2. What we mean by electro-chemical equilibrium?	
A state when the electrical gradient (electrical forces driving diffusion of an ion) and the chemical gradient (concentration difference across a membrane) are equal but opposite in direction so that there is no net movement of ions	
3. What ion is having the most negative Equilibrium Potential?	
K+ (potassium ion)	
Are we generating in all excitable cells the same resting membrane potentials? Question 4b: Explain why?	
No, because of the difference in permeabilities of ions for every type of cells; the number and opening of channels specific to a specific ion differ from cell to cell	
5. At a plasma membrane, a resting potential of (-85) mv has been established, Question: What happens to that potential by activation of more CI- channels?	
Nothing, (-85 is very near or equal to the nernst potential for CI- ions)	
6. How can we measure the membrane potential?	
Using the Goldman equation	
7. The patch clamp technique is useful to clamp (fix) the membrane potential at a specific voltage, Question: What can we study by using this technique?	
The changes to the activity of gated channels by changing the voltage (potential); changes to the permeability of ions with changing potential.	
Inside cells the concentration of proteins is higher than in the extracellular fluid.	
Question: Is the presence of protein in a higher concentration inside contributing in establishing resting membrane potential?	
No, because the membrane is not permeable for such large molecules	