Transport of ions across plasma membranes

Plasma Membranes of Excitable tissues Ref: Guyton, 14th ed: 63-76. 13th ed: pp: 61-71. 12th ed: pp: 57-69,

Generation of action potentials

3 Additional Na⁺ channels open, K⁺ channels are closed; interior of cell becomes more positive.

A stimulus opens some Na⁺ channels; if threshold is reached, action potential is triggered.

Resting state: voltage-gated Na⁺ and K⁺ channels closed; resting potential is maintained.

4 Na⁺ channels close and inactivate. K⁺ channels open, and K⁺ rushes out; interior of cell more negative than outside.

5 The K⁺ channels close relatively slowly, causing a brief undershoot.

Return to resting state.

Copyright © 2009 Pearson Education, Inc.

Figure 5-9

 Na+ and K+ conductance at resting potentials

Refractory periods

Refractory periods and Na+ Channels

Extracellular fluid (ECF)

Intracellular fluid (ICF)

Refractory periods

Involvement of other Ions in Action potential

Cardiac Conduction

Generation of Action potential every 0.8 seconds, or 75 action potentials per minute at the SA node (**Pacemaker of the heart**)

(a) Action potential, refractory period, and contraction

(b) Membrane permeability (P) changes

Cardiac Muscle Action Potential

Generation of action potential at Neural cells

(c) Motor neuron

Supportive cells

Conduction of impulse

Action potentials

Continuous
 Conduction in
 Unmyelinated
 axons

Continuous
 Conduction in
 Unmyelinated
 axons

3

Nerve Impulse on Myelinated Fiber

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Question

• What is the importance of Refractory period at the nerve fiber??

Propagation of Action Potential

Saltatory vs. Continuous conduction

- <u>https://www.youtube.com/watch?v=8yC--</u>
 <u>NvBn M</u>
- <u>https://www.youtube.com/watch?v=RNdvrkol</u>
 <u>WOM</u>
- <u>https://www.youtube.com/watch?v=tOTYO5</u>
 <u>WrXFU</u>

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Chemical gated Channels

Na+ can diffuse through the open channel

Open Na+ channel

When 2 acetylcholine molecules bind to their receptor sites on the Na+ channel, the channel opens to allow Na+ to diffuse through the channel into the cell

Acetylcholine bound to receptor sites

Synaptic Structure and Function

12.10

Generation of EPSP and IPSP

<u>https://www.youtube.c</u>
 <u>om/watch?v=I7-</u>
 <u>PHiy8yCk</u>

Summation of postsynaptic potentials

^{© 2011} Pearson Education, Inc.

(a)

(c)

Synaptic organization

Question

- Identify differences between Chemical and Electrical synapse?
- <u>https://www.youtube.com/watch?v=OvVl8rO</u>
 <u>EncE</u>

• What type of protein structure is involved in having electrical synapse?

Monophasic action potential Vs Biphasic action potentials https://www.youtube.co m/watch?v=bEjpfnXgtUc

A compound action potential recorded at different points along an intact nerve

Each wave reflects the activity of a group of fibers with a similar conduction velocity.

Compound action potentials

Suggested Reading

• https://michaeldmann.net/mann12.html