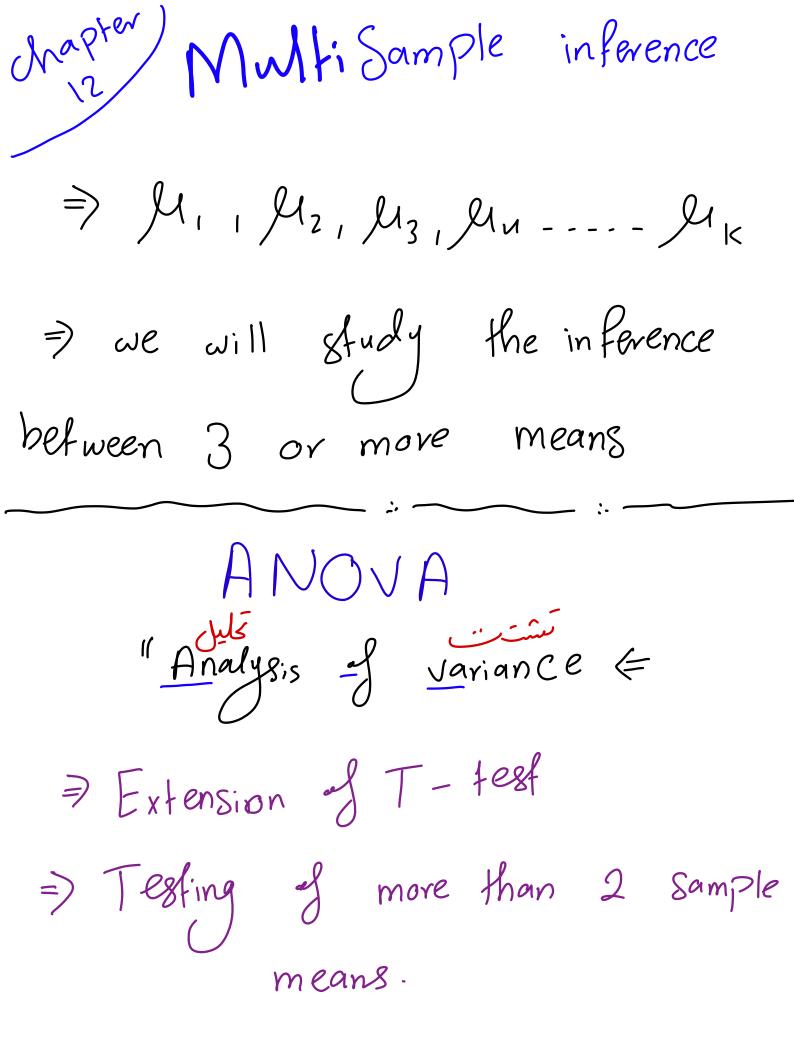
(o. 373, o. 892) $\overline{(Z_1)}$ (\overline{Z}_2) $\Rightarrow \text{ for } \mathcal{O} \left(\begin{array}{c} \mathcal{O} \\ 1 \end{array}, \begin{array}{c} \mathcal{O} \\ 2 \end{array} \right)$ $\int_{1}^{0} = \frac{e^{2E_{1}}}{e^{2E_{1}}} + 1$

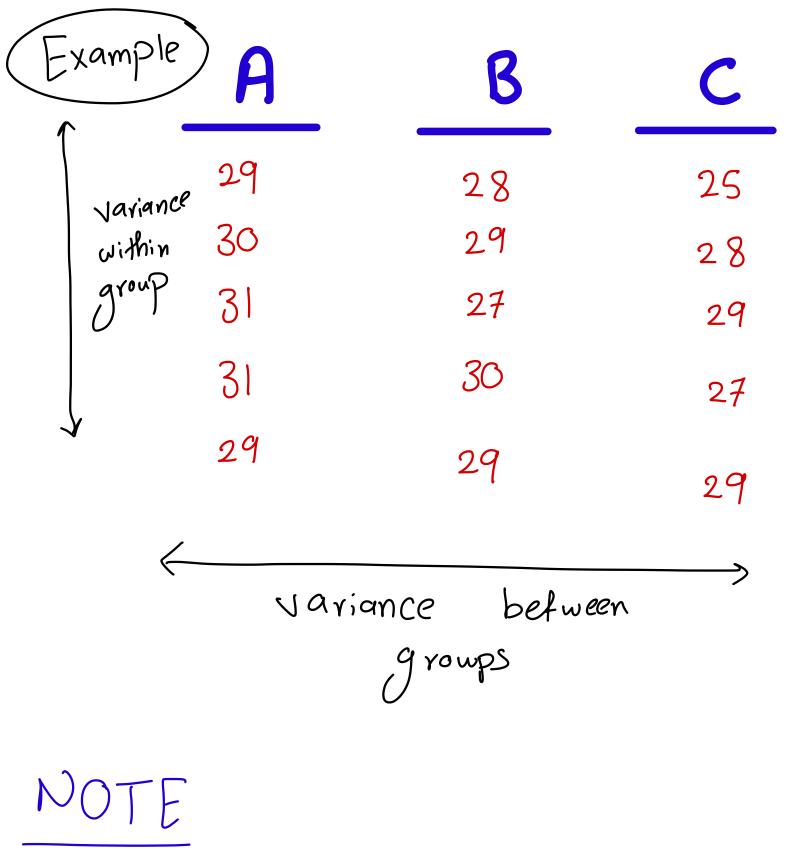




(0.3568, 0.7126)

Summary for Ch. 11 " Statisfical inference" (), Hy pothesis testing (B) Ho: P= Po A Test stat ∇_{s} . Ho: P=0 $\frac{f}{f} = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$ $H_1: \mathcal{P} \neq \mathcal{P}_0$ Vs. $H_1 \cdot P \neq 0$ Test stat $\gamma = (\overline{Z} - \overline{Z}_0) \times \sqrt{n-3}$ Confidence interval 2) A for fisher's Ztransformation $Z \pm \frac{Zq}{\sqrt{n-3}}$ B) for $\int \left(\frac{e^{2Z_{1}}}{e^{2Z_{2}}} + 1 + \frac{e^{2Z_{2}}}{e^{2Z_{2}}} + 1\right)$

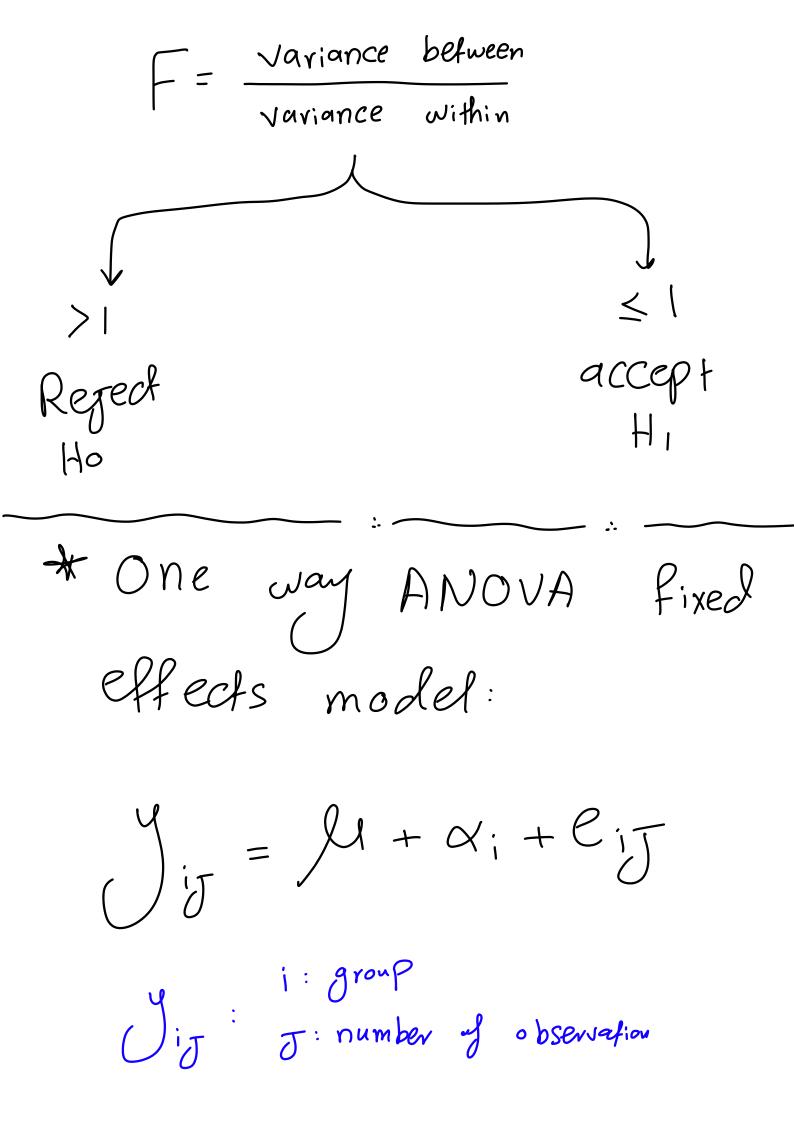




 $H_0: \mathcal{H}_1 = \mathcal{H}_2 = \mathcal{H}_3$

Vs.

H₁: U₁ ≠ U₂ ≠ U₃ at least one equal



المساهمة مرتج (3) في المجويد 2) : 2,3 M: overall mean Cij: error about mean $\alpha_i = \overline{y}_i - \mathcal{M}$ A Hypothesis testing of Multisample using one way ANOVA modal: $\mathcal{H}_{o}: \mathcal{M}_{i} = \mathcal{M}_{2} = \mathcal{M}_{3} = \dots = \mathcal{M}_{k}$ $\begin{pmatrix} v_s \\ H_1 : \mathcal{H}_1 \neq \mathcal{H}_2 \neq \mathcal{H}_3 \neq \dots \end{pmatrix}_k$

NOTE we accept the only if all

the I are equal, if one of the Il differ, we will accept H, $d_{i} = 0$ V_{s} . $H_{i} : \alpha_{i} = 0$ $\lambda_{i} = 0$ V_{s} . $H_{i} : \alpha_{i} = 0$ at least one

Eest stat

$$F = \frac{MS_B}{MS_w}$$

$$MS_{\underline{B}} : Mean Square between = \frac{SSB}{K-1} K: groups K-1 SS_{\underline{B}} = \sum n: (\overline{y}_{i})^{2} - \frac{(\sum n: \overline{y}_{i})^{2}}{N}$$

 $MS_{\omega} = \frac{SS_{\omega}}{N-k}$

N: total Sample Size

$$SS_{\omega} = S(n_i - 1)S_i^2$$

NOTE Degree
$$\mathcal{J}$$
 freedom
 \Rightarrow for $MS_B = k - 1$ (\dot{k})
 \Rightarrow for $MS_W = N - k$ (\dot{k})

Exam	pe) ()			
	ple) (1)	(2)	$\left(\begin{array}{c} 3 \\ \end{array} \right)$	
	Į	2	2	
J 2.67	2.67 3 2	Ч	3	
	5	2	U	
S	4.33	1.33)	

Test whether the mean differ Significantly among 3 groups? (use a = 0.05) $\mathcal{H}_{0}:\mathcal{H}_{1}=\mathcal{H}_{2}=\mathcal{H}_{3}$ $H_o: \alpha_i = O(AII)$ \sqrt{s} . V_{s} . $H_1: \mathcal{H}_1 \neq \mathcal{H}_2 \neq \mathcal{H}_3$ $H_i: \alpha_i \pm o(At i east)$ test stat $F = \frac{MSB}{MSW}$ \Rightarrow MSB = $\frac{SSB}{|k-l|} = \frac{0.22}{3-l} = 0.11$ $SS_{B} = \sum n_{i}(\bar{y}_{i})^{2} - \frac{\left(\sum n_{i} \bar{y}_{i}\right)^{2}}{\sum n_{i}}$ $= 69.7734 - \frac{(25.02)^2}{9} = 0.22$

 $\sum n_i(\bar{y}_i)^2$

 $3 \times (2.67)^{2} + 3 \times (2.67)^{2} + 3 \times (3)^{2}$

= 69.7734 En: ÿi

3 × 2.67 + 3 × 2.67 + 3 × 3 = 25.02

= MS_w = $\frac{SS_w}{N^2 - 14} = \frac{13.32}{9-3} = 2.22$

HINT $SS_{\omega} = \sum (n_i - 1) S_i^2$ $\int_{-\infty}^{2} = \frac{\sum x^{2}}{n-1} - \frac{\left(\sum x\right)^{2}}{n(n-1)}$

 $= (3-1) U \cdot 33 + (3-1) * [-33 + (3-1) *]$ $= 13 \cdot 32$

$$F = \frac{MSB}{MSw}$$

$$= \frac{0.11}{2.22} = 0.0495$$

$$D \cdot f = k - 1$$

$$D \cdot f_{n} = k - 1$$

$$D \cdot f_{d} = N - k$$

$$0 \cdot q = 0$$

$$0 \cdot q =$$

(Example) suppose we want to know whether or not three different exam Prep programs lead to different mean Scores on a certain exam. To test this, we recruite 30 students to participate in a study and split them into three groups, shown with students marks after 3 weeks Jprep:

Group 1	Group 2	Group 3
85	91	79
86	92	78
88	93	88
75	85	94
78	87	92
94	84	85
98	82	83
79	88	85
71	95	82
80	96	81

Source	SS	df	MS	F	Ρ
between	192.2	2	96.1	2.358	0.11385
Within	1100.6	27	40.8		
Total	1292.8	29			

 $H_0: \varphi_i = 0$ V_{s} , H_{i} : $Q_{i} \neq 0$ $H_o: p_1, = p_2 = p_3$ $\forall s. \quad H_1: \quad \mu_1 \neq \mu_2 \neq \mu_3$ test stat $\frac{96.1}{40.8} = 2.35$ $F = \frac{MSB}{MS\omega}$ $D.f_{n} = 2$ $D.f_{n} = 27$ 0.05 1/1/11 3.32D.f= K-1 D.f = N-k& we accept the and Reject to reject, There is insufficient =) fail to say that there is a evidence

Statitically Significant difference between the mean exam scores of three groups (Example) The times required by three Surgeons to perform appendectomy were Recorded on five randomly selected occasions, Here are the times, to the neavest minute.

Maher	Haider	Tareq	Tool Q 10
8	8	16	— Test if the
0	9	9	mean time Recorded
9	9	10	for each surgery is different between
)]	8	jT	
)0	O	9	Surgeons

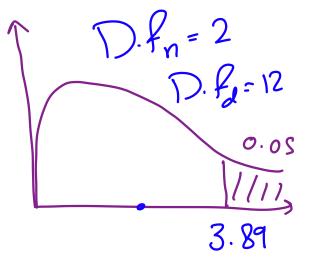
Source	~	df	SS	MS = SS/df	F-statistic	<i>p</i> -value
Treatments	B	2	2.8	1.4	1.5556	<i>p</i> -value > 0.10
Error 🕡		12	10.8	0.9		
Total		14	13.6	_		
		14				

 $H_{0}: \mathcal{U}_{1} = \mathcal{U}_{2} = \mathcal{U}_{3} \quad \forall s. \quad H_{1}: \mathcal{U}_{1} \neq \mathcal{U}_{2} \neq \mathcal{U}_{3}$ $H_{0}: \mathcal{U}_{1} = \mathcal{U}_{2} = \mathcal{U}_{3} \quad \forall s. \quad H_{1}: \mathcal{U}_{1} \neq \mathcal{U}_{2} \neq \mathcal{U}_{3}$

$$F = \frac{MSB}{MS\omega} = \frac{1.4}{0.9} = 1.55$$

$$D.f_n = k-1$$

 $D.f_n = N-k$



so we accept Ho and reject Hi

Exo		Fill in		\bigcirc		
the	parti	ally C	omplete	one-	way Al	JOVA
B	Source Treatments	df	<u>SS</u> 2 124	MS = SS/df 0.708	F-statistic	-
را س	Error Total	20 23	18.880 21.004	<u>o.9</u> 44	0.75	

 $MS_{B} = \frac{SSB}{d.F}$

 $0.708 = \frac{2.124}{d.f}$

 $d \cdot f = \frac{2 \cdot 124}{0 \cdot 708} = 3$

=> MSw = 0.944

 $\Rightarrow F = \frac{MSB}{MSW}$

0.75= <u>0.708</u> MS.,

$$= MS_{w} = \frac{SS_{w}}{N-k}$$

$$0.944 = \frac{SS_{w}}{20} = SS_{w} = 18.880$$

Example Test whether the mean

$$FEF$$
 Scores differ Significantly among
the six groups in the Following table
(use $\alpha = 0.05$)

TABLE 12.1 FEF data for smoking and nonsmoking males

Group number, <i>i</i>	Group name	Mean FEF (L/s)	sd FEF (L/s)	n _i
1	NS	3.78	0.79	200
2	PS	3.30	0.77	200
3	NI	3.32	0.86	50
4	LS	3.23	0.78	200
5	MS	2.73	0.81	200
6	HS	2.59	0.82	200

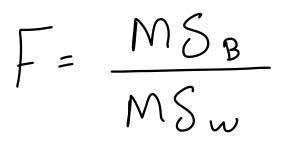
Source: Based on The New England Journal of Medicine, 302(13), 720-723, 1980.

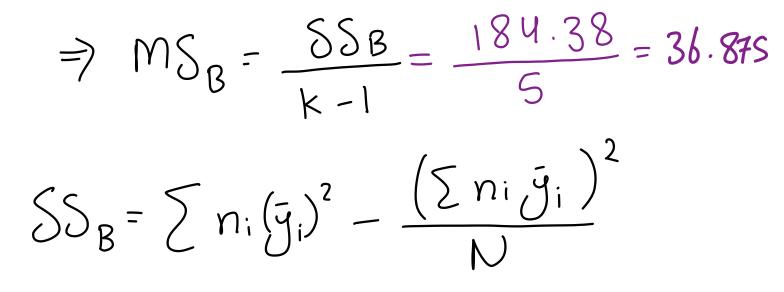
 $H_0: \mu_1 = \mu_2 = \dots = \mu_6$

Vs.

 $H_1: M_1 \neq M_2 \neq M_3 = - - - + M_6$

test stat





 $\sum n_i (\overline{y}_i)^2$

 $200 * (3.78)^{2} + 200 * (3.36)^{2} + 50 * (3.32)^{2} + 200 * (3.32)^{2} + 200 * (3.32)^{2} + 200 * (2.73)^{2} + 200 * (2.59)^{2}$

= 10505.58

 $\sum n_i \overline{y}_i$

 $200 \times 3.78 + 200 \times 3.30 + 50 \times 3.32$ + 260 × 3.23 + 200 × 2.73 + 200 × 2.59 = 3292

 $SS_B = 10505.8S - \frac{(3292)^2}{1050}$

= 184.38

 $= MS_{w} = \frac{SS_{w}}{N-k} = \frac{663.87}{1000} = 0.636$

 $SS_{W} = \sum (n_i - 1) S_i^2$

 $(200 - 1) * 0.79^{2} + 199 * 0.77^{2} + 49 * 0.86^{2}$ $+ 199 \times 0.78^{2} + 199 \times 0.81^{2} + 199 \times 0.82^{2}$ = 663.87

$$F = \frac{MSB}{MSw} = \frac{36.875}{0.636}$$

 $D.f_n = 5$ D.F= louy

x = 0.05 2.21 so we Reject to and accept

Η.

TABLE 12.3 ANOVA table for FEF data in Table 12.1

	SS	df	MS	<i>F</i> statistic	<i>p</i> -value
	00	u	NO.	7 Statistic	<i>p</i> -value
Between	184.38	5	36.875	58.0	р < .001
Within	663.87	1044	0.636		
Total	848.25				

General NOTES About ANOVA: $(I) \quad \mathcal{Y}_{ij} - \bar{\mathcal{Y}}_{ij} = (\mathcal{Y}_{ij} - \bar{\mathcal{Y}}_{i}) + (\bar{\mathcal{Y}}_{i} - \bar{\mathcal{J}})$ $\sum \left(y_{ij} - \bar{y} \right)^2 = \sum \left(y_{ij} - \bar{y}_i \right)^2 + \sum \left(\bar{y}_i - \bar{y}_j \right)^2$ SS. $SS_T = SS_w + SS_B$

* Least Significant difference Test (LSD) =) used to see which means are not Significantly equal the Rest J the means. > Full -> Reject Ho and accept Hi $H_0: \mathcal{M}_1 = \mathcal{M}_2 \qquad \forall s. \quad H_1: \mathcal{M}_1 \neq \mathcal{H}_2$ Test stat $T = \left(\begin{array}{c} \overline{y}_1 - \overline{y}_2 \end{array} \right) - 0$ $\left[SP^{2} = MS_{\omega}\right]$ $\int SP^2 \left(\frac{1}{n} + \frac{1}{m} \right)$ $\mathcal{O}_{\mathcal{A}} = \mathcal{N} - \mathcal{K}$

(Example) Smoking in Book: V_{5} $H_1: \mathcal{U}_1 \neq \mathcal{H}_2$ $\mathcal{H}_{0}: \mathcal{H}_{1} = \mathcal{H}_{2}$ Test stat (3.78-3.30) $T = \frac{\left(\bar{y}_1 - \bar{y}_2\right) - 0}{1 - 1}$ $\int 0.636 \left(\frac{1}{200} + \frac{1}{200} \right)$ $\int SP^2 \left(\frac{1}{n} + \frac{1}{m} \right)$ = 6.02 $Sp^{z} = MS_{u}$ d.f=louu 0.025 0.975 C 1111 so we Reject 1111 Ho and accept H, - 1.96 1.96

 $SO, M, \neq M_2$ A Ho: $\mu_1 = \mu_3$ Vs. $H_1: \mu_1 \neq \mu_3$ Test stat $T = (\tilde{y}_1 - \tilde{y}_3) - 0$ $\sqrt{SP^2}\left(\frac{1}{n}+\frac{1}{m}\right)$ $= \frac{(3.78 - 3.32)}{(3.636 + (\frac{1}{200} + \frac{1}{50}))}$ = 3.65 d.f= 1044 So we Reject 0.025 0.975 C 1111 Ho and 1111 accept H, 1.96 - 1.96

 $SO, M, \neq M_3$ $H_0: M_2 = M_3 V_s. H_1: M_2 \neq M_3$ Test stat $T = \frac{(\tilde{y}_2 - \tilde{y}_3)}{\sqrt{8p^2(\frac{1}{n} + \frac{1}{m})}} = \frac{(3.3 - 3.32)}{\sqrt{0.636(\frac{1}{200} + \frac{1}{200})}}$ = -0.16 d.f=louu a we accept 0.025 Ho and Reject 1111 0.975 C 1111 H, - 1.96 1.96

 $SO, \mathcal{M}_2 = \mathcal{M}_3$

 $H_0: \mu_2 = \mu_4 \quad \forall s. \quad H_1: \mu_2 \neq \mu_4$

Test stat $T = \frac{(\tilde{y}_2 - \tilde{y}_4)}{\sqrt{SP^2(\frac{1}{n} + \frac{1}{m})}} = \frac{(3.3 - 3.23)}{\sqrt{0.636(\frac{1}{200} + \frac{1}{200})}}$

0. 88

So we accept Ho and Reject Hi $\frac{0.025}{1111}$ $\frac{0.925}{0.975}$ $\frac{0.975}{1111}$ $\frac{0.925}{1.96}$ Hi $\frac{0.975}{1.96}$ $\frac{1.96}{1.96}$

Groups compared	Test statistic	<i>p</i> -value
NS, PS	$t = \frac{3.78 - 3.30}{\sqrt{0.636 \left(\frac{1}{200} + \frac{1}{200}\right)}} = \frac{0.48}{0.08} = 6.02^{\circ}$	< .001
NS, NI	$t = \frac{3.78 - 3.32}{\sqrt{0.636 \left(\frac{1}{200} + \frac{1}{50}\right)}} = \frac{0.46}{0.126} = 3.65$	< .001
NS, LS	$t = \frac{3.78 - 3.23}{\sqrt{0.636 \left(\frac{1}{200} + \frac{1}{200}\right)}} = \frac{0.55}{0.08} = 6.90$	< .001
NS, MS	$t = \frac{3.78 - 2.73}{0.080} = \frac{1.05}{0.08} = 13.17$	< .001
NS, HS	$t = \frac{3.78 - 2.59}{0.080} = \frac{1.19}{0.08} = 14.92$	< .001
PS, NI	$t = \frac{3.30 - 3.32}{0.126} = \frac{-0.02}{0.126} = -0.16$	0.87
PS, LS	$t = \frac{3.30 - 3.23}{0.080} = \frac{0.07}{0.08} = 0.88$	0.38
PS, MS	$t = \frac{3.30 - 2.73}{0.080} = \frac{0.57}{0.08} = 7.15$	< .001
PS, HS	$t = \frac{3.30 - 2.59}{0.080} = \frac{0.71}{0.08} = 8.90$	< .001
NI, LS	$t = \frac{3.32 - 3.23}{0.126} = \frac{0.09}{0.126} = 0.71$	0.48
NI, MS	$t = \frac{3.32 - 2.73}{0.126} = \frac{0.59}{0.126} = 4.68$	< .001
NI, HS	$t = \frac{3.32 - 2.59}{0.126} = \frac{0.73}{0.126} = 5.79$	< .001
LS, MS	$t = \frac{3.23 - 2.73}{0.08} = \frac{0.50}{0.08} = 6.27$	< .001
LS, HS	$t = \frac{3.23 - 2.59}{0.08} = \frac{0.64}{0.08} = 8.03$	< .001
MS, HS	$t = \frac{2.73 - 2.59}{0.08} = \frac{0.14}{0.08} = 1.76$	0.08

TABLE 12.4Comparisons of specific pairs of groups for the FEF data in Table 12.1 (on page 552)
using the LSD t test approach

*All test statistics follow a t_{1044} distribution under H_0 .

الأحص مج مساويس

NOTES (accept Ho) =) P-value > a P- Jalue < X (Reject Ho) $\rightarrow MS_{\omega} = MS_{E}$