

Data. Discrete continuous. " countable " Measurable" Steenspics. Descriptive Inferential. Describing, classifying summerizing & presenting > making conclusions or inferences about the data. the pop. based on sumple. chapter(2):- Descriptive statistics. D Measures of central tendency. @ leasures of variation. -> Measures of central tendency s-(2) Mode (m). () Hean (x) 3 Median (Oz). affected by outliers - the most frequent 50⁷. value. - found by: - Used for qualitative - the value in the middle & not data. $\overline{\chi} = \underline{\xi}\chi_{i}$. affected by outliers. one mode -sunimodal. - Q2 -> 1+1, fraction -> average. two modes shimodal. whole no. skeep it. three modes -> my limodal.

& Comparison the mean & the median: @ skewed to sight. O symmetric. (positive) $\overline{\mathbf{X}}$ = $X > Q_{2}$ 3 skewed to left. Negative. $\overline{X} < Q_2$ of Measures of spread & (non-negative values) 3 vounance @std. 1) Range (2) IQR ⇒ Range = Max-Min. Casy to calculate but very sensitive to outliers. => Inter- quartile -range = Q3-Q1 25% 25% 25% 25% 2 Q3 Hin G,

U.x.

takes the middle 50%, not affected by
Outliers.
Q1
$$\rightarrow \frac{25}{100} \cdot n = \frac{n}{4}$$
. If Pracham = next int.
 $O_3 \rightarrow \frac{75}{100} \cdot n = \frac{3n}{4}$. Is whole no $-\frac{n}{4} \frac{14n}{4} + (k+1)^{14}$
Don't forget to order data values.
At Percentiles + The value that has K? of data below it
 $P_{K} \rightarrow \frac{k}{100} \cdot n$. Frecham = next int.
 $P_{K} \rightarrow \frac{k}{100} \cdot n$. Levels that has K? of data below it
 $P_{K} \rightarrow \frac{k}{100} \cdot n$. Levels $\frac{1}{2} \frac{1}{2}$
Deviation $D_{C} = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$.
Sum of Deviations = 0 for any data set.
 $S^{2} = \frac{1}{2} \frac{(x-x)^{2}}{n-1}$.
 $S^{2} = \frac{1}{2} \frac{(x-x)^{2}}{n(n-1)}$.
 $Std = \sqrt{variance}$.
allected by outliers.

A Outliers :-Any value less than Q1-1.5 IQR More than Q3+1.5IQR is called outher Any value less than Q1-3IQR. More than Q3+31QR. is called extreme ourlier. * Coefficient of variation & $C \cdot V = \frac{S}{2} \cdot 100\%$ used to compare variation in two data sets of different units, since its unitless. or coding (linear transform). $y = a \times + b$. Measures of central tendency Measures of spread. $\overline{y} = a \cdot \overline{x} + b$ Range (y) = 1al. Range(x). $Q_2(y) = a \cdot Q_2(x) + b$ $Sy = [a] \cdot S_x$. $S_{4}^{2} = \alpha^{2} \cdot S_{\times}^{2}$ mode (y) = a mode (x) +b. Affected by addition & affected by multiplication multiplication. only.

* Graphic Methods =-

Represent the five number summary: Min, Q1, Q2, Q3, Max. * skewness using box plot : 1) sy monetric. $Q_3 - Q_2 = Q_2 - Q_1$ equal distances. 2 skewed to right . $Q_3 - Q_2 > Q_2 - Q_1$ 3 skewed to left. $Q_3 - Q_2 < Q_2 - Q_1$

* Chapter (3) : probability
=> Some basic Definitionss
Dample space s the set of possible outcomes (3) or (2).
N(3) or N(2) number of elements in S.
outcome: the result of a single trial.
Event: any subset of the sample space A, B, C...
probability: The chance of getting an event.
P(A) =
$$\frac{no}{N(3)} = \frac{no}{elements} = \frac{A}{N(3)}$$

$A = \frac{no}{N(3)} = \frac{1}{no} = \frac{1}{2} \frac{elements}{10} = \frac{A}{N(3)}$
$A = \frac{1}{N(3)} =$

(4) If A & B mutually Exclu	usive (dis joint) :-
$P(A \cap B) = O$	A S
(5) If A & B independent :	
$P(A \cap B) = P(A \times P(B)).$	S B
Also: $P(\overline{A} \cap \overline{3}) = P(\overline{A}) \times P(\overline{B})$	
$P(\overline{A} \land B) = P(\overline{A}) \times P(B)$	
$P(A \land \overline{B}) = P(A) \times P(\overline{B}).$	
6 conditional probability = $P(A B) = \frac{P(A \cap B)}{P(B)}$	
$P(B A) = P(A\cap B)$	
P(A).	AUB = BUA $ADB = BOA$
Note: If A & B independent:	order doesn't matter.
$ \begin{array}{rcl} & & & \\ & & \\ & & \\ & & \\ \end{array} \begin{pmatrix} \rho(A \mid B) & = & \\ \rho(A) & = & \\ \end{array} \begin{pmatrix} \rho(A) & = & \\ \rho(B) & \\ \end{array} \end{pmatrix} . $	
Note: Relative Risk y B given A.	
P(BIA) P(BIA) b>1 dependent.	
Note: P(AOB) = P(AUB) = 1- P(AUB)	
$P(\overline{A} \cup \overline{B}) = \overline{P(A \cap B)} = 1 - P(A \cap B).$	

* probability table s-> good when we need to find intersections. P(ANB) , P(ANB)

	A	Ā	total	
B	P(ANB)	PANB	P(B)	
B	P(BNA)	P(AAB)	P(B)	
total	₽(A)	P(Ā)		

🛷 Scr	reening tests	0						
Actual Disease								
2 2		positive (D)	Negative (D)					
Q								
de								
- S	Posibive (T+)	True positive	False Positive					
		(TP)	(4)					
5								
P	Negative(T)	False Negative	True Negative					
	.	(FN)	(TN)					

$$\Rightarrow P(PV+) = P(DT+) = \frac{P(DT+)}{P(T+)} = \frac{TP}{TP+FP}$$

→ P(PV-) =
$$P(\overline{D} | T^{-}) = \frac{P(\overline{D} \cap T^{-})}{P(T^{-})} = \frac{TN}{TN + FN}$$

→ sensitivity = $P(T^{+} | D) = \frac{P(T^{+} \cap D)}{P(D)} = \frac{TP}{TP + FN}$
→ specificity = $P(T^{-} | \overline{D}) = \frac{P(T^{-} \cap \overline{D})}{P(\overline{D})} = \frac{TN}{TN + FP}$

* Tree diagram (Bayes theorem) :-- used when we have conditional probabilities - used when we have two partitions, two stages - B → P(AAB)= P(A)× P(B(A). PLB(A) P(A) , p(A/)B)= p(A) × p(B)A) B _ P(AOB) = P(A) P(BA) P(BIA) P(BIA) B - P(ANB) = P(A) P(B)A). $P(B) = P(A \cap B) + P(A \cap B)$ Lathis is called total probability rule.

* The Binomial distribution =

$$x$$
 is said to follow binomial if s
 D in independent trials.
(a) we have two outcomes.
(b) we have two outcomes.
(c) we have two outcomes.
(c) prob. of success P is the same.
 $\Rightarrow X \sim Bin(\Lambda, P)$. $x = 0,1,...,n$.
 $n : number of trials.$
 $p : prob. of success.$
 $q : prob. of suc$

