Peptides:

Doly Deplide us pro	teia:	
Ophu peotide: a long a	ne olide with AIO ordicular structure	
porgospinos a long f	with an a start 20 daylar	
protein: polypeptide chains	WITT CIN ORGANIZED DD STRUCTIVE.	
Oligopeptiole: 20-30 o	mino aciols	
molecular weight meas	urecl in Daltons.	

3 - Hydrogen Bonding (Secondary Structure) La Proline doesn't form hydrogen bonding due to N being terliary N & lacking hydrogens. So in proline no H-bond donor. 4- Peptiole is polar. It has two apposite charged ends. +--5 -> Zig-Zog arrangment of amino acids. Functional Peptides Examples: 1-Name: Glutathione $H_2N-C-C-C-C-N-C-C-N-$ 8-Corbon Structure : * Tripephide 8-glutamyl-L-cysteinyl glycine SM * HEN - & Gilu- Cys - Gly - CO2H SH (ilvio) functions: * Anti-oxidant * Sacrifices its self by reacting with the harmful free radicals (oxidizing agents) * Glutathione gets ordized \$ forming disulficle between each other. Gly I C O ridized Reduced Glubathione (lost e to free roadical) Glutathione Memorization Tip: + thio... cycleine + glycine... simplest a.a at end to form tripeptide Glutathione => Glutamic Acid

→	
ame: Carnosine:	
	0 H
tructure:	$H_2N - CH_2 - CH_2 - C - N - C - CO_2H$
Dipeptide	
H2N - B Ala - His - CO2H	
B-alanine: H2N-CH2-CH2-CO2	¦и/
	B-alanyl - L-histidine
anctions.	
s Anti-oxidant. Like Glubathione. Protect	cls against free radicals like oxygen # peroxide
	a 00 i
emorization Tip:	
<u>_arnosine</u> => (a => (3 alarine	

3→ Name: Enkephalins Leu- enkephalins Structure. * Penlapeplide (5 anino acids) * Met-enhephalins: Tyr-Gily-Gily-Phe-Met * Leu-enkephalins: Tyr-Gily-Gily-Phe-Leu terminal contronyl end DONT memorize Sequence function: * Analgesics (pain blockers) * There structure very similar to Morphine (opioid) * The aromatic R-groups of Tyrosine \$ phenylalanine play a role in its analgesic properties Aspartic acid $H_2N-C-C-N-C-C-O-CH_3$ 4-> Name: Aspartame Structure: * Dipephiale + methanol => ester bond CO2H phanylalanine L-aspartyl-L-phenylalanine methyl ester * HeN-Asp - Phe - C-O- CH3 D-amino acid >> biller] all peptides we studied are L-amino acids *L-amino acid => sweet. Functions: z Zero-calorie sureetner sugar substitute. Xe Some research shows it may cause cancer. * Phenylketouria. Due to phenylalanine. Use alitame instead. Alitame => aspartic acid + alanine

Solutions:
* Orgonic contraction during child birth
be ulerus contraction during child birth
to locabion (wile egebba)
* Vascopressin (ADH)
Shuchure:
* Aniske group at C-bereical
* Orgonic + Has Lew & The (bp: sogher flow brows + log + low (Ta))
* Vescopressin + Has Lew & The (bp: sogher flow brows + log + low (Ta))
* Vescopressin + Has Pie & Arg
Slow (
$$race = race =$$

Phenyl kełowcia: Phenyl + keto + uria => phenylalanine not metabolized well and released in urine. Mechanism. * Lacking phenylalanine hydroxylase enzyme. Phy to Tyr conversion blocked * Phe converted to phenyl pyruvate Phe Phe Hydromylase Tyr Phenyl pyrucele. * Accumilation of phenylpyruvate courses mental retardation. * Decrease Phe consumption... like aspartame. Use alitame.

Protein Structure

When a protein is formed it will <u>always</u> have the same 3D structure according to its amino acid sequence. This 3D structure is the most energetically stable. It is called the mative conformation.

Primary 1 Structure => Sequence of amino acids. Ex: Gly - Glu - Val - Asp - Arg Protein Structure Structure Tertiary 3' structure => Cverall 3D shape of entire protein (Many 2') Ruaternary 4' structure => Two or More polypeptible chains (Bx: hamaglobin)

D Primary Structure: Sequence of amino acids. This sequence determines the 2° and 3° structures.

N terminus — C terminus start end - Sickle Cell anemia: → Sickle Lell anemia: *Subditution of a single amino acid. Changes j`\$ 2`\$ 3° structures. ** Substitution of amino acid ng 6 Glu -> Val of B-globin nomal: 6: Glu Nomal: 6: Gilu

sickle cell anemia: 6: Val -+ Hemaglobin augregates inside RBC. Causing sickle-shape RBCs. - Sickle RBC increase blood clothing chance.

- Super-Secondary structures: Motifs: Repeated secondary structures Connected by loops * Small portion of protein. They DONT provole us with the biological function of proteins. Molif/Domain/Fold 1- Immunoglobin folds. (antibodies) anligen binding site * Anti-parallel B-sheets connected by loops → comple× molif. Can be clomain... * Allows immunoglobin to interact with various structures 2 - Helix - loop - helix: * œ-helix → loop → œ-heli* A motif * DNA-binding protein 3- Helix - turn - helix: * oc-helix -turn - oc-holix * DNA-binding proteins B-turn... proline + glycine 4-+ Bela hairpin: * Two anti-parallel B-sheets connected by two / bend: 5- Zinc Fingers: * B-sheets antiparallel connected by loops. Then connected to ox-helix. Folded and bound by a zinc ion. * DNA-binding proteins.

3 Tertiary Structure:
* Overall 3D shape of protein due to interactions between R-groups
* Protein Folding happens growlually. Not suddlenly.
* Proteins are not static. They are in constant movement. Their structures are flexible.
Interactions blu R-groups:
* Covalent (disulfide bridge) - strongest
-> Olisulfiele bridge -> stabilizing 1 not shope
-> strong.est
- Cysteine gels oxiclized. Cross-linking of two cysteines is called Cystine
* Ionic (sult bridge)
-> Between charged groups
- Ex: Lysine & glutamic acid +++
0 0
* H-bonding
- Between R-groups
-> Between R-group \$ aqueous Medion c
- Charge Dipole interactions -0
Polar amino aciols con be found in either interior or exterior -> those anino aciols have a special role.
- Many of them so they can be strong
8 8 0
* Van der waals
-> Due to uneven olistribution of electrons. Temperary induced oli-cli interactions
-> Can be repulsive or altractive
-> One is weak. But many of them strong
с р р
* Hydrophobic interactions
- Non-polar R-groups cluster together inside to form a hydrophobic core.

=> Forces that stabilize but DON'T determine shape: * Disulfide bridge * Metal ions L→ Salt-bridge (ionic) metallic → carbonic anhydrose (irm) Lo Covalent metallic -> myoglobin (zinc) What affects the 3D protein structure: * Primary Structure, the amino acid sequence & this couses the rest Angles between amino acids... Due to: * Non-covalent interactions * non-protein molecules such as metal ions.

Domains: combination of many &-helices/B-sheets connected via loops/coils/tuns. Il is a super secondary structure. Not tertiary. Domain larger than Molifs, having 100 - 200 amino acids. Domain associated with a specific function. Motif not necessarily to have a specific function. Similar domains associated with proteins with similar function. Domains fold independently of each other... maintaining its structure if seperated domain () these 3 all clomains are domain > combination of domains independent of 2 to perform a specific one another task is called a Fold domain 3 fold Types of folds: * Actin fold * nucleotide - binding fold

Ord	er of ocotein folding complexity:
ົ	Drimary structure
2	Secondary structure
3	notis
(1)) => super secondary
(5)	Fold => combination of alemains
6	Tertiary Structure
(P)	Quateman Structure

Quaternary Structure: * Having two or more polypeptide subunits. * Oligomeric proteins * monomenic / dimeric / trimenic / tetra menic etc. * homooligomenic protein - identical polypeptide subunits * heterooligomeric protein -> different polypeptide subunits Bonds between polypeptide subunits: 🐛 light chain bridge * Covalent disulfide disulfide La Present in immunoglobins bonds * Non-covalent electrostatic attractions due to metal ions Lo Present in hemogylobin

Denaturation:
* Can be irreverable or reversable (renaturation)
* Breaking non-covalent interactions
* When disulficle bridge breaks the 3D shape is completely disrupted
u
Renaturation:
* Con be quick & spontaneous
* More common in small proteins
* Placing - S-S - bonds in correct orientation.
0
Denaturating Agents:
* High temperatures
Le Distrupt low energy van aler waals
-0
* Extremes of pH
la Distrupt electrostatic altractions & hydrogen bonding
* Detergents
La Triton X-100 ~ not charged => alisrupt hydrophabic interactions
LoSDS~ anionic, chorged => disrupt hydrophobic interactions + electrostatic altractions
* Hydrogen bonding + hydrophobic interactions disruption
Le Vrea
La Gaucinioline Hydrochloriole
Sk
* Reducing Agents. ~ Reduce disulfide bridge - S - S - into - SH. Breaking :1.
Lo B-ME
4 DTT

Diseases due to protein misfolding: ① Alzheimer's Discose: * Not transmissible... not infectious * Due to misfolding of 2 proteins: 1 - Tau protein 2 - amyloid (AB) protein - forms amyloid nggregates amyloid plaque deposits in the brain... killing * The neurons. Normal cleavage of Abnormal cleavage of amyloid precursor protein amyloid precursor protein leading to excess amyloid accumulation Oligomer aggregate APP APP mutations increase β-secretase cleavage α-secretase **B**-secretase peptide γ-secretase Extracellular space Cell membrane PSEN1/PSEN2 Cytoplasm mutations increase γ-secretase activity Details not required. Just know that: * Abnormal shedding of anyloid peptide hydrophobic AB to be shed in (AB) causes the form aggregates. large amounts and amylvid plaque

@ Prion Diseases: Can be transmitted * Infectious protein diseases Can be inherited (genedic) - Can occur spontaneously * In cows. Mad cow disease * In humans: Creutzfeldt-Jacob disease (CJ-disease) * In sheep: Scrapie * Misfolded prion protein (PrPsc) ruins and misfolds the normal folded prion protein (PrPc) * Since PrPsc can misfold the normal PrPc. This makes prion disease infectious * Pr R is a brain protein. So prion's disease affects the brain * Normal PrPc has many x-helices. When it misfolds into PrPsc it gets abt of B-pleated sheets. This excess in B-pleated causes the protein to form aggregates. PrPc - normal. Many or helices PrPsc -> misfolded. Many B-pleated misfoldled Normal PrPsc which PrPe forms aggregates

Complex Proteins:
Protein + non-protein component
* Lipo protein
* Phosphoprotein
* Merko protein
* Nuckoopptein
* Gily coprotein N-gly coside + ASh
0 glycosicle - Thr /Ser / hydrony Lys
Holoprotein: protein + non-protein part Ex: Lipoprotein
Apoprotein: protein purtion of holo protein tx. Apolipoprotein
Halo .
Apo
Ex:
Lipoprotein -> the protein part only is called Apolipoprotein
Gily coprotein:> // // // // Apo glycoprotein
Co-enzyme: molecule that assists enzymes
Krosthelic group: Molecules tightly bound to proteins such as co-enzymes \$ metals

fibrous Proteins:	
Types of proteins:	
* Contraction - actin/myosin	
* Structural - collagen / keratin / actin	Secondary > structure only. NOT 3D
* Defense - Antibodies (immunoglobins) Proteins	Fibrous => collagen/elastin/keratin fiber-like
* Transport - Hemoglobin / channel proteins	► Globular ⇒ hemoglobin/Myoglobin/immunoglobins 3D globe-like
* Signalling - Hormones / Receptors	
0	
* Toxins - Enteroloxins / Diphtheria	
U	
Comective Tissue (ECM):	
በጣል የማማሌ በጣል የማማሌ በጣል የምምሌ በጣል የማማሌ በጣል የምምሌ	
	connective
* clastic fibers	tissue. C.M.
* Droteoulycans	Fibraus proteins
4 F	are in ECM not cells.

Collagen ! : * Most abundant protein in body (25%) * Many Many types. type I. type II. type II. etc. Fibril Forming /network forming /transmembrane ... etc. like rope. NO compressive force. * Provide staucture support. Very stiff and high tensile streng th Collagen's Structure: not *k*-helix se Made of 3 &-chains. The 3 &-chains cross linked with each other to form tropocollagen. They are tightly bound by cross-links (covalent) and Hydrogen bonds. Via addehyde covalent links Via Oxidized lysine + tropocollagen.. Made of 3 oc-chains tropocollagen Ce of Ce of Co + looks like rope * Collagen Organization: (4 levels) 1- 5 tropomyosin make 1 collagen microfibril. Covalent cross-links 2- Many microfibrits make one fibril. Covalent cross-links 3 -> many fibrils make one fiber * 3.3 amino acids per turn of oc-chain * ac-chain is more extended than ac-helix. * x-helix More compact thus more amino acids per turn (36)

3+ Hy droxy proline: * Allows the formation of H-bonds b/w ox-chains. Increases strength & stability 4- Hydroxy lysine: * Gilycosylation.. adding polysaccharides to fam gylycoproteins. * Function of glycosylated collagen: recognize * interact with cell surface receptors. Cell signaling. Hydroxy lation of proline \$ lysine: -> prolyl hydroxylase \$ lysyl hydroxylase... using ascorbate/ascorbic acid. (Vitamin C). - hydroxylation occurs after ox-chain is translated Scuny: * Lack of vitamin C * No hydroxylation of proline 4 lysine * Less H-bonding. Unstable triple holix. Weak Collogen structure * Weakened tissue. Fragile blood vessels. Weak gums.. teeth become loose 5 - Lysine * Responsible for covalent cross-links. How? or hydronylysine * Lysine gets oxidized to allysine (aldehyde lysine) * Allysine + Allysine OR Allysine + Lysine react together & form covalent cross-links * Between same tropocollagen OR b/w alifferent tropocollagen. This strengthens the collagen's tensile strength * The older we get. The more cross-links between collogen molecules

Advanced Glycosylated End products (AGE's): * Glucose deposited on proteins such as collagen non-enzymatically. Hard to remove this glucose. * Mure glucose in blood (hyperglycemia) the more the AGEs. * Glycosylated collager gets oxidized (non-enzymatically) \$ produces more cross links. Lo this causes the production of protein aggregates Called Advanced Glycosylated End products (AGE's). We measure this for diabetes patients.

Side affects of AGE's: * Inflammation * Apoptosis * Nephropathy - kidney function problems * Retinopathy - eye problems * Caroliomyopathy - heart problems * Atherosclerosis - hypertension

Elastins: * Provide elasticity, can stretch \$ then relax and go back to original shape. * Collagen fibers are interwoven with elastic fibes to limit elasticity. Prevents fissues from tearing. * Many Cross - links tropoelastin molecules. When stretched, the cross-links between hold tropoelastin tagether. L. Tropoelastin - Soluble Le Elastin - insoluble ... due to Many cross-links \$ hydrophobic * Repeating hydrophilic domains amino acid Hydrophilic cross-linking exons Hydrophobic exons La Hydrophilic - Lysine + Alanine => Responsible for forming covalent Cross-links Lo Hydropholoic - Glycine + Proline + Valine => Responsible for hydropholoic interactions... Reversible. Stretch \$ relax. * Has hydroxyproline V $x \underline{NO}$ hydroxylysine $X \Rightarrow$ no glycosylation of elastin Lo it still has lysine which forms cross-links. * Lysyl Oxiclase Oxiclizes lysine to allysine forms covalent cross-links \$ * Cross-links prevent elastin molecules from seperating when stretched. * Hydrophobic interactions bring back the elastin molecules together when relaxed. Elastic fibre In the absence of a stretching force, the elastin proteins are in a compact conformation. Single elastin When subjected to a protein stretching force, the elastin proteins elongate but remain attached to each other via cross links.

- keratins:					
* Found in ski	in, nails \$ hair.	Provides hardness + dryn	ess		
-	-	- tetromers			
œ-helix	Dimer	ProtoRilament	Polofikil	Talemediate	
	Disulfiole Cross-liaks			Filament	
 Two dimens C 2 protofilant 4 protofilant 4 protofilant 8 intermediat Many microfibrilant Many macrofil 	ross-link & form nents form protofi nils form interme she filaments form make macrofi brils make a	tetramers. Tetramers ibril pliate filoment microfibril bril single hair stranol.	stack to fórm	protofilaments	
★ Has many C L+ Collagen / Elastin L+ Keratin ⇒	systeines that for => lysine cross-li Cysteine cross-links	m Olisulfiale bridges inks (olisulfiale)	B		
	•				
* Cysteine:	1 1				
-> Many in nails	to harden then	1. Visulfide cross-links			
- cury nair ha	is more custeine	than shooth Naic M	ore ou sufficle C	(035- 11/NS	

Globular Proteins:

Hemoglobin: Present in blood. Transport Cu: 1 Oz. Blood buffering (HCO3-/HeCO4) Myoglobin: Present in muscles. Oxygen storage. Releases oxygen during hypoxia Le low Uz in hissue Heme = protoporphyrin IX + heme Protoporphyrin 4 heme: * Planar (flat) * 4 rings called pyrrole rings (A -> D) * Very Hydrophobic * Has two branched hydrophilic propionale goups * Fe^{**} + protoporphyrin IX = heme * Since heme is hydrophobic... it is located in the inside of hemoglobin. * Fe²⁴ forms 6 bonds. 4 with the 4 pyrrole rings of protoporphyrin. I with histicline of the globin. One with O2. * Heme is a prosthetic group. Non-protein part. * Hos methyl \$ Vinyl groups * Heme gives a real color Propionate group Other heme proteins: (heme + protein) - cytochromes - e transfer A В Pyrrole -> sensor proteins - senses home & goises CO/02/110 - NOS, P460 - oxygenation С Vinyl group otoporphyrin IX

Henoglobin Structure:
Henoglobin Structure:
Henoglobin
$$f$$
 here prosthetic group f Free Integration IX
 f here prosthetic group f Redeperture IX
 f here g ac-globin + 2 g -globin $s = 2g2$ tobuses herepoint (guideneg)
 f as f be as
 f h subunits. Quoternery
 f as f as subunits. Quoternery
 f as f

Continued...

Summary: T state... O_2 added \rightarrow Distal His (E7) forms H-bonding with $O_2 \rightarrow Pulls$ provinal His (F8) -> Heme goes from alome to flat -> entire structure of all polypeptides changes - ionic & H-bonding break between a.p. \$ 02, p2 alimons. - change from low a Plinity T state to high affinity R-state -> signoid graph. Cooperativity Theories: () Concerted Theory: TTTT -> RRRR. Either T or R... no intermediates * When Oz binds. The probability that hemoglobin exists as R increases. Sequential Theory: TTTT - RTTT - RRTT - RRRT - RRRR Both theories are valid

* Other forms

H^t & CO₂ directly proposional... $H_2O + CO_2 \longrightarrow H_2CO_3 \longrightarrow H^* +$ carbonic carbonic HCO3 exits the more CO2... less pH... lower O2 orffinily RBC & transported in plasma How does H⁺ (low pH) reduces O2 affinity (bohr affect): * High H⁺ lowers O2 affinity. Right Shift. Bohr affect His 146 B + Lysx His 146 B + Asp 94 B * Affects protonation. Ht changes will change electrostatic attractions which Pavor T-state * High Ht will protonate His 146 of B-chan * pka of His in T-state: 7.7 protonated * pka of His in R-state: 7.3 depretonated * The low pH (extra H*) will protonate His 146. This allows For formation of electrostatic altractions which stabilize the T-state. * T-state favored = more H^4 means lower O_2 affinity

How does
$$Hb-CO_{2}$$
 lower $O_{2} \cap PSinky:$
* CO_{2} Objectly binds with Hb at a -amino N -terminals of globin chains.
* This binding forms carbomine-globin $(Hb-CO_{2})$. The functional group is called
carbomole 6 is negatively charged.

* $R - N - H + CO_{2} \rightarrow R - N - C - O^{-} + H^{+}$
H
* The negative carbomole shabilize electrostatic altymotions that stabilize the
T-state.

 $O = CO_{2} \rightarrow production of H^{+}/HCO_{2}^{-} \rightarrow H^{+}$ stabalize T -state \rightarrow Less O_{2} of Parity

 $O = CO_{2} \rightarrow bind$ to amino At terminals \rightarrow -ve carbomole stabilize T-state \rightarrow Less O_{2} of Parity

 $O = CO_{2} \rightarrow bind$ to amino At terminals \rightarrow -ve carbomole stabilize T -state \rightarrow Less O_{2} of Parity

 $O = CO_{2} \rightarrow bind$ to amino At terminals \rightarrow -ve carbomole stabilize T -state \rightarrow Less O_{2} of Parity

 $O = CO_{2} - bind$ to amino At terminals \rightarrow -ve carbomole stabilize T -state \rightarrow Less O_{2} altisty

 $O = CO_{3} - bind$ to $2S \times$ in right shell
 $h^{+} = T^{-}$ to CO_{2}
 $- pH = T.2, no CO_{2}$
 $- pO_{2}(torr)$
 $- DO_{2}(torr)$

How cloes 2,3-Bis phosphoglycerate (2,3-BPG) reduce O2 affinity: Lack of O2: Glucose - 1,3 BPG - 3PG - Pyravate + Lactate Logets reduced. Joses Pi isomer NADH oxidized to NAD4. → 2,3 BPG NAD+ recycleal into glycolysis lowers 02 affinity. More O2 unloading * One 2,3 BPG binds to the central cavity of one Hb tetrode * Forms electrostatic altractions with B-chain only !!! HbA2 6 HbF not affected by 2,3 BPG. Attractions blue 2,3 BPG: La Terminal N-terminus of both B-chains L+ His 143 of B-chain Lysine of B-chain * These altractions stabilize the T-state. Lowering Og affinity.

CO + Hb: * CO INCREASES Hb affinity to Og. Holding onto Oz More & Not releasing it. Less Oz unloading. * CO 200 Himes more affinity than O2. CO directly competes with O2, it has same binding site. The proximal histidine, F8, directly binds with CO. CO stabilizes R-state. * CO courses shift to left. Very high Oz affinity... no release of Oz. * Normal people: 1% Hb-CO * Smokers: 10%. Hb-CO * Fatal levels: 40% Hb-CO CO + hemoglobin 100 -Hemoglobin saturation (%) CO prevents O2 80 from leaving Hb thats why its 60 so decolly + hemoglobin

Irronuning lobins:
Irronunity Types:
② Innale defense. If Innale Gails Hen ② adaptive defense heles over
innale defense
③ Surface Barrier skin /muso
③ Internal Defense
③ Internal Defense
③ Internal Defense
③ Cellular Innunity T-cells

$$Pred dema
mility ① ① ① ①
 $Pred dema
mility ① ② ①
 $Pred dema
mility ① ② ①
 $Pred dema
mility ① ③
 $Pred dema
 $Pred dema$
 $Pred dema
 $Pred dema
 $Pred dema$
 $Pred dema
 $Pred dema$
 $Pred dema
 $Pred dema$
 $Pred dema
 $Pred dema$
 $Pred dema
 $Pred dema$$$

Antibooly Structure. variable region (V-olomain) hypervariable -- binds to epilope of the antigen.)o one antibody binds region to two antigens (epilopes) - light Chain + hinge region Cys-cys 4 disulfide bridge Constant region (C-domain) heavy chains * Each chain has more than one domain * Disulficle bands between different chains. same chain (intra-chain disulfide bond) * Disulficle within * Contains glycoproteins. protein alut + oligosacchanide chain. * Light chain => one variable region VL + one constant region CL * Heavy chain >> one variable region VH + three constant regions CHI+CH2+CH3 * Right side chains = Left side chains F٧ Fab * VL pairs VH. CL pairs CHI CH2 Fc hinge region * For same isotype all antibodies have the same which makes constant regions.. CL / CHI / CH2 / CH3 antibooly Cнз more flexible FC = CH2 + CH3 * Fc regions binds to phagocyte immune cells binds to phogoaytes

The variable region $FV (V_L + V_H)$: * Has $7 \rightarrow 12$ amino acids that contribute to antigen-binding site. This amino cicial sequence is <u>different</u> in olifferent anti-boolies * Each B-cell produces one type of unique antibody. The variable region is different in every single antibodies. The constant region remains the same for the same isotype. * Each antibooly has its own unique very specific region called: Hypervariable Region <u>or</u> Complemetarity Determiny Regions. (CDRs) * The CDRs are present inside the immunoglobin fold. They are three loops connecting the B-sheets * Immunoglobin fold made up of B-sheets in a circular barrel shape which are held together by disulfiele bridges. Immunoglobin fold provide specificity and allow onlibudy to bind to antigons. * Purpose of CDRs? La Recognize 4 bind with antigens with high affinity low Ko Lo Ko is rate at which antibody dissociates from antigen. High Ko means low affinity. Inversely proportional # three hypervaniable loops + olismifiale Immunocylabin fold - Binds to low Ko anligens

Antibooly Types: ① Idiotype => Same constant region. Different variable regions. + idiotypes: only variable different. VL & VH different CL & CHI/CH2/CH3 different * Same function but different antigens (kappa) (kappa) Person 1 Person 1 anti-A anti-B ② I so types ⇒ same variable region. Different constant heavy regions. antigen but different types * Some + isolypes. VL & VH SAME. CHI/CH2/CH3 different (1 some. lgG1 IgM (kappa) (kappa) (3) Allotype \Rightarrow very slight difference in constant regions of some isotype due to different genetics in different people.

+ slight differences in

IgG1 (kappa)

Person 2

IgG1 (kappa) Person 1 He

heavy regions. Same heavy chain type.

I so types: Important! Different light chains: Lambda / Kappa Different heavy chains: -> same variable region but the constant changes. So same antigen-binding but different properties of the antibodies D Mu - IgM * exists as a pentamer... binds to 10 antigens. O Mu - IgM # exists as a monomer on surface of plasma cells. Antigen receptor. * First antibody produced \$ secreted no Activates phagocyles & the complement protein system which kills the pathogen. It is the first defense. ② Gamma - Ig G * exists as a Monome/ * Constantly being produced in blood. Due to past infections... it prevents future infections * Most abun dant anti-body in blood (600-1800 mg/dl) * Only antibody which crosses the placenta... gives fetus immunity. When baby is born it still has immunity from mother for a period of time. * Activates phagacytes \$ the complement protein system which kills the pathogen.

* Present on Mucousal secretions (barriers) * <u>NO</u> recruitment of protein complement system () Della - Ig D " Derra - 29.0 "On surface of B-colls NUT exposed to antigens. Ig.M & Ig.D are before Onligen... they are removed in class switch. B- cell ③ Epsilon - Ig E * Present on most cells Morst Cell * Responsible for allergic reactions * Released as a Monomer

Monoclonal Antibodies: * Very specific * Made by fusing a myeloma cancer cell with a plasma cell. - This forms a hybridona cell - Hybrioloma immortal -r Hybricloma keeps divioling & producing Many ontibodies - Different plasma cells result in polyclonal antibodies. The hybridomon produces Monoclonal antibodies. * Inject antigen in Mouse * Extract & isolate polyclonal plasma cell from mouse PB-concer cell * Fuse myeloma with plasma cell to produce the hybrioloma. * We then humanize the antiboolies by taking the mouse CDRs and allaching them to human antibodies humanized human mouse Benefits: - measures the protein levels in the blood - Directs medicine to tumor cells - Determines the type of pathogen - Removes alrugs from circulation if they reach toxic levels

Thicker Banel as more %

Albumin	Band:
w ~ 60	<i>χ</i>

x1-Globulins Band				
* ~ 57				
* x1-anlihypsin -	an anti-protease. Neutralizes	Trypsin/ElastoaseProtects tissues		
* ~ 1- feto protein -	No info in slides.	U .		
•				
al=> AF				

X2- Globulins Band: * ~ 10% * Cerulo plasmin -> Copper transport & iron oxidation * Maptoglobin (Hp) -> Hemoglobin binding and Iron protection * 22-macroglobulin -> Large. Zinc * cytokines transport. Protease inan 6 like additypesh inactivation. β-Globulins Band: * ~ \67. * C-reactive Protein (CRP) -> Activates protein compliment system. Immune response. * Transferrin -> Iron transport (Fe*) * LDL B ⇒ CT 8 - Globulins Band: * ~ 20% * Ig M - Pertamer. First Ig released. No inflammation * Ig G -> Monomer. Most abundant. Can cross placenta. Inflammation * Ig A -> Dimer. Mucousal Secretions. No inflammation * Ig D -> Present on surface of B-cells not exposed to antigens. * IgE -> On moist cells. Allergy. Lightest - Heaviest: 16% 20% 607. 10% Albumin > ~1 > ~2 > ß 8 > * Imunnoglobulins a1/22/B * Transferrin * ceruloplasmin * antitrypsin i => acute * CRP * fetoprotein * Hepatoglobin

* Macroglobulin

proteins

(7) Hypogammaglobulinemia:

makes viscous glycoproteins - Post - translation modification: Glycosylated. Proteolysis phosphorylation -> Albumin IS NOT glycosylated. We don't want Albumin to be viscous. Most are glycoproteins except albumin. \rightarrow Time to allegrade (transit time) is 0.5 hr \rightarrow few hours Polymorphism: - The proteins have different shapes \$ troits according to different people due to genetics. Proteins have multiple forms. - Normal Function - Monogenic / Mendelian trait ~ coolod for by one gene. - Exists in >2 phenotypes - We can use electrophonesis OR isoelectric focusing to analyse the proteins - Examples: A/B/AB/O bloud groups eye color hair color

Plasma Proteins half-lives. - Albumin: 20 days clay * - Crohn's disease, Albumin: 1 Crohn's disease: Digestive tract in Plammation. Protein -losing gastroenteropathy. -+ Haptoglobin (~2-globulin): 5 days reduction - Hemoglobin - Haptoglobin complex (Hb-Hp): 90 minutes - Pre albumin / Trans Hyretin: 2 days

Albumin:

Albumin Functions: 1- Main Porctor in increasing blood osmotic pressure (oncolic pressure). Preventing eclema. More oncotic p. = less edema. Less oncotic p. = more edema 2- Acts as a buffer... like hemoglobin 3→ Transport!! * Free failty acids -> cuz non-polar * Steroids -> cuz non-polar * Tryptophan -> cuz non-polar * Bilirubin - Results from breakdown of heme. Non-polar. VERY toxic. Le Bilirubin is yellowish color * Metals \$ heavy metals -> metals are home in blad => Major Copper transport. ceruloplasmins are for storage of Cu. > Calcium transport. imp. too * Most drugs. Lo Drug - Drug interactions, two drugs have same binding site on albumin. Le Drug - Drug interactions result in high toxic levels of drugs as more free drugs in blood because binding site are occupied. La Aspirin, competes with bilirubin like heparin Le Menytoin - epilepsy - competes with Dicoumarol -onlicoogulant-La Also transports sulfenamiales & penicillin G.

Clinical Disorders Regarding Albumin. 1- Analbuminemia: * Total lack of albumin. Zero albumin in blood. Fatal! * Rare.. it is recessive * MODERATE edema... not severe. * Booly compensates by increasing other plasma proteins which helps lower redema. * Albumin levels zero * Acute phase proteins & Ig are increased. Edema is moderate. $\varkappa 1 \propto 2$ Albumin δ β 2→ Hypoalbuminemia: 2 -> Hypoalbuminemia: * Low albumin concentration in blood. <2 g/oll * Causes severe generalized Edema * Severe colema cuz no protein compensation loss * Due to Malnutrition or loss of protein (gastrointestinal/nephrotic synchome). Or due to decreased production from Liver failure.

Prealbumin / transthyritin: (prepro - pro . No pre alone) albumin precursor. Different protein. (proalbumin) NOT prealbumin Albumin δ $x1 \propto 2$ * Lighter than albumin. Prealbumin / Trans Hyrefin => 62,000 Albumin => 69,000 Da Da * Short half-life: Prealbumin / Trans Hyrelin: 2 days Albumin: 20 days Albumin + Crohns: I day Haptoglobin: 5 days Hp + Hb: 90 mins Prealbumin / Transhyretin function: 1- Transports & carries thyroid hormones. T3 **\$** T4 a measure for protein nutrition when analyzing 2→ Used as chromatogroph. Same idea how we use albumin to study function. liver

Acute Phase Proteins: increase levels by x1000 - These proteins respond to: * Acute inflammation * Chronic inflammation to basically inflammation protoins * Tissue clamage * Cancer - Acute - phase proteins are stimulated by Interleukin -1 (IL-1) - Types: * fibringen - Blood clothing * x1-globulins: - Antitrypsin - Neutralizes proteases - Feto protein ✤ X2- globulins: -> cerulo plasmins - Copper storage \$ transport. Iron oxidation to fe^{3t} - Haptoglobins - Iron preservation 1 Hb binding - Macroglobulins - Zinc & cytokines transport * $\beta - q$ lobulins - CRP - Complement protein system recruitment - transferrins - Fe³⁺ transport * Y-globulins - IgM, IgG, IgA, IgD, IgE

Emphysema is chronic.

x1-Antitrypsin and Liver problems: -> ZZ causes polymenization of loop within p-sheat structure. -> This results in protein aggrigation in Liver which causes Liver circhosis -> ZZ couses Liver circhosis and emphysema.

∝-2-Haptoglobins (Hp): * ~2- globulin * A glycoprotein * A tetramer... 2 oc chains \$ 2 B chains. Like homoglubin * Haiptoglubin is larger than Hb. se Half-Live: Hp. 5 days Hp + Hb: 90 minutes. Quickly degrades * Polymorphic. Three phenotypes. Alleles: Hp1 \$ Hp23 Phenotypes differ in ox-chain. $+2\beta$ + α + α + α $\rightarrow 2\beta + \alpha 1 + \alpha 2$ $\rightarrow 2\beta + \alpha 2 + \alpha 2$ * Binds with Hb ... preventing loss of Hb & IRON * Main Function is conserving iron by binding to Hb. -2- Mapteglebins \$ Clinical applications. - Hemolytic Anemia: RBC's burst & release hemoglobin in the blood. - Extra Hb in blood. Hp binds to Hb to conserve fe. This causes ۵ decreased level of Haptoglobins in the blood. - Decreased level of Haptoglobin is a test for hemolysis.

02-2- Ceruloplasmins: * Contains 6 atoms of copper * Glycoprotein Functions: 1- Storage of Copper (90% of blood Cu in ceruloplasmins.) 2 -> Regulates copper levels by releasing and binding. Lo By using the cysteine rich proteins called metallothioneins which binds to Cu. 3- Albumin used for Cu transport (10% of total Cu) Albumin: Cu transport Cerulo plasmins: Cu storage 6 regulation. 4 - Acts as ferroxidase energyme. Le Oxidizes fe³⁴ to fe³⁴ which is transported by transferring. 5 - Ceruloplasmin can act as different enzymes. x-2-ceruloplasmins and clinical Disorders: - Can be genetic or lack of copper in diet... so no copper to build the Ceruloplasmins. Continued...

=1-2-Macroglobulin:
* Macro... Large plasma protein !
* Macro... Large plasma protein !
* Since large Not excreted in nephrotic syndrome. The chromatagraph
with show large a2 peak due to a 2-macroglobulin.
Functions:
+ Transports 10% of Zinc & Cytokings
+ Transports 10% of Zinc & Cytokings
+ Inactivates / inhibits proteases like maskunding blood clothing factors.
+ Inhibits blood coagulation factors. Anti-coaggulant

$$\beta - C-reaction protein (CRP):$$

* Rart of inflammation. Used by Ig.M & Ig.G. Pathogen defence.
* Binds to polysaccharade called fraction C present on presencesce: bacteria.
* Mormal conditions its not defected. During inflammation & tissue damage its
detective.
* Peak after the home / two days of inflammation & tissue damage its
 $\frac{g}{g} = \int_{-\frac{1}{2}}^{\frac{1}{2}} \int_{\frac{1}{2}}^{\frac{1}{2}} \int_{\frac{1}{2}}^$

Due	to no	time		
VERY	SUM	MARIZED	ENZYME	NOTES.
Includes	ONLY :	New <u>Memorizahi</u>	on info.	

Enzymes - Introduction: 5 features of Active siles: 1-> Is an internal canal, made of non-polar \$ polar a.a. Water is excluded from the canal. 2-30 shape. The 3D shape is determined by the big non-adive site. Active site from distance parts of a.a, Ex: 1, 2, 7,8, 11, 13, 14. Not 1,2,3,4,5,6... 3 + Substrate binding is reversible... due to break non-coulent interactions. 4-> >> 3 point of contact for substrate. Makes it more specific. Chirality is important $5 \rightarrow$ Active site is small relative to entire enzyme Glucokinase: kinase => adding P; Glucokinose adds Pi to glucose using ATP 1 -> Gilucose binds lock & key 2- This binding changes 30 shape... ATP binds induced fil.

∆Gi :					
* 2G= Gp	roducis -	Greacionis			
* \$G=-ve	spantaneous Se xerge	nic => releases	energy >> cat	abolism => exothermic	
* ∆G1 = +ve	»> enderge	enic => requires	s energy => 0	inabolism s endothen	nic
* Reversible	reaction, sa	ne <u>AG</u> volne	but differ	ent sign.	
Apoprotein =>	Inachive	enzyme. Protein	portion only.		co-factor
Holoprotein =>	> Active	enzyme. Protein	portion + no	n-protein activating	T Co-enzyme
Holoprotein =>	> Active	enzyme. Protein	portion + no	n-protein activuling	T Co-enzyne
Holoprotein =>	> Active	enzyme. Protein	portion t no	n-protein activating	CO-enzyne
Holoprotein =>	> Active	enzyme. Protein	portion t no	n-protein activating	CO-enzyne
Holoprotein =>	> Active	enzyme. Protein	portion t no	n-protein activating	CO-enzyne
Holoprotein =>	> Active	enzyme. Protein	portion + no	n-protein activating	CO-enzyne
Holoprotein =>	> Active	enzyme. Protein	portion + no	n-protein activating	CO-ENZYME
Holoprotein =>	> Active	enzyme. Protein	portion + no	n-protein activity	CO-ENZYME
Holoprotein =>	> Active	enzyme. Protein	portion + no	n-protein activity	CO-ENZYME
Holoprotein =>	> Active	enzyme. Protein		n-protein activeling	
Holoprotein =>	> Active	enzyme. Protein		n-protein activity	
Holoprotein =>	> Active	enzyme. Protein		n-protein actively	

Classification:
Quer The HILL

$$1 + O \Rightarrow \text{ oridoreductoses}$$

 $2 + T \Rightarrow \text{ Transfermes}$
 $3 + H \Rightarrow Hydrolases$
 $4 + L \Rightarrow Lyases$
 $5 + I \Rightarrow \text{ Isomeranes}$
 $6 + L \Rightarrow Ligases$
 $1 + Oxidoreductases:
 $1 + Oxidoreductases:$
 $2 + Oxidolation + Reduction + NAOx + R - C + A + NAOH
Adding H \Rightarrow Reduction + NAOx $\rightarrow R - C + A + NAOH$$$

1. b - Oxidase: * Removes H and adds it to Os Forming HzO2. * Oxidation by remaining H. Memo: R-C-OH + O2 → R-C-H + H2O2 2. C -> Oxygenase: * Oxidation by adding O2. Produce H20 NUT H2O2 * Monooxygenase - One O added. HeO produced * Dioxygenuse - Two O added. No H2O produced Memo: $\mathcal{A} + \mathcal{O}_2$ <u></u> 2н 2. d - Peroxidase: * Oxidizes substrate using HeOz. , Gash * Gilutathione oxidation... protects against H202. * Produce H20 \$ 1/2 02 * 2GISH + H2O2 - GISSGI + H2O + 1/2 02

1-Oxidoreductases: -> Dehydrogenase : H/H⁻ removal using NAD⁺/FAD -+ NADH/FADH2 Rormed → Oxiolases : H/H removal using O2. H2O2 produced - Oxygenose: Adding Oz. Producing H2O - Peroxi alases: Using H2O2 to Onialize substrate. (H loss). H2O+ 1/2O2 produced 2 - Transferase: * Transferring group from one molecule to another 2. $a \rightarrow kinoises$ * Adds Phosphate 2.6 - Transaminose * Transfer amino group from amino acid to keto acid... Forming another amino acid and turning old amino acid into keto acid * Interconversion of amino acids. * Name of enzyme after amino acid formed. * - NH2 exchanged with =0 Continued...

amino acid A + keto acid B - Keto Acid A + Amino Acid B. Acid + keto acid + amino acid Amino Examples (-NH2 => =0) Amino Acid — Keto Acid * Alanine → Pyrrvate (3 c) * Gilutamate - x-keto glularate * Aspartate -> Oxalo acetate (4c) 2. C - Syntheses * Transfering residue to larger important Molecule. Like adding Glucose to glycogen. → Gilycogen Synthose. Glu - UDP + Glu-Glu-Glu-Glu-Glu-Glu Glycogen Synthose ~ UDP-glucose - glycogen glycosyl transfermse Glu - Glu - Glu - Glu - Glu - Glu - Glu UDP

4.c - Synthose: Transferase? NO... in Lyases it is adding residue to a bigger compound. BUT addition is to a double bond or addition forms C-C bonds. 4. d - Aldolase: Breaks / Forms C-C bond... 1,6 bis phosphale into DHAP & GAP. 5 - Isomerose Isomerase: Catalyses isomerization by rearranging bond structure. Ex: Glu = Fru Mutase: Changes Phospate position. Ex: 1,3 BPG = 2,3 BPG. 6 - Ligases: Joining Molecules huge ther via carbon containing bonds... Using ATP as energy source. * Synthetases => ligases that use ATP. Synthases are transferases or Lyases, not Ligases * Carboxy lases => Add CO2 using energy from ATP.

Specific Catalysts: D Abzymes: * Antibodies acting as enzymes. * Very specific * Rat injected with transition state. * Clinical application: Abzyme mimicking cocaine esterase.. used to help addick. 2 Ribozymes: * RNA acting as a catalyst Ex: Ribonucleo proteins: -> made of both protein & RNA... RNA port acts as calculyst - catalyzes RNA splicing. -r catalyzes protein synthesis in proteins.

Enzyme Type Summary: O T HLIL 1 + Oxidoreductases: a + Dehydrogenoses Lo Remove H. Using NAD+ or FAD b- Oxidases Lo Remove H. Using O2. Forming H2O2 C - Oxygenases La Add O2 + H... Forming H2O. (-OH can either form or not) d- Peroxidases La Oriolize molecule using H202. 1202 + H20 formed. 2GSH + H202 -> GSSG + H20+102 2 - Transferases: a - Kinases Le Adols Pi to molecules using ATP. Phosphorylation b - Transaminase Le Transfers between -NHz and = O from different molecules. Interconversion between amino acids and keto acids. UDP left behind 1 C - Syn Hases Ex: La Adding residue to big structure. Transferring Glucose from UDP-glucose onto glycogen.

3 → Hydrolases: La Hydrolysis of bonds using HzO. Breaking bonds. 4 Proteases are hydrolases: ① Trypsin => LA → Between Lys ♦ Arg 2 Chymotrypsin => Big aromatic rings: Phe & Tyr & Trp ③ Elastase setween small a:a: Gly \$ Ala \$ Val 4→ Lyases: Le Breaking / Forming C=c or rings or C-C. a→ Dehydrase Le Dehydration. Removing -H & -OH Forming H2O & C=C Le Enoloise (ene + ol) (C=C + -OH) note: not all dehydrotion reactions are dehydroses. dehydrase: Produces double bond. Hz.O produced Ligase: Uses ATP as energy source. Hec produced sometimes $b \rightarrow De carboxylation$ Lo Removing - C-o- replacing it with H. Forming CO2 C+ Synthases 4 adding residue to big polymor involving C=C /C-C bonds d → Aldulase Lo Breaks C-C band in fractose-1.6-Bisphasphate forming DHAP & GAP

5 - Isomerase a- Isomercise: isomers by changing atom arrangement b-Mutase: isomers by changing Pi position 6- Ligases: Le Joins together residues using energy from ATP. Lo Synthetases. <u>NUT</u> synthese Le Carboxyloses => addition of CO2. Extra: Ribozyme: Le ribonucleoprotein Lo RNA splicing catalyst La Protein synthesis catalyst Abzyme: Lo Can minick other enzymes. Very specific.

Enzymes - Kinetics
Rate Law:
rate: K [5]

$$k = \frac{1}{1 \text{ time}} = \sec^{-1}$$

Michaelis - Menten Equation:
 \bigcirc
V. Imp.
 $\frac{1}{V_{\text{imp.}}} = \frac{1}{V_{\text{imp.}}} = \frac{1}{V_{\text{o}}} = \frac{1}{V_{o}} = \frac{1}{V_{\text{o}}} =$

$$(2)$$

$$E + S \xrightarrow{k_{1}} ES \xrightarrow{k_{2}} E + P$$

$$k_{-1}$$

Cases : D Same enzyme + same reaction but two substrates. La same Umax. Different Km. Rate $A + B \xrightarrow{E} C$ 557 Lo same Umax because it will be totally saturated, cuz in end both will be same conc. fixed large [A] + increasing [B] = Fixed large [B] + increasing [A] Both large = Both large Le enzymes fully saturated Le same Vmone (2) Same enzyme but different reactions with different substrates. Lo Different Vmax and Different Km ③ Different enzymes + same reaction. Isozymes L. Different Vmax and Different Km (b) Doubling / Tripling ... Concentration of enzyme. Same reaction. Lo Doubles / Triples... the Vmax. Km stays the same.

3 Km constant: $K_{m} = \frac{K_{-1} + k_2}{K_1}$ Dissociation Formation * K2 can be neglected * k2 = kcat (b) Kcat: Kcat = Vmax [E]_t * Units >> S' * Kcat = k2 at Vmax * E+S K= ES K2 E+P IF [ES] = [E]; at Umax. So.. Vmax = [ES] xk2 => Vmax: [E] + × K coh.

Enzyme Complexing: Pyruvale Dehydrogenase complex... three reactions. Kyruvate Dehydrogenose: Pyruvale + CoA Acetyl CoA + CO2 3 C NADA NADH 2 C NAD+ NADH ink Reaction 1- Dehydrogenation - Oxidoreductase 2+ Decaboxylation - Lyose 3 -> Transfer of Cod - Transferase Lactate Dehydrogenase (LDH): M= muscle subunit. LDH= tetramer (4 subunits) H = Heart Schunit ① LDH, (Hy) → Present in heart. Favors Pyruvate production. LDH2 (Hg.M) - RBCs 2 3 (HeMe) - Lungs LDH3 LDHy (H, Mg) - kidneys **(y**) (My) - Present in skeletal muscles & Liver. Favours Lactate production 6 LDHS Lactate Dehydrogenase: Muscle My NAD* NADH NAD* Lactate Py ruvale NADH

Irreversible inhibitors:								
(1) Covalent Inhibitors:								
- Organophosphates 0 S								
Lo DEP (di-iso propyl flowo phosphate) P/P + serine a.a								
Le Sarin gas								
-> Malathion & Parathione r Deady => Organo phosphotes bind to Acetul Chalinesterase.								
+ Not deadly								
0								
Acon								
- Aspinn								
> Binds to COX. (Minicks arachiolonic acid structure)								
-> Adds acetyl group to serine.								
2 Transition state analogues (suicide inhibitors):								
-> Penicillin								
=> Binds to glycopephidyl transpeptiolase. Bacteria cell wall.								
=> B-Lactam ning Mimic the transition state analogue.								
=> Serine								
-> metho trexate:								
nt Mimics tolate. tolate used in nucleolide synthesis								
* Minics substrate analogue								

Mechanism:
Dihyoko folale Roductase , DHFR
Di Hydro folale
Inactive DHF Aclive THF
Lo coenzyme for T synthose
U U
dump ditmp
Tsynthase
Mt activates it
* Methotrexale binds to DHFR with High affinity. No THF no T synthese
so no nucleotides produced slows cancer growth
3 Heavy Metals:
① Ha. /Pb/AI/Fe => non-specific inhibition in high closes
(2) Ka Doisonias:
* Binds to -SH groups in non-active sile region
a Charge es active site a machineles enzume
A CHANGES CHEYNE
3) Phone is a size of the second seco
$= \frac{1}{2} \int $
* prepiones (a) re/cn
w Albert Race the 1 Te ²⁺ contract Accuse
* Arrects NDCS are to te replacement. Anemia.

Allosteric Regulation: Aspartate transcarbamoylase (ATCase): *12 subunits. 6 catalytic. 6 Regulatory. C6r6. Allosteric enzyme * ATCase produces CTP, TTP, UTP. Asparlate is substrate * CTP inhibits ATCase (-ve feealback) on regulatory site * ATP activates ATCase on regulatory site * CTP - shift to right - T-state - Kso 1 & Aff. L * ATP \rightarrow shift to left \rightarrow R-state \rightarrow kso 1 \$ APP. 7 Covalent Regulation: * Addition of Pi on a to either activate or inhibit this enzyme. * Addition of Pi on Q.O. Containing -OH. The /Ser/Tyr

Quick Summary on different examples of regulations: ① Irreversible covalent inhibition - Organophosphates ~ acetyl cholinesterose - Aspirin ~ COX Transition state analogs inhibitors - Melhotrexate ~ DHFR - Penicillin ~ glycopeptiolyl transpeptiolase (3) Metal inhibitors - $Hg^{2+} \sim alisulfhyolyl bonds on <math>alisulfhyolyl bonds$ on alisulfhyolyl bonds of alisulfhyolyl bonds on alisulfhyolyl bonds on alisulfhyolyl bonds on alisulfhyolyl bonds of alisulfhyol bondBAZYMES D Reversible covalent modification regulation: - Phosphorylation ~ Gilycogen phosphorylase _ inactivated: ATP /Gil ited. ATP /Gluroce-6-phosphate D Ineversible covulent modification regulation: - Trypsinogen - b anive active V-ferminus (Allosteric binding regulation: / Inhibited: CTP - ATCase ~ Activated : ATP La-ve heterotrophic Le tre heterotrophic

Metabolic Regulation Examples: D feed back inhibition / Product inhibition: - Hexokinase \$ Glucose-6-phosphate - Glycogen phosphorylose & Glucose - 6 - phosphole / ATP - ATCase 6 CTP (2) Feedback activation: (amplification) - Blood coagulation 3 Feed Forward activation: (Paster) - Increase products fast! La Glycolysis: After rate determining step... fructose-1,6-bisphosphale activates pyruvale kinase... phosphoenol pyruvale to pyruvate... faster! substrate fast! - Decrease La Removing toric poisonous substrates by cloing feedforward activation to be faster (Committed Step in Glycolysis: (irreversible + unique + exergenic) - Glucokinase / Hexokinase NOT committed step - Phosphofructo kinase (PFK) IS committed step unique Why? Because glucose-6-phosphole con undergo many different reactions ... glycogen formation... nucleic acid synthesis... etc. BUT... the Fractose-1,6-BP WILL 100% form pyravate only. So: Lr Gik/HK not committed step... PFK is committed _step.

S Kate - Limiting in Glycolysis: - Slowest - Highest Ea... requires A7P usually - High Km volne (low affinity) - Committed Step Z Rate - limiting step Glycolysis: Phosphofractokinase... Fractuse-6.P - Fractose-1,6-BP => Rate - Limiting Step: Glucokinose.. Glucose - Glucose - 6 - phosphate slowest => Committeel step: Phospho Fructokinose... Fructose-6.P -> Fructose-1,6-BP Disease Diagnosis: - Creatine Phosphokinase (CPK): - CPK1 : CPK-BB ~ Brain (Д. 80% . НВ 20%) - CPK2: CPK-MB~ heart / carelian muscles - CPK3: CPK-MM ~ Skeletal muscle - Elevated level in one of those isozymes indicate clamage to its corresponding tissue * By: - necrosis - blebbing - High levels of CPK-MB... Head Attack!

Enzymes - Cofactors & Vitamins : Summary: Water soluble + Activation - Transfer Coenzymes ① Vitamin B1 ~ Thiamin Pyrophosphate: Decarboxylation. Binds to enzyme via Mg²⁴... chelation. Kyruvate Dehydrogenesse (3C pyruvate to 2C Acetyl Cat) or-keto glutarate dehy drogenose (50 x-ketoglutarate to 40 succingt CoA) ② Vitamin B5 ~ Pantothenic Acid: Forms Coenzyme A... Pantothenic acid = pantoic Acid + B-alanine Catalyses carbs/proteins/Lipids metabolism at C=0. Forms A-C-S-R' Pyruvate Dehydrogenese (3C pynnole to 2C Acetyl CoA) Citrale synthase (4C oxaloacetate + 2C acetyl Col -+ Citrate)

(3) Vitamin B6 ~ Pyridoxal Phosphate: Amino Aciol metabolism by using transaminases A.As \longleftrightarrow keto avial conversion Alanine + «- ketoglutarate == Pyruvate + Glutamate Aspartate + ~ . Keto glutarale - Oxaloacetale + Glutamate

(4) Vitamin B7 ~ Biohin Carboxylation Covalent bond via Lysine in active site Comes from food & bacteria Avidin from raw eggs binds to biolin. Biolin deficency. Pyruvale Carbonylose (^{sc} pyruvale - Okaloacetate) Acetyl CoA Carbony lase (Acetyl CoA -> Malonyl CoA) -> faity doval synthesis Water - Soluble + oxidation - reduction coenzymes: () Vitamin A & C: Use metals for oxygen transfer Q Vitamin B2 ~ Ribo Flavin: Produces Flavin Adenine Dinucleolide (FAD) Flavin + Pi - FAN FMN + adenylate -+ FAD FAD binds covalanty to active site. Prosthelic group. Tokes H (e) one by one Forms double bonds & disulfide bonds Succinate dehydrogenase (succinate - funarale)

(3) Vilamin B3 ~ Niacin Produces NAD + 4 NADP+ Cosubstrate.. non-covalent binding Many dehydrogenases use it. His in Lactorie ale hydrogenase active site binds to H on -OH & weakens the bond. Lactore dehydrogenase (30 Lactore - 30 pyrunote) Pyravate deby drogenase (3C pyravate - 2C Acetys CoA) or heloglutarate dehydrogenase (SC a-kologluterurule - 4C succinyl CoA) Vitamin B1 + are used logether in some olehydrogenese **B**3 Thiomin P.P. (y) Vitamin C ~ Ascorbic Acid Antioxidant against radicals Hydroxylation of Pro 4 Lys. Prolyl hydroxylase Proline + a-ketoglutarole + Vit-C ---- Hyd-Pro + succinate + Dehyd-Vit.C + CO2 Proline acts as a oxidizing agent, turning a ketoglubarate into succinate. $Vil-C + R \bullet \rightarrow Vil-C \bullet + RH$ Radical Vit-C is stable due to ring structure. Electron moves in the ring. Metals in enzymes: • Fe²⁴: Hemoglobin / Myuglobin 2 Zn²⁴: Carbonic Anhydroise, Alcohol Olehydrogenase 3 Mg²¹: Herokinase, thiomine pyrophosphate

Alcohol Dehydrogenesse & Zinc: Serine & Histidine pull Ht from alcohol. R-O" formed. The -ve ethoxide is stabalized by Zn²¹... aldehyde formed. Alcohol dehydrase + Zn²¹ not part of rxn... only stabilizes. Carbonic Anhydrose - Zn24 part of rxn. Zn24 pulls Ht and binds -OH with CO2 Lipid-Soluble Vitamins: Summary: A - Vision + growth + reproduction K - blood congulation E - antioxiolant D - Regulating Ca²⁺ & phosphate metabolism They are transported in blood via the lipoprotein Chylomicrons

Vitamin A: isomes
* Colled Refinoids (Refinal/Refinal/Refinoic Acid)
* Derived from B-constene cleavage in small intestines to give two molecules
of Retinal
<u>1 β-carolene</u> <u>2</u> Relina
Transport:
a B-carolene absorbed
3 Relinol + fally acid - Relinyl Ester
g Transpacted via chylomicrons lepoprotein in blood
(3) Goes to liver & stored
() When needed it releases retinol into bloud. Prealburnin /houshyretia 73/74 houspart into loger dets
@ Retinol + Relinol Bind Protein (RBP) + Transthyrelin Complex
B Relind complex goes to largel cells
() Relinol to Relinal OR Relinoic Acial depending on cell
· 0
Vitamin A Functions:
① Spermalogenisis:
* Retinal * NOT Refinoic Acid
Q Vision:
* Refinal * NO Reliant * NO Reliance Acid
* Relinal availized to Relinal in Relina cells in que.
3) Growth:
* Relingic Acid * No Reling * No Reling
* Retiant oxidized to Reliant deal in tranch cells used for DAIA brance when Denulation

Memo!
Retingic Acid: Growth only
Refinal: Vision + Reproduction
Refinel: Reproduction only.
Vitamin D ~ Calcibral:
* Comes from cholesterol
* Synthesized in body or from diel
0 0
Vitamin D synthesis:
1 7- dehydrocholesterol
0 Le Transport: Vibamin D-binding protein
2 Ergo calciferol D2 + Chole calciferol D3 => Vitamin D2 \$ D3 ⇒ Diel
La Transport, Chylomicross
D2 6 D3 goes to liver.
V
(D2/D3 <u>25-hydrosylase</u> Calcidio
(5) Calcidiol goes to kidneys
U U
6 Calcidiol <u>1-hydraylase</u> Calcibriol
kidneys
Active from

Vitamin D Function, - Active Vit. D... calcitriol enters cell... binds to intracellular Vil. D receptor - Vitamin D interacts & Regulates DNA transcription (like retinoic Acid!) Outcome! * Regulating Ca²⁺ & Phosphote serum levels outside idea: Michels is Vil. D defficiency. No Vit. D => no absorption of Ca²⁴ & Phosphates from food => weak bones Vitamin K: * Found in three forms ... K1 /K2 /K3 * Found in planks \$ intestinal bacteria * A quinone... made from quinone * Synthesized from gut backeria! Vitamin K function: Blood Congulation. Takes part in carboxylation of Glutomic Acid into carboxyglutomate. Carboxyglutamate helps in coogulation. SO! Vit K = Blood coogulation.

Vitamin	E:				
Function,	Anti oxidant	(it has ring	like Vit.C)		
		U			
Active F	orm: &-Toco	pherol			
	Ļ	,			
	Memo: E= ant	ioxidant = pherol = ning			
		looks like			
		Phenol			

Protein Purification:

Fixed pI: Low pH => tre charge High pH => -ve charge Fixed pH: Low pI => more -ve High pI => more +ve

Anion-Exchange Chromatugrophy. * All tre goes out first * Less -re goes first * More pI to Less pI goes out first + Cation-Exchange Chromatography. * All -ve goes out first * Less tre goes first * less pI to more pI goes out first Affinity Chromatography: - concarnavalin A high affinity to glucose. - Concanovalin A binds to beads with glucose... add alot extra free glucose to delach He Concanavalin A.

Protein Analysis: 0 SDS: - Detergent - Makes all proteins in SDS-PAGE some shape \$ some CHARGE (negative) 2 Reducing Agents, B-ME / DTT: - Reduces & Breaks the disulficle bonds 3 2D- PAGE - Isoelectric focusing + SDS - page low pI a.a. high pI a.a Low pH High p4 (+) \bigcirc Low pI = -ve = goes to +ve High pI = +ve = goes to -ve

6 Eolman Degregation: -PITC is used to cleavage one A.A at N-terminus - We take PITC - A.A and analyze type of A.A... using chromatography. - Works for ONLY 50 amino acids 7 Peplide cleavage: - Cyanogen Bromiele: After Methionine - Trypsin: After Lysine or Arginine (LA). NOT il after is Proline - Chynobrypsin: After Phe ... Tyr... Typ. NOT if after is Proline - Elashase: After Gily... Ala... Val... Ser. NOT if after is Proline - Pepsin: <u>Before</u>... Like chymotrypsin, add Len Not : <u>FAFTER</u> is Proline

(8) 3D-shape determination: VS NMR - spectroscopy - Protein in aqueos form X-ray Crystallography - Protein in crystal form - Dossn't give shape when - Gives shape when protoin is functioning protein is functioning Like T-state Hb to R-state Hb. . Mognetic fields. - Detect electrons