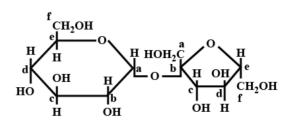
Test bank - carbohydrates By Hind Shaker Suhwail , modified by Dana Hijjeh

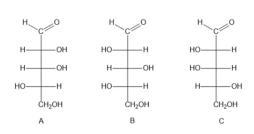
- Q1-What is the role of glycosaminoglycans in the body?
- a. Energy storage
- b. Structural support
- c. Building blocks for larger molecules
- d. Hormone regulation
- Q2- Glycoproteins are primarily involved in:
- a. Energy storage
- b. Catalysis of biochemical reactions
- c. Cellular recognition
- d. Transmission of genetic information
- Q3- You are examining various saccharides in a laboratory setting. Based on your analysis, answer the following question , Which of the following statements is true about monosaccharides, disaccharides, oligosaccharides, and polysaccharides?
- a. Monosaccharides are simple sugars that cannot be hydrolyzed into smaller carbohydrate units.
- b. Disaccharides are composed of three to ten monosaccharide units.
- c. Oligosaccharides are long chains of hundreds to thousands of monosaccharides.
- d. Polysaccharides are composed of two monosaccharide units linked together.
- Q4 The number of chiral carbon atoms present in open chain forms of glucose and fructose are:
- a. 3 in each
- b. 4 in each
- c. 3 in glucose 4 in fructose
- d. 4 in glucose and 3 in fructose
- Q5. The number of chiral carbons in Pyranose form of glucose is?
- a. 3
- b. 4
- c. 6
- d. 5


Q6. Why are glucose, fructose and galactose known as isomers?

- a. They all have the same optical property
- b. They have same structural and chemical formula
- c. The arrangement of asymmetric carbon
- d. They have the same chemical formula, but Vary in the arrangement of atoms in the molecule

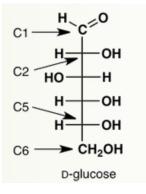
Q7. Choose the correct combinations of the monosaccharides forming disaccharides.

- i. Glucose + Glucose = Maltose
- ii. Glucose + Fructose = Lactosesugar
- iii. Glucose + Fructose = Sucrose
- iv. Glucose + Galactose = Lactose
- a. i, ii, iii only
- b. ii only
- c. i, iii, iv only
- d. All of the above


Q8.Structure of a disaccharide formed by glucose and fructose is given below Identify anomeric carbon atoms in monosaccharides units.

- a. a' carbon of glucose and 'a' carbon of fructose
- b. 'a' carbon of glucose and 'e' carbon of fructose
- c. 'a' carbon of glucose and 'b' carbon of fructose
- d. 'f' carbon of glucose and 'f' carbon of fructose

Q9. How are compounds A and B related?


- a. enantiomers
- b. Diastereomers
- c. Structural isomers
- d. Identical

Q10. Which carbon becomes the anomeric carbon of glucose in its pyranose form?

- a. C1
- b. C2
- c. C5
- d. C6

Q11. Which of the following is not a reducing sugar?

- a) D-fructose
- b) D-ribose
- c) lactose
- d) sucrose

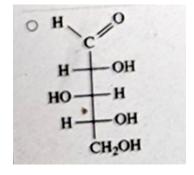
Q12. Which is the correct open-chain form for the sugar below

- a. A
- b. B
- c. C
- d. D

Q13. identify the incorrect statement

- a. The ring forms of sugars occur in equilibrium with the open-chain aldehyde or ketone forms in solution.
- b. open chain aldehyde or ketone forms of sugars are able to act as reducing sugars.
- c. A glycosidic bond is always a bond between two carbon atoms, one of which must always be the anomeric carbon of a sugar.
- d. Cyclization of glucose involves the reaction of the OH group at C-5 with the carbonyl carbon of the aldehyde group to form a stable six-membered pyranose ring.

Q14.When a monosaccharide is oxidized by an oxidizing agent such as Benedict's reagent, a sugar acid is produced. For example the oxidation of glucose produces gluconic acid. Following is a representation of the oxidation reaction for a monosaccharide. Identify the monosaccharide that is the reactant in this reaction.


.A

В.

HO—

CH₂OH C.

OH

D.

Q15. Select the answers that describes this sugar accurately .

a. galactose; glucose; reducing

b. glucose; glucose; non-reducing

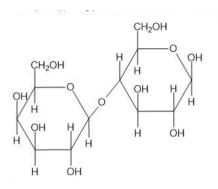
c.glucose; glucose; reducing

d.galactose; glucose; non reducing

Q16.Phosphoester linkages are formed between a phosphate group and which functional group of a sugar molecule? Two answers

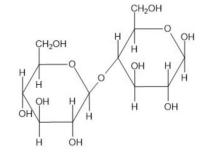
- a. Hydroxyl group
- b. Carbonyl group
- c. Amino group
- d. Carboxyl group

Q17. Which explains why glycosides do not undergo mutarotation?

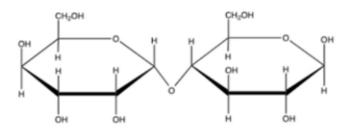

a. There is no longer an anomeric carbon.

b.There are no longer any stereocenters.

- c. The ring structure does not open to become the open-chain structure.
- d.None of the above is correct.


Q18. Identify the type of bond

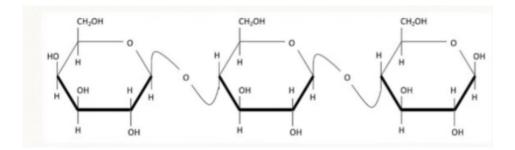
- **a.** *a* (1,4)
- **b.** *b* (1,2)
- **c.** *a* (1,2)
- **d.** *b* (1,4)


Q19. Choose the monosaccharide units produced by hydrolysis for the disaccharides :

- a. One glucose and one galactose
- b. One glucose and one fructose
- c. Two galactose
- d. Two glucose

Q20. The following is a disaccharide with _____glycosidic bond .

- **a.** *a* (1,4)
- **b.** *b* (1,2)
- **c.** *a* (1,2)
- **d.** *b* (1,4)



Q21. Which of the following conditions is associated with the formation of cataracts due to metabolic issues?

- a. Lactose intolerance
- b. Galactosemia
- c. Diabetes mellitus
- d. Hypoglycemia

- Q22. Which of the following drugs is not correctly matched with its therapeutic use?
- a.Streptomycin Antibiotic
- b.Digoxin Cardiovascular disease
- c.Doxorubicin Antiviral
- d.Erythromycin Antibiotic
- Q23. Which enzyme is responsible for breaking down raffinose in those organisms that can digest it?
- a.Amylase
- b. Lactase
- c. Alpha-galactosidase
- d. Beta-galactosidase
- Q24. Which of the following best describes the structure and digestion process of raffinose in the human digestive system?
- a. Raffinose is a disaccharide composed of glucose and fructose; it is easily digested by human enzymes in the small intestine.
- b. Raffinose is an oligosaccharide composed of galactose, glucose, and fructose; it is not digested by human enzymes but is fermented by intestinal bacteria producing gases.
- c. Raffinose is a monosaccharide composed of galactose; it is digested by the enzyme lactase in the small intestine.
- d. Raffinose is a polysaccharide composed of multiple glucose units; it is partially digested by human enzymes and further broken down by bacteria in the large intestine.
- Q25 .In which of the following, glucose residues are linked by β 1 & 4 glycosidic bonds?
- a) Amylose
- b) Starch
- c) Cellulose
- d) Glycogen

Q26. Consider this structure, it is a _____?

- a. hetero-polysaccharide
- b. Homo-polysaccharide
- c. Hetero-disaccharide
- d. Homo-disaccharide

Q27. Which of the following polysaccharides could NOT be represented by this diagram?

- a. Glycogen
- b. Amylopectin
- c. Cellulose
- d. Starch

Q28 .Which of the following statements accurately describes the structure and biological role of dextran?

a.Dextran is a storage polysaccharide produced by yeast and bacteria, composed of a-(1-6)-D-glucose units with branched chains at positions 1-2, 1-3, or 1-4.

b.Dextran is a disaccharide found in plants, composed of a-(1-6)-D-glucose units without any branches, and primarily functions as an energy source in humans.

c.Dextran is a storage polysaccharide found in animals, composed of B-(1-4)-D-glucose units, and serves as a structural component in cell walls.

d.Dextran is a monosaccharide utilized by bacteria for energy production and has no branching in its structure.

Q29. Starch and glycogen, which are both polysaccharides, differ in their
functions in that starch iswhereas glycogen
a. the principle energy storage compound of plants; is the main energy storage
of animals
b. a structural material tound in plants and animals: forms external skeletons
in animals
c. a temporary compound used to store glucose: is a highly stable compound
that stores complex lipids.
d. the main component for plant structural support; is an energy source for
animals
Q30. Which of the following monosaccharides is a primary component of
pectin?
A. Glucose
B. Galactose
C. Fructose
D. Mannose
Q31. Which GAG is characterized by its presence in basement membranes and
as a component of cell surfaces, containing higher acetylated glucosamine than
heparin?
A. Dermatan sulfate
B. Heparan sulfate
C. Hyaluronate
D. Heparin
Q32. Which amino acid residue is involved in N-glycosidic linkage of
carbohydrates to glycoproteins?
A. Aspartic acid (Asp)
B. Glutamic acid (Glu)
C. Asparagine (Asn)
D. Glutamine (Gln)
Q33.What carbohydrate structure is present on glycoproteins blood type B
individuals?
A. N-acetylgalactosamine
B. Galactose

C. N-acetylglucosamine

D. Mannose

- Q34. Where is sialic acid (N-acetylneuraminate) typically locatec in glycoconjugates such as glycoproteins and glycolipids?
- A. In the core of oligosaccharide chains
- B. In the middle of polysaccharide chains
- C. As a terminal residue at the ends of oligosaccharide chains
- D. Within the lipid bilayer

Answers key

- 1. C
- 2. **C**
- 3. A
- 4. D
- 5. D
- 6. D
- 7. C
- 8. **C**
- 9. B
- 10. A 11. D
- 12. A
- 13. C
- 14. D
- 15. C
- 16. A
- 17. C
- 18. D
- 19. D
- 20. A
- 21. B
- 22. C
- 23. C
- 24. B 25. C
- 26. B
- 27. C
- 28. A
- 29. A
- 30. B
- 31. B
- 32. C
- 33. B
- 34. C