اللهم ا جعل عملنا كله

& Second full summary:

عالماً واجعله لوعلا

Is
$$\sigma$$
 (popsha) given? f xes \Rightarrow $z = \overline{x} - \mu$

$$\sigma/\sigma$$

$$ho \Rightarrow f = \overline{x} - \mu$$

$$NO \Rightarrow t = \overline{X} - M$$

$$\hat{\rho} \sim N(\rho, \frac{P(1-\rho)}{\rho}) \Rightarrow Z = \hat{\rho} - \rho$$

Population parameter	Point estimation	C.I for parameter	Test statistics
μ	$\overline{\mathbf{X}}$	1) σ known $\overline{X} \mp Z_{\frac{\alpha}{2}} * \frac{\sigma}{\sqrt{n}}$ 2) σ unknown:	$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$
		$\overline{X} \mp t_{\frac{\alpha}{2}} * \frac{S}{\sqrt{n}}$	$t = \frac{\overline{X} - \mu_0}{S / \sqrt{n}}$
μ1 – μ2 (Independent)	$\overline{\mathbf{X}} - \overline{\mathbf{Y}}$	$(\overline{X} - \overline{Y}) \mp t\alpha/2 * S.P * \sqrt{\frac{1}{n} + \frac{1}{m}}$ The pooled variance: S ² $= \frac{S_1^2(n-1) + S_2^2(m-1)}{n+m-2}$ $df = n + m - 2$	$t = \frac{\overline{X} - \overline{Y}}{S. P \sqrt{\frac{1}{n} + \frac{1}{m}}}$
μ1 – μ2 = μα	ď	$\begin{split} \overline{d} \mp \ t_{\alpha/2} * \frac{s.d}{\sqrt{n}} \\ \overline{d} = & \frac{\sum d_i}{n} \\ S.d = & \sqrt{\frac{\sum d_i^2}{n-1} - \frac{(\sum d_i)^2}{n*(n-1)}} \end{split}$	$t = \frac{\overline{d} - \mu_d}{s.d/\sqrt{n}}$
Р	P	$\widehat{P} \mp Z_{\frac{\alpha}{2}} * \sqrt{\frac{\widehat{P}(1-\widehat{P})}{n}}$	$Z = \frac{\widehat{P} - P_0}{\sqrt{\frac{P_0(1 - P_0)}{n}}}$

Octermination & Sample size 8-

For
$$M \Rightarrow N = \left(\frac{Z_{N/2}}{E}\right)^2$$
.
For $P \Rightarrow N = \left(\frac{Z_{N/2}}{E}\right)^2$. $\hat{P}\left(1-\hat{P}\right)$
P given $P \Rightarrow N = \left(\frac{Z_{N/2}}{E}\right)^2$. $\hat{P}\left(1-\hat{P}\right)$

Types of errors:

🛕 هي الأخطاء التي يحتمل الوقوع بها اثناء اختبار الفرضيات.

	H₀ true \ H₁ false	H₀ false \ H₁ true
Reject H ₀	Type (1) error α : significance level	$1 - \beta$ Power of the test
Accept H ₀	_,	Type (2) error β