Tables of Histology MID 2023/2024 # TABLE **4-1** ### Main characteristics of the four basic types of tissues. | Tissue | Cells | Extracellular
Matrix | Main Functions | |------------|---|-------------------------|---| | Epithelial | Aggregated polyhedral cells | Small amount | Lining of surface or body cavities; glandular secretion | | Connective | Several types of fixed and wandering cells | Abundant amount | Support and protection of tissues/organs | | Muscle | Elongated contractile cells | Moderate amount | Strong contraction; body movements | | Nervous | Elongated cells with extremely fine processes | Very small amount | Transmission of nerve impulses | Good for general comparison between types of tissues # TABLE 4-2 Epithelial cell junctions, their major structural features and functions, and medical significance. | Junction | Tight Junction
(Zonula Occludens) | Adherent Junction (Zonula Adherens) | Desmosome
(Macula Adherens) | Hemidesmosome | Gap Junction
(Nexus) | |---|---|--|--|---|--| | Major
transmembrane
link proteins | Occludins, claudins, ZO proteins | E-cadherin, catenin
complexes | Cadherin family
proteins (desmogleins,
desmocollin) | Integrins | Connexin | | Cytoskeletal components | Actin filaments | Actin filaments | Intermediate filaments (keratins) | Intermediate filaments | None | | Major functions | Seals adjacent cells
to one another,
controlling passage
of molecules between
them; separates
apical and basolateral
membrane domains | Provides points
linking the
cytoskeletons of
adjacent cells;
strengthens and
stabilizes nearby tight
junctions | Provides points of
strong intermediate
filament coupling
between adjacent
cells, strengthening
the tissue | Anchors cytoskeleton
to the basal lamina | Allows direct transfer
of small molecules
and ions from one
cell to another | | Medical
significance | Defects in occludins
may compromise
the fetal blood-brain
barrier, leading to
severe neurologic
disorders | Loss of E-cadherin in
epithelial cell tumors
(carcinomas) promotes
tumor invasion and the
shift to malignancy | Autoimmunity
against desmoglein
I leads to dyshesive
skin disorders
characterized by
reduced cohesion of
epidermal cells | Mutations in the integrin-β4 gene are linked to some types of epidermolysis bullosa, a skin blistering disorder | Mutations in various
connexin genes have
been linked to certain
types of deafness
and peripheral
neuropathy | # TABLE 4-3 Common types of covering epithelia. | Major Feature | Cell Form | Examples of Distribution | Main Function | |---|---------------------------------|--|--| | Simple (one layer of cells) | Squamous | Lining of vessels (endothelium);
Serous lining of cavities:
pericardium, pleura, peritoneum
(mesothelium) | Facilitates the movement of
the viscera (mesothelium),
active transport by
pinocytosis (mesothelium and
endothelium), secretion of
biologically active molecules
(mesothelium) | | | Cuboidal | Covering the ovary, thyroid | Covering, secretion | | | Columnar | Lining of intestine, gallbladder | Protection, lubrication, absorption, secretion | | Stratified (two or more layers of cells) | Squamous keratinized (dry) | Epidermis | Protection; prevents water loss | | | Squamous nonkeratinized (moist) | Mouth, esophagus, larynx, vagina, anal canal | Protection, secretion; prevents water loss | | | Cuboidal | Sweat glands, developing ovarian follicles | Protection, secretion | | | Transitional | Bladder, ureters, renal calyces | Protection, distensibility | | | Columnar | Conjunctiva | Protection | | Pseudostratified (layers of cells
with nuclei at different levels; not
all cells reach surface but all adhere
to basal lamina) | | Lining of trachea, bronchi, nasal cavity | Protection, secretion; cilia-
mediated transport of particles
trapped in mucus out of the air
passages | #### TABLE 4-4 #### Structural classes of exocrine glands, features of each class, and examples. #### SIMPLE Glands (Ducts Do Not Branch) | Class | Simple Tubular | Branched Tubular | Coiled Tubular | Acinar (or
Alveolar) | Branched Acinar | |----------|---|---|---|--|---| | | Duct-Secretory portion | | 2 | | | | Features | Elongated secretory
portion; duct usually
short or absent | Several long secretory
parts joining to drain into
1 duct | Secretory portion is very long and coiled | Rounded, saclike secretory portion | Multiple saclike secretory
parts entering the same
duct | | Examples | Mucous glands of colon;
intestinal glands or
crypts (of Lieberkühn) | Glands in the uterus and stomach | Sweat glands | Small mucous glands
along the urethra | Sebaceous glands of the skin | #### COMPOUND Glands (Ducts from Several Secretory Units Converge into Larger Ducts) | Class | Tubular | Acinar (Alveolar) | Tubuloacinar | |----------|---|--|--| | | Secretory portions | | TO THE REAL PROPERTY OF THE PARTY PAR | | Features | Several <i>elongated</i> coiled secretory units and their ducts converge to form larger ducts | Several saclike secretory units with small ducts converge at a larger duct | Ducts of both tubular
and acinar secretory units
converge at larger ducts | | Examples | Submucosal mucous glands (of Brunner) in the duodenum | Exocrine pancreas | Salivary glands | # TABLE 5-1 # Functions of cells in connective tissue proper. | Cell Type | Major Product or Activity | |---|--| | Fibroblasts (fibrocytes) | Extracellular fibers and ground substance | | Plasma cells | Antibodies | | Lymphocytes
(several types) | Various immune/defense functions | | Eosinophilic leukocytes | Modulate allergic/vasoactive
reactions and defense against
parasites | | Neutrophilic leukocytes | Phagocytosis of bacteria | | Macrophages | Phagocytosis of ECM components
and debris; antigen processing
and presentation to immune
cells; secretion of growth factors,
cytokines, and other agents | | Mast cells and basophilic
leukocytes | Pharmacologically active molecules (eg, histamine) | | Adipocytes | Storage of neutral fats | # TABLE 5-2 #### Distribution and main functions of the cells of the mononuclear phagocyte system. | Cell Type | Major Location | Main Function | |---|---|--| | Monocyte | Blood | Precursor of macrophages | | Macrophage | Connective tissue, lymphoid organs,
lungs, bone marrow, pleural and
peritoneal cavities | Production of cytokines, chemotactic factors, and several other molecules that participate in inflammation (defense), antigen processing, and presentation | | Kupffer cell | Liver (perisinusoidal) | Same as macrophages | | Microglial cell | Central nervous system | Same as macrophages | | Langerhans cell | Epidermis of skin | Antigen processing and presentation | | Dendritic cell | Lymph nodes, spleen | Antigen processing and presentation | | Osteoclast (from fusion of several macrophages) | Bone | Localized digestion of bone matrix | | Multinuclear giant cell (several fused macrophages) | In connective tissue under various pathological conditions | Segregation and digestion of foreign bodies | #### TABLE 5-3 Collagen types. | INDLES | -5 conagen t | , | | | | |------------|----------------------------------|--|--|---|---| | Туре | α-Chain
Composition | Structure | Optical Microscopy | Major Location | Main Function | | Fibril-For | ming Collagens | | | | | | 1 | [a1 (I)] ₂ [a2 (I)] | 300-nm molecule,
67-nm banded fibrils | Thick, highly picrosirius birefringent, fibers | Skin, tendon, bone,
dentin | Resistance to tension | | II | [a1 (II)] ₃ | 300-nm molecule,
67-nm banded fibrils | Loose aggregates of fibrils, birefringent | Cartilage, vitreous body | Resistance to pressure | | III | [a1 (III)] ₃ | 67-nm banded fibrils | Thin, weakly birefringent,
argyrophilic (silver-
binding) fibers | Skin, muscle, blood
vessels, frequently
together with type I | Structural maintenand
in expansible organs | | V | [a1 (V)] ₃ | 390-nm molecule,
N-terminal globular
domain | Frequently forms fiber together with type I | Fetal tissues, skin,
bone, placenta, most
interstitial tissues | Participates in type I collagen function | | XI | [a1 (XI)] [a2 (XI)]
[a3 (XI)] | 300-nm molecule | Small fibers | Cartilage | Participates in type II collagen function | | Network- | Forming Collagens | | | | | | IV | [a1 (IV)] ₂ [a2 (IV)] | 2-dimensional cross-
linked network | Detected by immunocytochemistry | All basal and external laminae | Support of epithelial cells; filtration | | X | [a1(X)] ₃ | Hexagonal lattices | Detected by immunocytochemistry | Hypertrophic
cartilage involved in
endochondral bone
formation | Increases density of the matrix | | Linking/A | nchoring Collagens | | | | | | VII | [a1 (VII)] ₃ | 450 nm, globular
domain at each end | Detected by immunocytochemistry | Epithelial basement membranes | Anchors basal lamina
to underlying reticula
lamina | | IX | [α1 (IX)] [α2 (IX)]
[α3 (IX)] | 200-nm molecule | Detected by immunocytochemistry | Cartilage, vitreous body | Binds various
proteoglycans;
associated with type
collagen | | XII | [a1 (XII)] ₃ | Large N-terminal
domain | Detected by immunocytochemistry | Placenta, skin, tendons | Interacts with type I collagen | | XIV | [a1 (XIV)] ₃ | Large N-terminal
domain; cross-shaped
molecule | Detected by immunocytochemistry | Placenta, bone | Binds type I collagen
fibrils, with types V an
XII, strengthening fibr
formation | Check types: I,II,III,IV,VII,IX ### TABLE 5-4 ### Examples of clinical disorders resulting from defects in collagen synthesis. | Disorder | Defect | Symptoms | |-------------------------|---|---| | Ehlers-Danlos type IV | Faulty transcription or translation of collagen type III | Aortic and/or intestinal rupture | | Ehlers-Danlos type VI | Faulty lysine hydroxylation | Increased skin elasticity, rupture of eyeball | | Ehlers-Danlos type VII | Decrease in procollagen peptidase activity | Increased articular mobility, frequent luxation | | Scurvy | Lack of vitamin C, a required cofactor for prolyl hydroxylase | Ulceration of gums, hemorrhages | | Osteogenesis imperfecta | Change of 1 nucleotide in genes for collagen type I | Spontaneous fractures, cardiac insufficiency | Read – Just in case # Composition and distribution of glycosaminoglycans in connective tissue and their interactions with collagen fibers. | | Repeating Dis | saccharides | | | |-----------------------|---|-----------------|---|---| | Glycosaminoglycan | Hexuronic Acid | Hexosamine | Distribution | Electrostatic Interaction with Collagen | | Hyaluronic acid | p-glucuronic acid | D-glucosamine | Umbilical cord, synovial fluid, vitreous humor, cartilage | | | Chondroitin 4-sulfate | p-glucuronic acid | D-galactosamine | Cartilage, bone, cornea, skin,
notochord, aorta | High levels of interaction,
mainly with collagen type II | | Chondroitin 6-sulfate | p-glucuronic acid | p-galactosamine | Cartilage, umbilical cord, skin,
aorta (media) | High levels of interaction,
mainly with collagen
type II | | Dermatan sulfate | ι-iduronic acid or
p-glucuronic acid | D-galactosamine | Skin, tendon, aorta (adventitia) | Low levels of interaction,
mainly with collagen type I | | Heparan sulfate | ם-glucuronic acid or
נ-iduronic acid | p-galactosamine | Aorta, lung, liver, basal
laminae | Intermediate levels of
interaction, mainly with
collagen types III and IV | | Keratan sulfate | p-galactose | p-glucosamine | Cartilage, nucleus pulposus,
annulus fibrosus | None | Memorize (name of GAG + distribution) | | General Organization | Major Functions | Examples | |--|---|--|---| | Connective Tissue Proper | | | | | Loose (areolar) connective tissue | Much ground substance; many cells and little collagen, randomly distributed | Supports microvasculature,
nerves, and immune defense
cells | Lamina propria beneath epithelial lining of digestive tract | | Dense irregular connective tissue | Little ground substance; few
cells (mostly fibroblasts); much
collagen in randomly arranged
fibers | Protects and supports organs;
resists tearing | Dermis of skin, organ capsules,
submucosa layer of digestive
tract | | Dense regular connective tissue | Almost completely filled with
parallel bundles of collagen; few
fibroblasts, aligned with collagen | Provide strong connections within musculoskeletal system; strong resistance to force | Ligaments, tendons, aponeuroses, corneal stroma | | Embryonic Connective Tissues | | | | | Mesenchyme | Sparse, undifferentiated cells,
uniformly distributed in matrix
with sparse collagen fibers | Contains stem/progenitor cells for all adult connective tissue cells | Mesodermal layer of early embryo | | Mucoid (mucous) connective tissue | Random fibroblasts and collagen fibers in viscous matrix | Supports and cushions large blood vessels | Matrix of the fetal umbilical cord | | Specialized Connective Tissues | | | | | Reticular connective tissue (see Chapter 14) | Delicate network of reticulin/
collagen III with attached
fibroblasts (reticular cells) | Supports blood-forming cells,
many secretory cells, and
lymphocytes in most lymphoid
organs | Bone marrow, liver, pancreas,
adrenal glands, all lymphoid
organs except the thymus | | Adipose Tissue (Chapter 6) | | | | | Cartilage (Chapter 7) | | | | | Bone (Chapter 8) | | | | | Blood (Chapter 12) | | | |