First 022 & 023

1- Which of the following is wrong?

Ans: Costant velocity and there is change in acceleration.

- 2- A book is placed on a chair on the floor, then a video device is placed on top of the book. The ground exerts a vertical force on ..
- A Chair only
- B- Book only
- C -Video device only
- D- It affects the chair, the book, and the video device
- 3- An object travels north to a point then south to its starting position what is the work done by the friction force ..
- A. Zero
- B. ukmgd
- C. -ukmgd
- D. +2ukmad
- E. -2ukmgd
- 4- If you projectile a ball vertically and it returned to the point of projection, then the work done by the gravity force equals to:
- A. zero
- B. mah
- C. -mgh
- 5- What is the average velocity to travel 290 km in $3.25 \, h$.
- (in m/s) ...?
- Ans: 25.2
- 6- A car moves in a constant acceleration 1.9 m/s^2, how long does it take (in seconds) to accelerate from 60 km/h to 120km/h?

8- A box was given an initial speed of <u>6 m/s</u> , and traveled <u>9 m</u> before getting to rest, what is the coefficient of kinetic friction?
9- A property that causes the body to resist movement or change in direction A. Velocity B. Acceleration C. Inertia
10- A chair is placed on the floor above the chair is a book above the book is an object, which of the following is affected by a Normal force A. All three B. Only the object C. Only the chair D. On the object upwards and on the chair downward
11- A bird flies at speed $\underline{26km/h}$,what at what speed (in m/s) does it fly a distance of 2.2km ?
12- A car start moving from rest and then moves $\underline{65km/h}$ at t=3s what's the average acceleration in m/s2 ?
13- What is the SI units of work : A-N.m B-N/m C-J/s D-J.s E-m

7- If you multiplied a vector by a negative scalar, what statement is always true?

Ans: the magnitude may change, and the direction will be reversed

- 14- What is the SI units of power
- A) j/s
- B)N/s
- C)J.s
- D)N.s
- E)N.m
- 15- An object with mass (m) ascends a slope of <u>25 degrees</u> with speed <u>14 m/s</u> and reaches a distance <u>16 m</u> along the incline where it comes to a stop, find the coefficient of kinetic friction.
- 16- Two bodies, the first with a mass M and the second with a mass m, are affected by a force F... If you know that the acceleration of the second is 3 times the acceleration of the first... then the mass of the second body
- A-M/3 B-M*3
 - C-M=m

- 18- There was a question about a body moving at a constant speed and 3 forces acting on it
- $45\ \mbox{N}$ up , $60\mbox{N}$ right , Find the third power..

19- A $\underline{1.4 \text{ kg}}$ block is pushed up a frictionless $\underline{14^\circ}$ inclined plane from point A to point B which are $\underline{1.5 \text{ m}}$ apart by a horizontal force F. If the kinetic energy at by the force F? point A is $\underline{3 \text{ J}}$ and at point B it is $\underline{6 \text{ J}}$, how much work is done (in J) on the block

- A) 7.2
- B) 6.0
- C) 8.0
- D) 1.0
- B)0

20- Two blocks of mass m1= 3.0 kg and mass m2= 14 kg are sitting on the floor of a container as shown. If the container is accelerating downward at 3.5 m/s2 ,the magnitude of the force of block 1 on block 2 (in N) ...

- A) 35
- B) 29
- C) 54
- D) 49
- E) 19

21- The position of a particle moving along the x-axis is given by $x = 2(t^2) - 1$, where t is in seconds.

What is the average velocity during the time interval t = 0 s to t = 2.0 s?

22- find the d' ..

A) 4D

B) 9DC) 1/2D

D) 1/4D

D) 1/4D

24- between 100 kg box and surface there is no friction & betwen the two boxes there is friction. Acceleration of 60 Kg box is 2m/s2, what's Acceleration of 100kg box?

25-

$$V(t) = 4-2(t) \qquad \begin{cases} \frac{t_{s}^{2}}{t_{s}^{2}} \\ \frac{t_{s}^{2}}{t_{s}^{2}} \end{cases}$$

$$a = \frac{\left(4-2(2)\right) - \left(4-2(0)\right)}{2-0} = -2$$

PRINTER PRINT	THE TIME THOUGHT IN	P Thomas Photos who delicated and an		and the second s
第 卷 3 	B I CAL B B	BY BBC B B CT	8 B H 7	THE PRESENT
是 是 第 5 7	6 1 6 5 W	21, 14 , 4 3 3 3 W	8 8 94	JORDAN
	A 1 1 W A	ALKENIE E	CAT.	U CARARA FRI A

Physics (342105)

PHYSICS DEPARTMENT

Registration #....

Lecturer's Name:

Section #

Take $g = 9.8 \text{ m/s}^2$.

FORM NUMBER 27416

Date: Nov/28/2021

Q1) An object moving along the x-axis has an initial velocity v = 1 m/s at t = 0. Its velocity two seconds later is -3 m/s. What is the average acceleration (in m/s²) of the particle between t = 0 and t = 2s?

A) 2

B) 4

C) 0

D) - 2

E) - 4

 $L = \frac{-3-1}{2}$

A stone is projected vertically upwards from the surface of the ground with an initial speed of 15 m/s. Its average speed (in m/s) over the time interval from its projection to the moment just before hitting the ground is:

A) 7.5

B) 9.8

C) 0 V = (2) D) 12.5 %

E) 5.9 Ytrip = 2Vi

A car is moving along the positive x-axis at a constant speed of 15 m/s. The driver notices a red traffic light 30 m alread of him. Thus the driver immediately applies the breaks, and the car decelerates uniformly at 3 m/s². Which of the following statements is correct?

A) The car will stop at a position 7.5 m before reaching the traffic light.

B) The car will stop at a position 7.5 m after the traffic light.

C) The car will stop at a position 2.5 m before reaching the traffic light.

D) The car will stop at a position 2.5 m after the traffic light.

E) The car will stop exactly at the position of the traffic light

A) A helicopter is ascending vertically upwards at a constant speed of 12 m/s. When it is at a height of 60 m above the round it releases a box. The speed (in m/s) of the box just before it hits the ground is:

A) 12

D)

B) 34.3

C) 16.7

D) 9.8

E) 36.3 $V_1 = (12)^2$

Q5) In each figure, the set of forces act on an object. Which set does NOT change the state of motion of the object?

A)

Q6) Which of the following statements is WRONG?

A) While mass is a scalar quantity, weight is a vector quantity.

B) The action force and the reaction force can never act on the same object.

C) An object can move at constant velocity if only one force acts on it.

D) If an object is moving at constant velocity, then the resultant force acting on it is zero.

E) The acceleration is always along the direction of the resultant force.

PHYSICS DEPARTMENT

	First Exam)	AND THE RESIDENCE AND THE PROPERTY OF THE PERSON OF THE PE	Second Semester	
Student's Name (Arabic):	Regis	tration #	× 0.41.77
_ecturer's Name:		Section	on #	X866
CONSIDER (AC	CCELERATION DUE	TO GRAVITY) g = 9	9.8 m/s ²	
Q1) Two objects above the ground	with masses $M_A = M$ and all Ignoring air resistance,	d M _B = 2M are release which of the following	ed from rest at the same	e height h
B) M _A reaches th	ne ground before M _A . The ground before M _B . The ground at the sale ave the same speed just and D are correct.	me time. before hitting the grou	nd. 10 majorijaoo on sa nd. 11 no sa	(PS) in the figure to the control of
$x = t^2 + t - 2,$	s along the x - direction s where x is in meters and me interval $t = 1$ to 3 sec	t in seconds. The ave	s a function of timé is parage velocity (in m/s)	given by of the
A) 3	B) 10	C) 0	D) 5	E) 3
A car is mo	ving at a constant veloci noving a distance D. If t	ty v . Upon applying the initial velocity is 2	he brakes the car deceler v the stopping distance	erates uniformly becomes:
and stops after n	ving at a constant veloci noving a distance D. If t B) 4D	ty v . Upon applying the initial velocity is 2	ne brakes the car decele v the stopping distance D) 6D	e becomes: E) 0.5D
and stops after n A) 2D A stone is t	noving a distance D. If t	C) D with a speed of 18 m.	D) 6D /s from the edge of a cl	E) 0.5D
and stops after n A) 2D A stone is t	noving a distance D. If t B) 4D hrown vertically upward	C) D with a speed of 18 m.	D) 6D /s from the edge of a cl	E) 0.5D
A) 2D A) A stone is the sime (in s) in A) 2.1	B) 4D hrown vertically upward takes the stone to reach B) 28.4 ts from the origin and wan along the negative x -a	C) D with a speed of 18 m the bottom of the clif C) 18.2	D) 6D /s from the edge of a cl ff is: D) 9.6 ositive x – axis. He ther	E) 0.5D iiff 60 m high. E) 5.8
A) 2D A stone is the sime (in s) in A) 2.1 Q5) A man star and moves 12 m	B) 4D hrown vertically upward takes the stone to reach B) 28.4 ts from the origin and wan along the negative x -a	C) D with a speed of 18 m the bottom of the clif C) 18.2	D) 6D /s from the edge of a cl ff is: D) 9.6 ositive x – axis. He ther	E) 0.5D iiff 60 m high. E) 5.8
A) 2D A stone is the time (in s) in the time (in s	B) 4D hrown vertically upward takes the stone to reach B) 28.4 ts from the origin and was a along the negative x –a	C) D with a speed of 18 m. the bottom of the cliff C) 18.2 alks 20 m along the points. If the time of the	D) 6D /s from the edge of a cl ff is: D) 9.6 ositive x – axis. He ther whole trip is 6 s, then D) 0 What is the angle of the	E) 0.5D iff 60 m high. E) 5.8 turns around his average E) 2.0 eir resultant
and stops after m A) 2D (A) A stone is the time (in s) in A) 2.1 Q5) A man start and moves 12 m speed (in m/s) in A) 5.3 Q6) Vectors A $\vec{R} = \vec{A} + \vec{B}$ with	B) 4D hrown vertically upward takes the stone to reach B) 28.4 ts from the origin and wan along the negative x -as B) 1.3 and B are represented as h respect to the positive s	C) D with a speed of 18 m. the bottom of the cliff C) 18.2 alks 20 m along the points. If the time of the	D) 6D /s from the edge of a cl ff is: D) 9.6 ositive x – axis. He ther whole trip is 6 s, then	E) 0.5D iff 60 m high. E) 5.8 turns around his average E) 2.0 eir resultant
and stops after m A) 2D (1) A stone is the time (in s) in A) 2.1 Q5) A man start and moves 12 m speed (in m/s) in A) 5.3 Q6) Vectors A $\vec{R} = \vec{A} + \vec{B}$ with A) 44.5°	B) 4D hrown vertically upward takes the stone to reach B) 28.4 ts from the origin and wan along the negative x —as B) 1.3 and B are represented as the respect to the positive and the posit	C) D with a speed of 18 m. the bottom of the cliff C) 18.2 alks 20 m along the points. If the time of the	D) 6D /s from the edge of a cl ff is: D) 9.6 ositive x – axis. He ther whole trip is 6 s, then D) 0 What is the angle of the	E) 0.5D iff 60 m high. E) 5.8 turns around his average E) 2.0 eir resultant
and stops after m A) 2D (A) A stone is the time (in s) in A) 2.1 Q5) A man start and moves 12 m speed (in m/s) in A) 5.3 Q6) Vectors A $\vec{R} = \vec{A} + \vec{B}$ with	B) 4D hrown vertically upward takes the stone to reach B) 28.4 ts from the origin and wan along the negative x -as B) 1.3 and B are represented as h respect to the positive s	C) D with a speed of 18 m. the bottom of the cliff C) 18.2 alks 20 m along the points. If the time of the	D) 6D /s from the edge of a cl ff is: D) 9.6 ositive x – axis. He ther whole trip is 6 s, then D) 0 What is the angle of the	E) 0.5D iff 60 m high. E) 5.8 turns around his average E) 2.0 eir resultant

The University of Jordan Physics Dept. First Exam Solutions / Physics Pur Medical Students (105) Solutions by Prof. Mahmoud Jaghoub / 12/3/2018 PI) Both masses started from rest at the same height and the have the same gravitational acceleration => the reach the ground at the same time with the same velocity. Q2] $\overline{V}_{1-3} = [9+3-2]-[1+1-2] = 5 m/s$ $(93) \quad v_{f}^{2} - v_{i}^{2} = 2abX \Rightarrow 0 - v_{i}^{2} = -2|a|bX$ for deceleration $9-60=18t-4.9t^2 \Rightarrow 4.9t^2-18t-60=0$ $t = 18 \pm (18)^2 - 4(4.9)(-60) \Rightarrow t \sim 5.8 \text{ s}$ (ignore negative answer) 05] total distance = 20 + 12 = 32 m.

S = total distance = 32 = 5.3 m/s

total hime using @ P = Mk (4g) + 4a P = 10 Newtons

THE UNIVERSITY OF JORDAN

PHYSICS DEPARTMENT

PHYSICS 105 (First Exam)

First Semester

		Registration #	1.445(A					
Lecturer's Name:	E) 75	Section #	46					
*CONSIDER (ACCELERATION DUE TO GRAVITY) g = 9.8 m/s ²								
Q1) The position of an object (in a What is the average velocity of the	m) is given as a func e object (in m/s) bet	ection of time (in s) as $x(t) = 0.0$ s and $t = 0.0$ s	$(3.0)t + (2.0)t^2$.					
A) 7.0 B) 13	C) 27	D) 9.0	E) 3.0					
 Q2) A stone is thrown vertically When the stone is at the top of A changes direction from B is zero. C) is directed upwards. D) is directed downwards. E) none of the above. 	ts path, its acceler	ation vards.	ns to the ground					
The car then slows to a stop unifor during the whole time period (in mA) 36.8 (B) 42.4	(a) is:	D) 58.3						
		2,50.5	E) 64.7					
A ball is thrown vertically upoball starts at an initial height of 3.5	wards with a speed of	of 12 m/s. If the	E) 64.7					
A ball is thrown vertically up ball starts at an initial height of 3.5 air? A) 3.3 B) 1.5	wards with a speed of	of 12 m/s. If the	E) 64.7					
A ball is thrown vertically up ball starts at an initial height of 3.5 air? A) 3.3 B) 1.5 D) 2.7 E) 0.41 Q5) A car starts from the origin an	wards with a speed of m, how long (in s) C) 6.6 d drives 2.2 km sou	of 12 m/s. If the the ball is in the ba	3.5 _m					
A ball is thrown vertically upoball starts at an initial height of 3.5 air? A) 3.3 B) 1.5 D) 2.7 E) 0.41 Q5) A car starts from the origin and 53° north of east. What is the car's A) 1.9 km east C) 1.9 km east and 1.3 km north	wards with a speed of m, how long (in s) C) 6.6 d drives 2.2 km sou final position relati B) 3.1 km eas	of 12 m/s. If the the ball is in the ba	3.5m					
A ball is thrown vertically up ball starts at an initial height of 3.5 air? A) 3.3 B) 1.5	wards with a speed of m, how long (in s) C) 6.6 d drives 2.2 km sou final position relati B) 3.1 km eas D) 1.9 km eas	th, then 3.1 km in a direction ve to the origin? st and 1.2 km south st and 2.5 km north	3.5m					

Physics (0342105)/First Exam 30th OCT /2017 Sample Solutions / Prof. Mahmoud Jaghoub

$$QI$$
 $V_{0-3} = \frac{x_f - x_i}{t_f - t_i} = \frac{x(3) - x(0)}{3 - 0} = \frac{27 - 0}{3} = 9 \text{ m/s}$

02] D) acceleration is directed downwards.

Note: Gravitational acceleration is always towards
the center of the earth (downwards) independent
of the direction of motion.

 $\Delta X_1 = 20 \,\text{m}$, $a = 2 \,\text{m/s}^2$ in first phase of motion, $U_1 = 0$ $\Delta X_2 = ?$ in second phase of motion, $t = 5 \,\text{s}$.

Note: we have two different phases of motion.

phase 1: (2x2x20 = 45 m/s

phase 2: DX2 = 1 (V: + Vf) t

Note: U2i = Uf = 415 m/s, U2f =0

⇒ DX2 = \(\frac{1}{2} \left(4/5 + 0 \right) \(\frac{1}{2} \) = 22.4 M

=> Total displacement DX = DX, + DX2 = 20 + 22.4 = 42.4 m

 $y_{f} - y_{f} = 0; t - \frac{1}{2}gt^{2}$ $0 - 3.5 = 12t - 4.9t^{2}$ $4.9t^{2} - 12t - 3.5 = 0$ $t = \frac{12 \pm \sqrt{(-12)^{2} - 4(4.9)(-3.5)}}{2(4.9)}$ t = 2.7 s

Q5] Resolve both displacements into components.

$$d_{1x} = 0$$
, $d_{1y} = -2.2 \text{ km (North)}$
 $d_{2x} = 3.1 \cos 53^{\circ} \approx 1.9 \text{ km (East)}$
 $d_{2y} = 3.1 \sin 53^{\circ} \approx 2.5 \text{ km (North)}$

$$R_{x} = \vec{J}_{1} + \vec{J}_{2}$$

$$R_{x} = 1.9 \text{ km (East)}$$

$$R_{y} = 0.3 \text{ km (Noith)}$$

96]
$$\vec{R} = \vec{A} + \vec{B}$$
 $R_{x} = A_{x} + B_{x}$, $R_{y} = A_{y} + B_{y}$

$$Ax = 4$$
, $Ay = 0$
 $Bx = 5 \cos 50^{\circ} = -5 \cos 30^{\circ} = -2.5 \sqrt{3}$

$$B_{\rm X} = 5 \cos 500$$
 $B_{\rm Y} = 5 \sin 50^{\circ} = 5 \sin 30^{\circ} = 2.5$

$$\Rightarrow R_{x} = 4 - 2.5 \overline{3} \approx -0.33$$
 $R_{y} = 2.5$

$$tand = \left| \frac{2.5}{-0.33} \right| = \frac{2.5}{6.33}$$

98 For m2: \$ m29-T = m29 - 1 for m,: →+ T - fk = m,a - 2 $0+0 \Rightarrow m_2 g - f_k = (m_1 + m_2) q$ mrg - Mk (m,g) = (m,+mr) 9 $Q = \frac{m_2 g - M_R(m_1 g)}{m_1 + m_2} \sim 6.4 \text{ m/s}^2$ $W_{Total} = DK = \frac{1}{2}(0.52)(0 - (60)^3) = -936 J$. Q10] m1=3kg, m2=14 kg For Mi: Dro + m19 - M = m, a N2 A VNI m2 m2 NI = mig - mia = mi(g-a) = 18.9 Newton = 19 Newton maximum possible value of firetion is figurex for block to remain stationary =>
Mg must NOT exceed from . P11 friction in ts, max > Mg Sur block to remain stationary MsN>, Mg => Ms(F)> Mg :. F) Mg => F> 4x9.8 => Fmin = 196 Newton W = (F Sin 60) (60) Fsin60 ons # 2598 J.