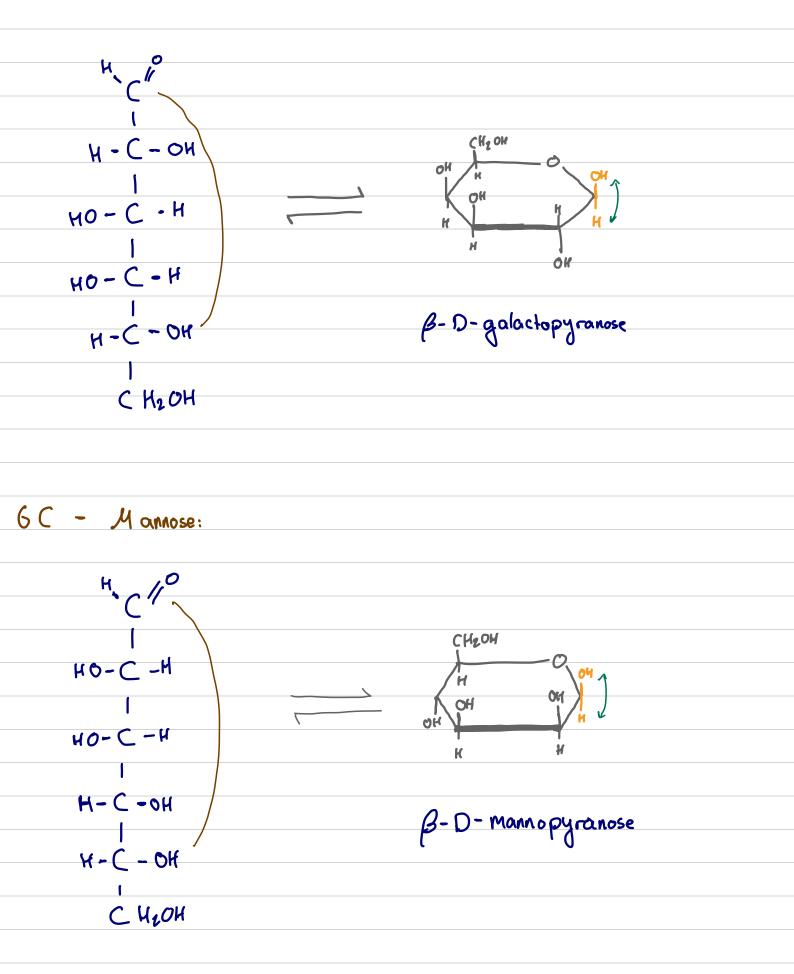
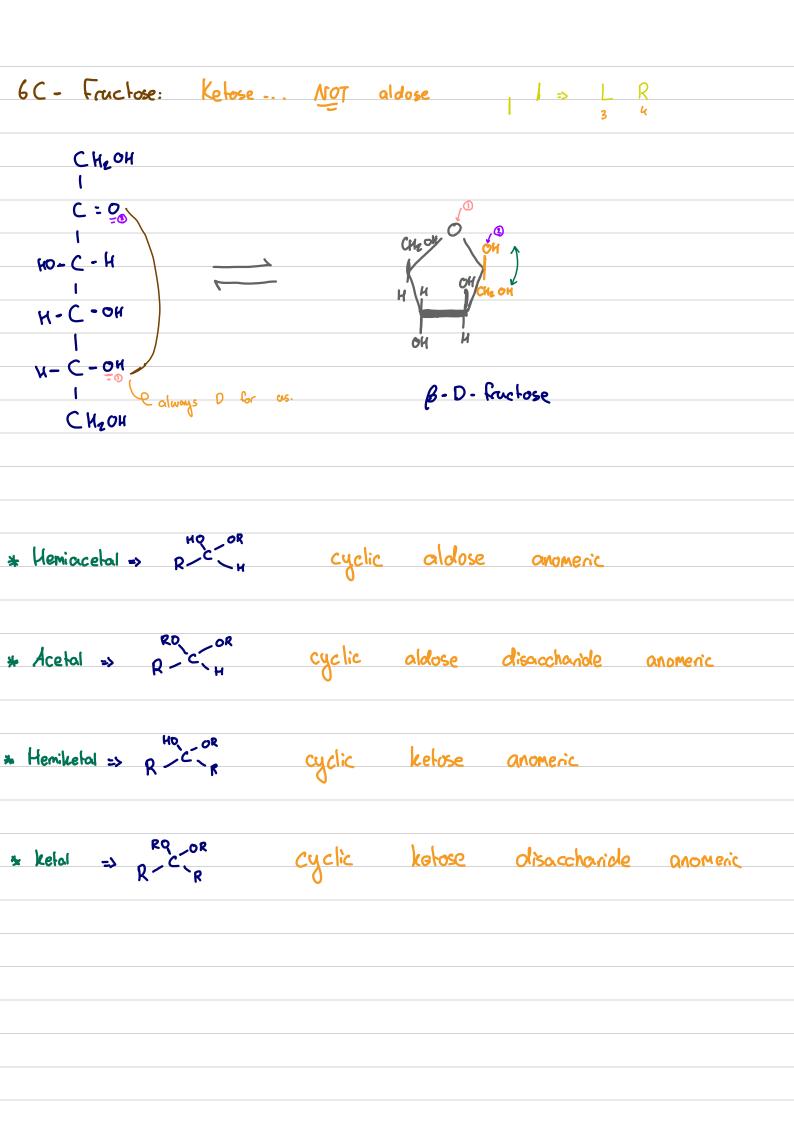
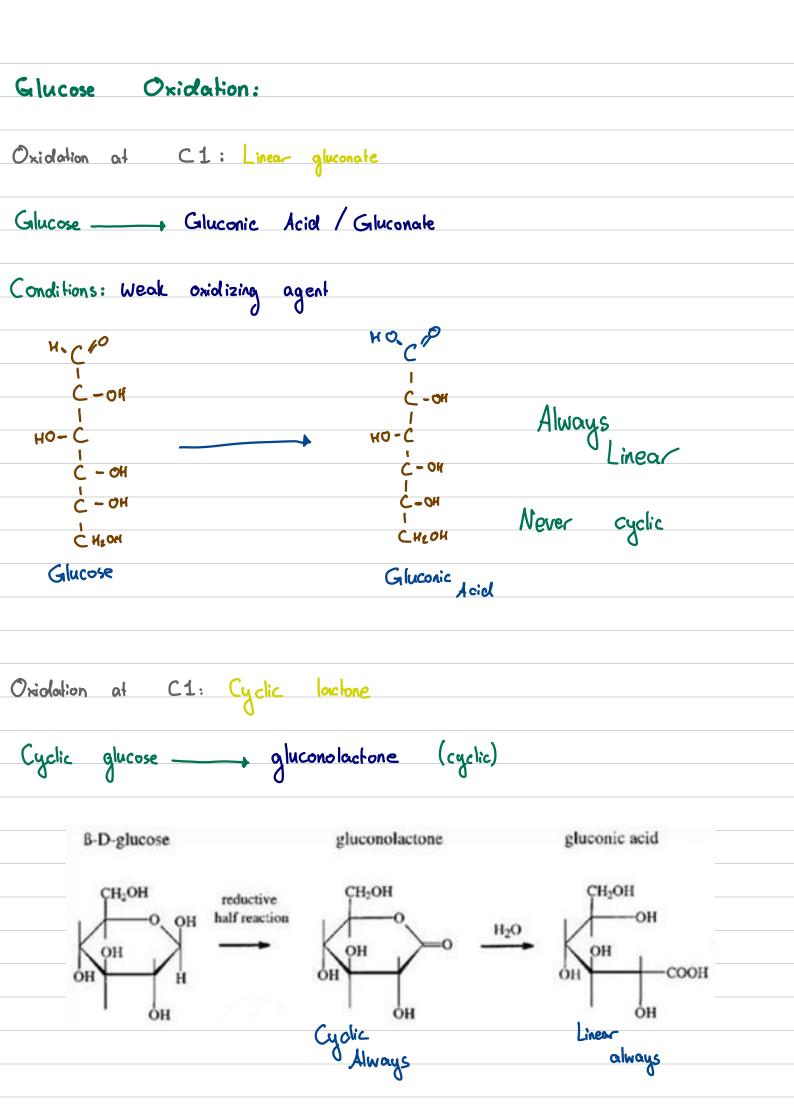
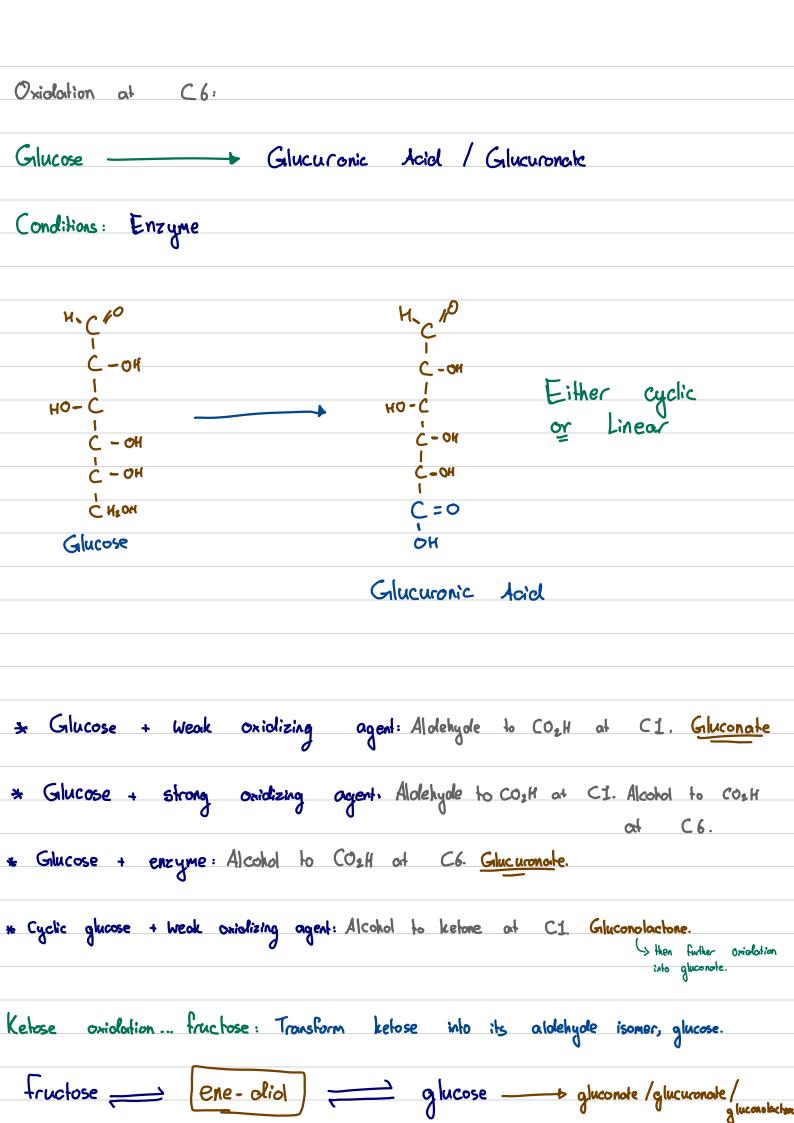
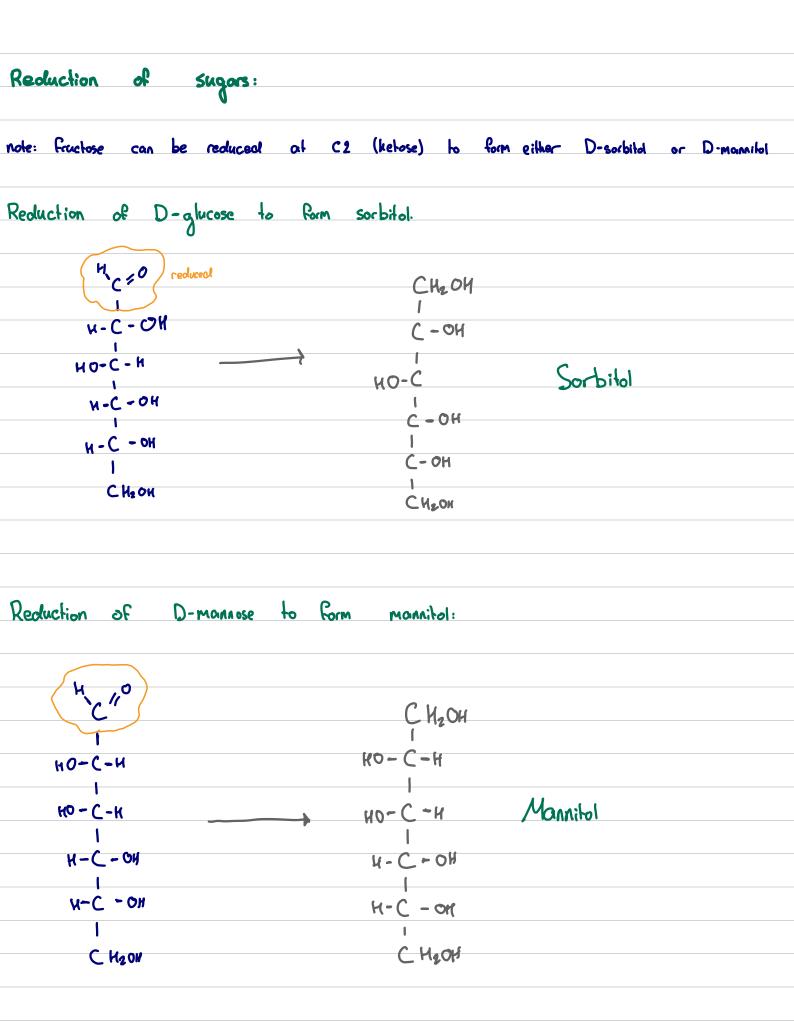

Memorize! Buffers: pH \$ Buffer Systems: * Blood => H2CO3 /HCO3 System (intracellular) => H2PO3 / HPO3 - ATP. Glucose-6-phosphale. * Inside cells Biphosphoglycerete (RBCs). (anything with phosphote) intracellular - RBCs * Proteins -> Hemoglabin... | proteins having histidine a.a. Both intracellular extracellular Acidosis \$ Alkalosis of alveoli walls. Air tooppeal. Respiratory Acidosis => Holding Breath. Choking. Asthma. Emphysema. $Cp_2 + H_{2}O \rightleftharpoons H_{2}Co_s \rightleftharpoons H_{1}Co_s + H^+$ Why? CO21 Metabolic Acidosis => Impaired Ht excretion. HCO; Loss. Lactic acidosis. Keto acids formation L. Staring... using fatty acids for energy Respiratory Alkalosis => Hyperventilation. High altitudes Alkabsis => Excessive salt intake. Alkali ingestion. Loss of Ht in vomit Motabolic Acidosis / Alkalosis => compensation with respiratory alkalosis /acidosis Metabolic Respirolory Acidosis / Alkalosis with metabolic => Compensation alkalosis / acidosis

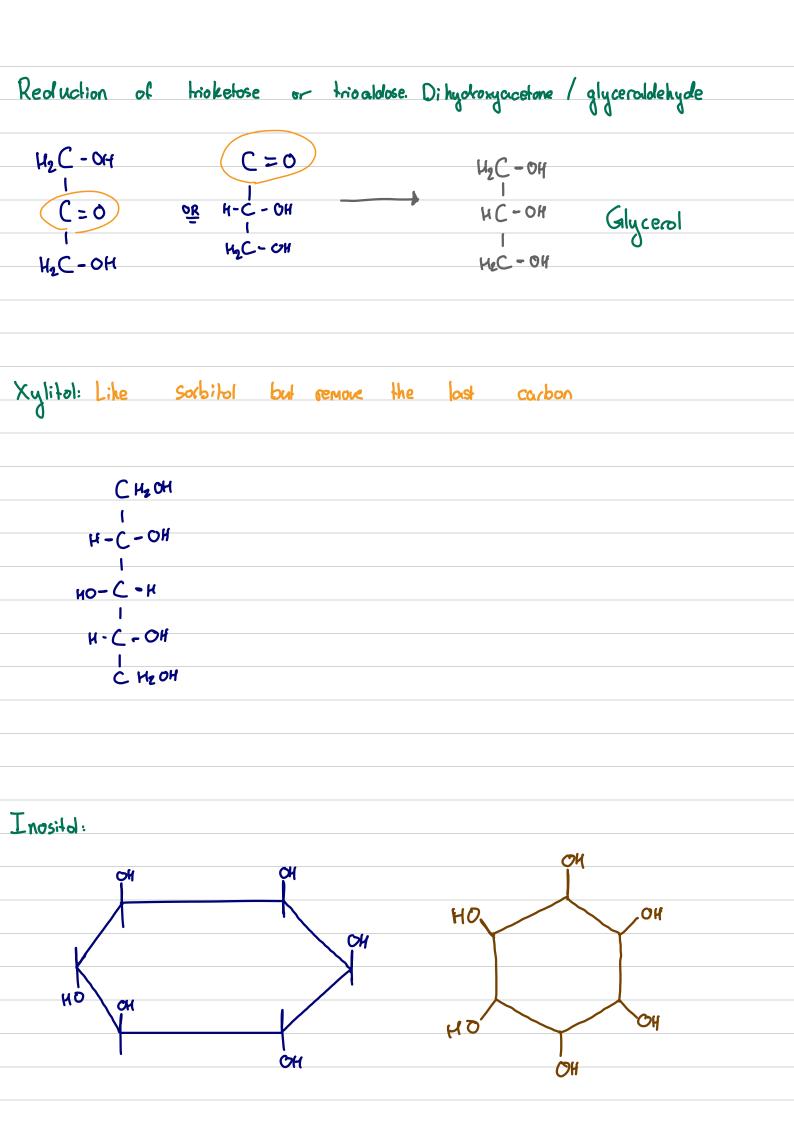


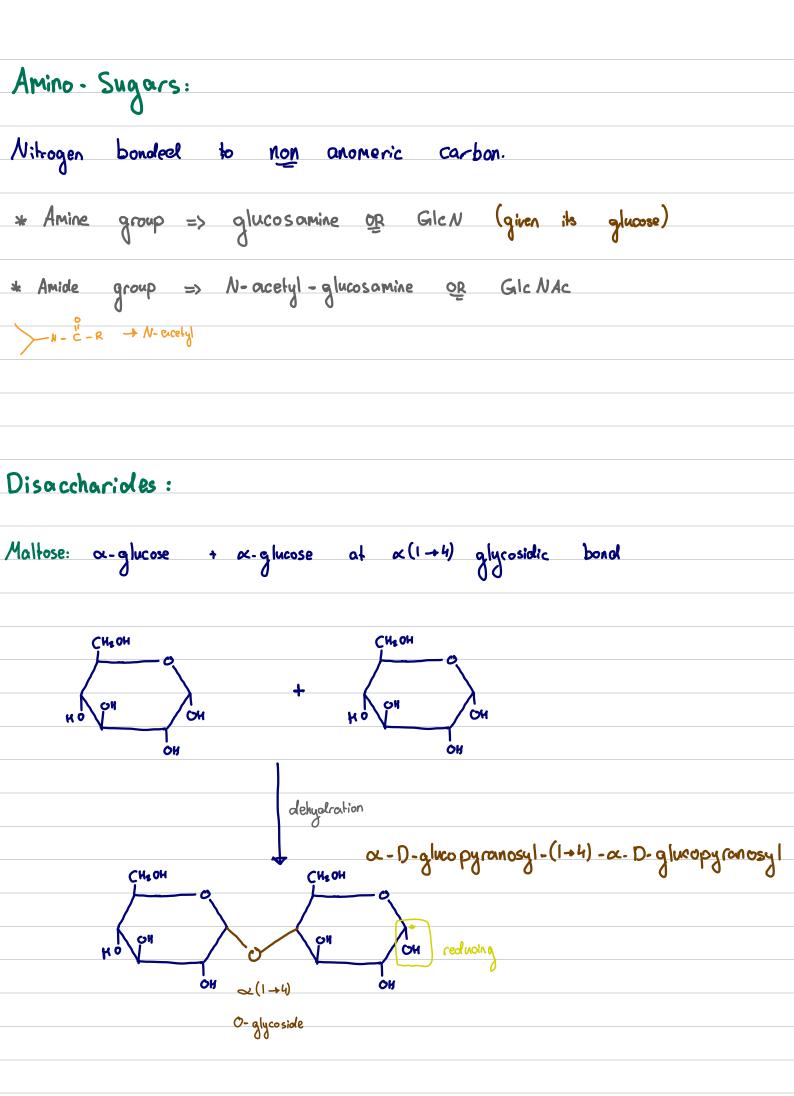


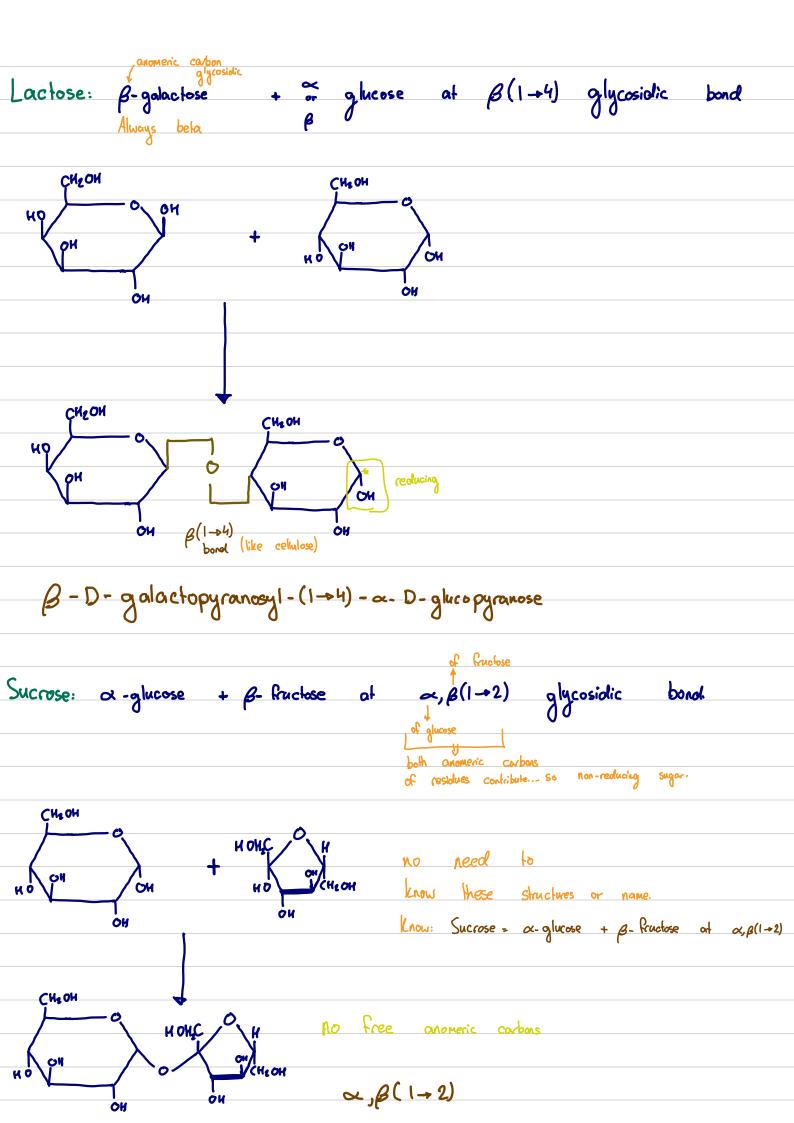

6C - Glucose:




6C - Gralactose:

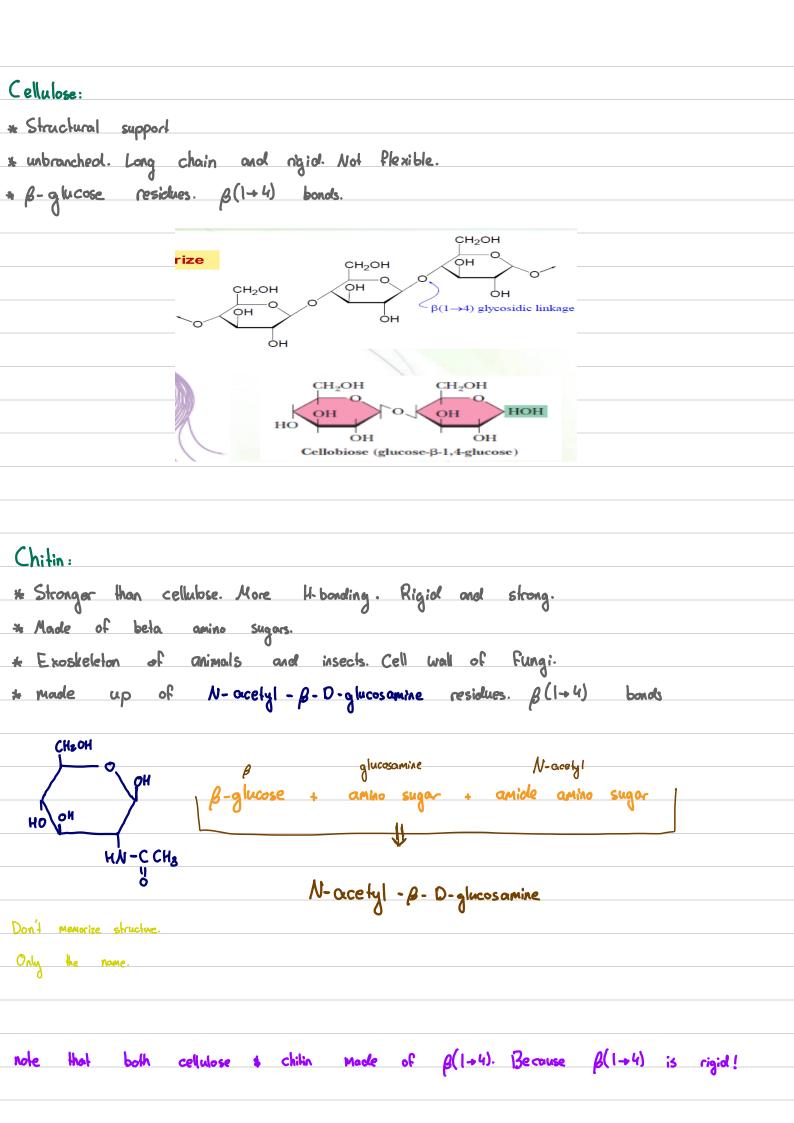






Decry Sugars (reduced super):
* Decryptose
$$\int_{a}^{b} \int_{a}^{b}$$

* Decryptose $\int_{a}^{b} \int_{a}^{b}$
* Decryptose $\int_{a}^{b} \int_{a}^{b}$
* Decryptose $\int_{a}^{b} \int_{a}^{b} \int_$



Lactose problems: * Lactose intolgrance: -> Lacking Lactase enzyme -> lactose in intestines. Diarchea. -o Bacteria break lactose. Groses produced. Bloating. * Galactosemia -> Lacking galactose -metabolizing enzyme. Accumilation of galactose. - Galactose converted to sugar alcohol galactitol. Galactitol trapped in cells -> Water enters cells. Cells swell - Severe & irreversable retardation -> Cartaract (cloudy lens in eyes) Lactulose: * Formed by isomerising lactose. * Aids constipution by promoting gut bacteria & regulating immune system Sucralose: * Madified sucrose. Replacing -OH with -CI * Sucralose is zero-calorie sugar substitute * Studies show :1 may couse cancer. Reducing VS Non-Reducing sugars: * All Monosocchariales - Reducing * Maltose. a.glucose + a.glucose. a (1+4) - Reducing * Lactose. B-galactose + or-glucose B(1+4) - Reducing * Sucrose ~- glucose + B- fractose a, B(1-2) - non-reducing All polysaccharioles - non - reducing

Oligosacchariales: 3-10 residues Raffinose: Made up of + c-glurose Made up of + Raffinose => a-galactose + and C-glurose ~- galactose $\alpha(1\rightarrow 6)$ and $\alpha,\beta(1\rightarrow 2)$ ∞ -galactose * Humons con't oligest well * Bacteria aid in oligestion. Bloating. носн₂ - Raffinose он н .₀_\\# &-glucose Oligosaccharides as drugs: * Streptomycin / Erythromycin - Anlibiotics * Doxo rubicin - chemotherapy for concer

* Digoxin — Cardiovascular disease

Poly soccharioles:
Sharch:
L+ 107 - 20 X Anyloge, a glucose residues All
$$\alpha(1+4)$$
. No bondoing
L+ 80 - 90%. Anylogedin, a glucose residues all $\alpha(1+4)$ is broader.
Bronch every 25 glucose residues. Loss branching than glycogen
Glucogen: a glucose residues. All $\alpha(1+4)$ with $\alpha(1+6)$ branching
Bronch every 10 glucose residues. Have branched than anylogedin
 $fin = fin =$

Peclin: * Modified galactose. Galactauronic acid Oxidized at C6. * ~ (1+4) glycosidic bonds » Found in plants. Gelatinous. Plant gelatin. 18,438 Glycosaminoglycans (GAGIS) and proteoglycans: * GAGIS form proteoglycans. - Many sugar with protein. * GAGs are repeated units of disaccharides. So heteropolysaccharides. * Made up of modified amino glucose or amino galactose. Sulphurated. + Glucosamine or galactosamine residues. * Negative charge. Holds water. Functions of proteoglycans: -> GAGes + protein. * Lubrication * Forms the connective tissue ▲ Cells - ECM adhesion * Stimulates cell proliferation

Location + Function of GAGs:	
Chondroilin Sulfate:	
* Cartilage * Most abundant	
Vacation	
Heparin:	
* Anticoagulant	
Hyaluronale:	
0 Lubricant and shock absorber in:	
* ECM of loose CT * vitreous humor	
Reclarial cell of the control of the second	
Bacterial Cell wall and peplidoglycan:	
Made of repeat units of NAM and NAG. Heteropolysanchanial	es. NAMs + NAGas are
	ies. NAMs + NAGas are connected to amino acids
NAM => N- acetylmuramic acid (NAM has belie acid)	connected to amino acids
NAM => N- acetyl muramic acid (NAM has belie acid) then forms amide => NAMs with N-terminal of	connected to amino acids.
NAM => N- acetyl muramic acid (NAM has belie acid) then forms amide => NAMs with N-terminat of NAMs + 0 AMS => N- acetyl alucosamine	connecteal to amino acids connecteal to amino acids. amino acid are bondeal
NAM => N- acetyl muramic acid (NAM has belie acid) then forms amide => NAMs with N-terminal of	connecteal to amino acids connecteal to amino acids. amino acid are bondeal
NAM => N- acetyl muramic acid (NAM has belie acid) then forms amide => NAMs with N-terminat of NAMs + 0 AMS => N- acetyl alucosamine	connecteal to amino acids connecteal to amino acids. amino acid are bondeal
NAM => N- acetyl muramic acid (NAM has belic acid) then forms amide with N-terminal of NAG => N- acetyl glucosamine to NAGs	connecteal to amino acids connecteal to amino acids. amino acid are bondeal
NAM => N- acetyl muramic acid (NAM has balic acid) then forms amide with N-terminel of NAMs + 0 to NAMs Protein + sugar role:	connecteal to amino acids connecteal to amino acids. amino acid are bondeal
NAM => N- acetyl muramic acid (NAM has belic acid) then forms amide with N-terminal of NAG => N- acetyl glucosamine to NAGs	connecteal to amino acids connecteal to amino acids. amino acid are bondeal
NAM => N- acetyl muramic acid (NAM has back acid) Hen Forms amide with N-termined of NAMs + o amino acids NAMs + o NAG => N- acetyl glucosamine Protein + sugar role: * Protein Polaling	connecteal to amino acids connecteal to amino acids. amino acid are bondeal
NAM => N- acetyl muramic acid (NAM has balic acid) then forms amide with N-terminel of NAMs + 0 to NAMs Protein + sugar role:	connecteal to amino acids connecteal to amino acids. amino acid are bondeal
NAM => N- acetyl Muramic acid (NAM has belic acid) Hen Forms amide with N-terminol of NAMs + 0 AAG => N- acetyl glucosamine Protein + sugar role: * Protein fololing * Protein largetting	connecteal to amino acids connecteal to amino acids. amino acid are bondeal
NAM => N- acetyl muramic acid (NAM has back acid) Hen Forms amide with N-termined of NAMs + o amino acids NAMs + o NAG => N- acetyl glucosamine Protein + sugar role: * Protein Polaling	connecteal to amino acids connecteal to amino acids. amino acid are bondeal
NAM => N- acetyl Muramic acid (NAM has belic acid) Hen Forms amide with N-terminol of NAMs + 0 AAG => N- acetyl glucosamine Protein + sugar role: * Protein fololing * Protein largetting	connecteal to amino acids connecteal to amino acids. amino acid are bondeal

Glycoproteins: Blood hypes: Memorize this: Anything RBC signalling. Galactose! * All contain fucose. A deoxy galactose <u> A = Amino sugar (acetyl)</u> * Blood A : N - Acetyl galactosamine * Blood B: Galactose * Blood O: Nothing. Only facese * Blood AB: Both N-acetylglucosamine and galactose Same deal with <u>algoripids</u> - Ceramide + Sugar - globoside (sphingosine + F.A) Glycosidic Linkages in glycoproteins: (ald protein with little sugar attached) * N-Glycoside: Sugar + amide group of Asparagine (Asn) * O- Glycoside: Sugar + -OH of Threonine (Thr) or Serine (Ser) Hydromy lysine (hLys)

Sialic Acid: * In Cilycoproteins & glycolipids. There is a oligosacchanide chain. The LAST residue is sialic acid. * Sialic Acid is an amino sugar. Comes from neurominic acid. It is acidic * Sialic Acid = N-acetyl neuraminate * neuraminic acid ----- N-acetyl neuraminate (sialic acid) amino sugar amino sugar The glycolipicl ganglioside ends with sialic acid. Globoside does not end with sialic acid (NANA).

Lipids: Fatty Acid names: How to memorize? * systematic name * Numerical symbol * Omega system * common name * Structure Memorize common name and numerical symbol and real is all findable from the numerical symbol. Numerical System: Example: 18:2^{49,12} => 18 carbons long. Two double bonds. Location carbon 9 \$ 12 note: earch clouble band has -CH2 group in middle. So from one clouble band to another it is +3 always. Memorize first location 4 add 3. Omega System: Counting from last carbon until we reach the double bond. Number of this carbon is the omega number. note: all failly acids we memorize are cis. 14C: M 16C: P° |8C: S' O' L' L'20C: A' E' D'

14 Carbons: M 1-+ Common Name: Myristic Acial Double bond number: 0 Numerical symbol: 14:0 Systematic name: N-tetra decanoic acid Omega system: N/A 16 Carbons: P 2 -+ Common name: Palmitic Acid Double bond number: O Numerical symbol: 16:0 Systematic name: n-hexadecanoic acid Omega system: N/A Palmitoleic Acid is 16:1

18 Carbons:
$$S O L L$$

3 +
Common name: Stearic Acid
Double bond number: O
Mumerical symbol: 18:0
Systematic name: n-octaoleconnoic
Omega system: N/A
4 +
Common name: Oleic Acid
Double bond number: 1
Mumerical symbol: 18:1⁰⁹ → all 18 orbits dud dude bod at ct
Systematic name: cis- A9- octaolecenoic acid
Omega system: Omega 9 monounsaturated
Omega system: Omega 9 monounsaturated
Omega system: Omega 9 monounsaturated
 $Omega system: Omega 9 monounsaturated$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array}\end{array}\end{array}\end{array}} & \begin{array}{c} \begin{array}{c} \end{array}\end{array}\end{array}} & \begin{array}{c} \begin{array}{c} \end{array}\end{array}$$

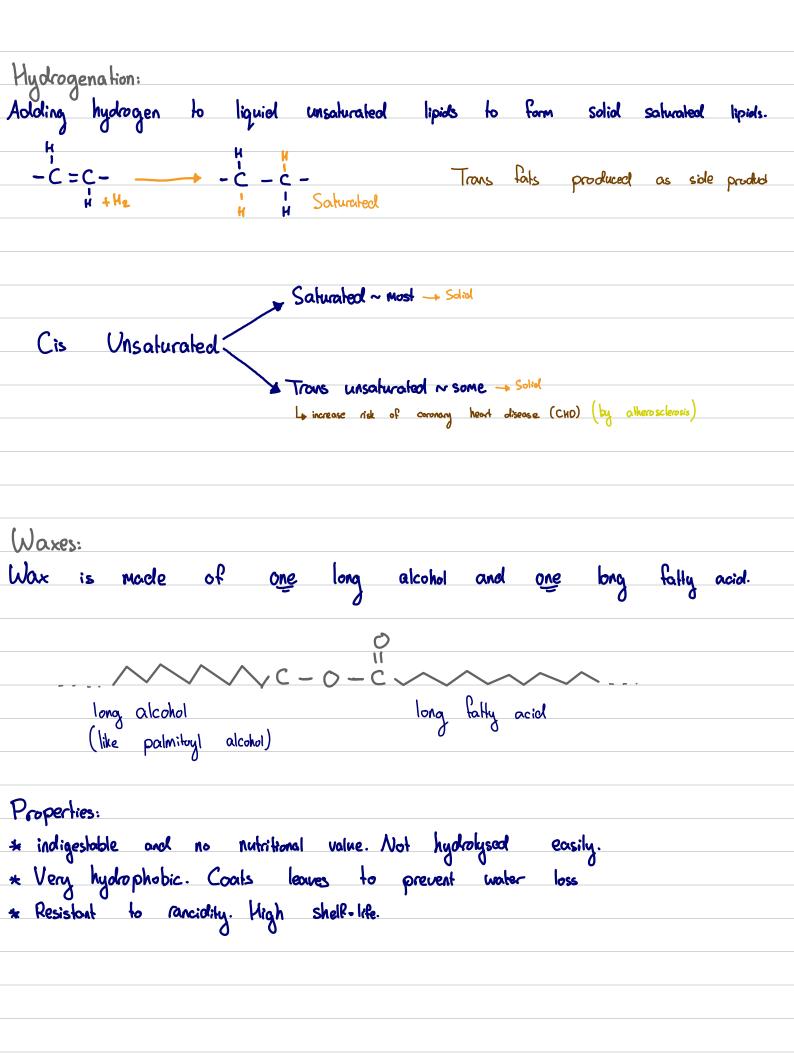
Fally Acid melling point:
* Increase number of carbons, higher melling point. Longer chains as more interactions
* Increase ansaturation (C=0), lower melling point. Afree kinks as Less interactions
* Trans higher melling point than cis... Cis is kinks but trans looks like solurated
to bas more packed & more interactions.
OMega Fatty Acids:
1 + Omega - 3 batty Acids
* Linolenic Acid... [3:
$$3^{0,12,16} \rightarrow 18-15=3$$

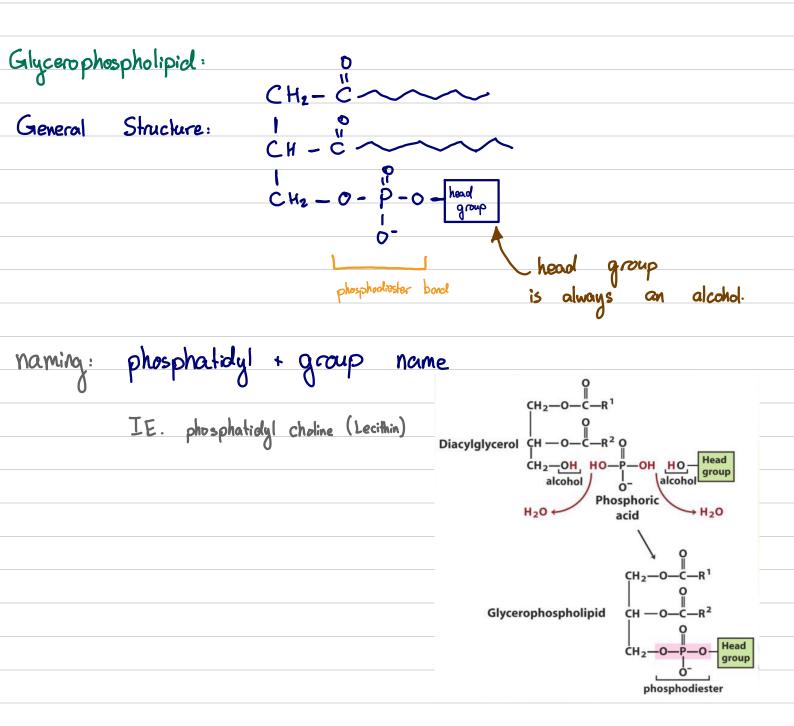
* EPA. 20: $5^{0.9,10,16,14} \rightarrow 20-17=3$ omega 3
* OHA 22: $5^{0.9,10,16,14} \rightarrow 22-19=3$
Omega 3 are anti-inflamatory
2 + Omega 6 fatty acids:
* Linoletic Acid... [3: $2^{0,12,16} \rightarrow 18-12=5$ omega 6
* Arachiolonic Acid... [3: $2^{0,12,16} \rightarrow 20-14=6$
3 + Omega 9 fatty acids:
* Linoletic Acid... [3: $2^{0,12} \rightarrow 20-14=6$
3 - Omega 9 fatty acids:
* Oteic Acid... [3: $1^{0.9} \rightarrow 18-9=9$ omega 9
Omega 9 reduces cholestered in circulation.

Eicosanoids:
Eicosanoids are derivatives of arachidonic acid 20:4
Arachiolonic Acid -> Eicosanoids (cellular function in response to injury)
Types of eicosonoids:
* Prostaglandins -> induces inflammation - COX2
* Leukotrienes
* Thromboxones - induces plotelet aggregation - COX1 * Prostacyclins
0 00 D
Tip: Eicosanoicles: PPLT -> sounds like platelet
Aspirin and eicosanoids:
Aspirin -> anti-inflamatory affects. Thins the blood. Pain-killer for headlaches.
Mechanism: blood clothing
Aspirin inhibits COX1 thromboxane inhibited inhibits blood clotting
Aspirin inhibits COX2 prostaglandins inhibited inhibits inflammation
Side effects:
Excessive bleeding. Especially in elderly. Because thromboxane is inhibited so
less blood clothing.
Celebrex as an alternative to aspirin: Celebrex not inhibits COX1 — thromboxane inhibited - blood clothing normal
Celebrex not inhibits COX1 thromboxane Jinhibited -> blood clothing normal
Celebrex inhibits COX2 prostaglanolins inhibited

Aspirin VS Celebrex:

Aspirin:

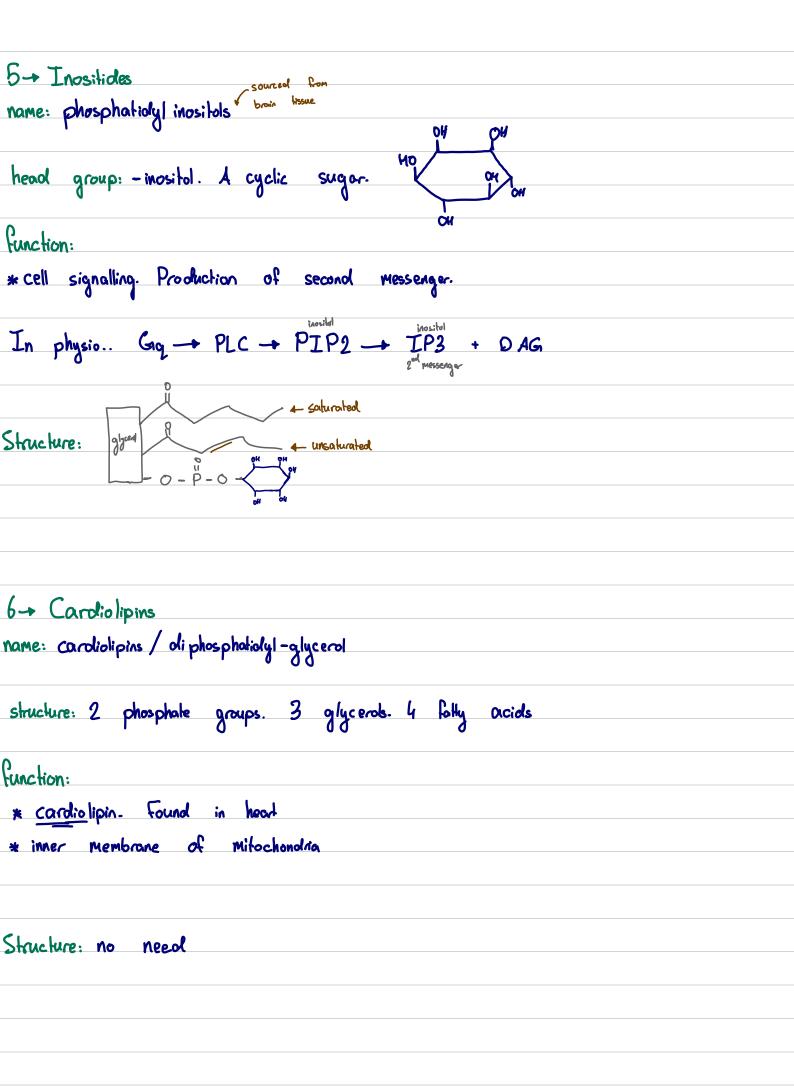

Both COX1 & COX2 inhibited
Both prostagbuolins & thromboxane inhibited
 Anti-inflammatory AND anti-blood clotting Excessive bleeoling


Celebrex:

*	Onlu	Cox	2 in	hibiled	l											
	0)										
		prost	U U													
*	Anti-in	fla mmato	ry bud	Ь	vod	clothing	romal									
			-			<u> </u>	problems	due	to	600	Much	blood	l c	lotting.	Prost	ag landin
							increases									
	rombox		9								9					
101	I UM OUX	ane.														

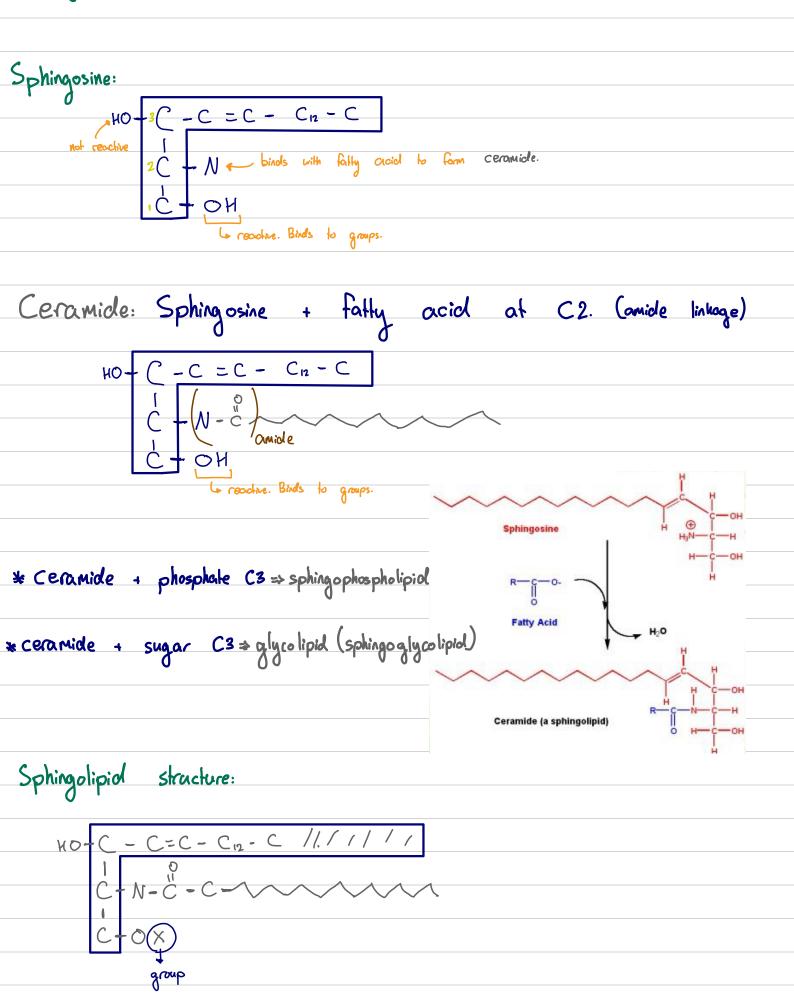
Eicosanoids pathway:	
1	The three Ls.
	Lipo oxygenase Leukotnews
	Linear * 4 olouble bonols
	Lion axy appage leukotoienes * 3 double bonds conjugated
	Lipo oxy genase Leuko trienes * 3 double bonds conjugated * non-cyclic. Linear LOX
Arachidonic	
Arachidonic	
	aspirin inhibits this inhibiling thromboxane (prostaglandin
	Cyclooxygenase. COX
	0 00
	Prostaglandin COX 2
cyclic	Prostaglandin COX 2 Prostacyclins
cyclic struct	
	Thromboxane COX1

Simple Lipids. Triglycerides: * esterfication * olehyolration. 3 HeO formed Triglycerioles / Triacyl glycerols => Glycerol + 3 fally acids => Triglyceriole alcohol Carboxylic acid Simple triacyl glycerols => same faity acid in all 3 Mixed triacyl glycerols => different fatty acids. Fat: Oil vs Oil => liquid at room temp - unsaturated fatty acids in triglyceride. at room temp - saturated fatty acids in triglyceride. tat => solid Triglyceriole Reactions: O Hydrolysis: Using water to break the ester band. Steam / Acid / enzyme (lipase) Produce glycerol & ionized failing acids @ Saponification: Alkali hydrolysis to form soolium salt fally acids which acts as soap. Using Na OH. Produce glycerol \$ R-CUZ Nat acts Soup as How soap works: grease/fat/alirt (non-polar) olir non-pola Soap amphiphatic is Micelle



name: Phosphatiolic Acial

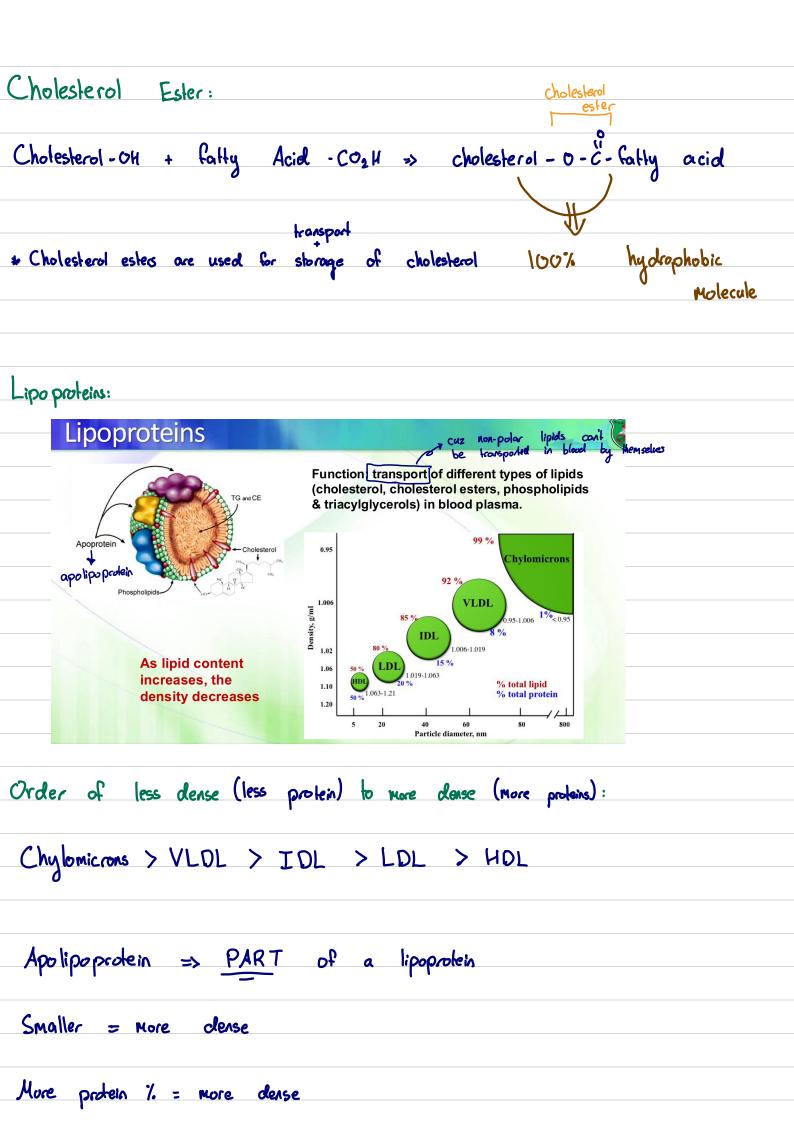
head group: - H


function: precursor for other glycerophospholipids Structure: glycerd р-0-Н

2- Lecithin - choline name: phosphatioly/choline head group: - choline. - CH2 - CH2 - N (CH3)3 function: * most abundant lipic in membrane * emulsifier. They form micelles easily. Surround non-polar * keep them suspended in mater. Structure: glycerd $\dot{P} = 0 = CH_2 - CH_2 - \dot{N}(CH_3)$ -polar Very Snake venom \$ lecithin: lecithingse enzyme Snake los Venom the usolecithin lyso lecithin, ecithin rupture of RBC. Hemolysis. (phosphoalidyl choline)

7- Plasmologens name: plasmologens Structure: has ether bond rather than ester. Ether linked with alkone. C-O-CH=CH-C... altered 0-CM Structure: group Serine/ethanolamine/choline looks so close Bullet points: Bullet points: * Plasmologens come from Dihyoloxy acelone phosphale (DHAP) * ether bond * with phosphale we can get Choline / Serine / ethanolamine * Choline plasmalogen platelet activating factors * Serine plasmalogen * ethanolamine plasmalogen -> ruyelin sheath * Found in: brain/muscle/heart/liver/semen (Cell membrane) * protects against free radical oxygens (Sacrifices its self)

Sphingo lipiols:



Sphingophospholipiol: Only one. Sphingophosphocholine => Name: sphingomyelin. Sphingomyelin: ceramide + phosphate choline. => sphingomyelin. Component of myelin sheath. Multiple Sclerosis -> disease due to the decay of myelin skeath Gilycolipiol: sphingosine + faity acrol Ceramicle + sugar = glycolipiol cell receptor \$ cell recognition. 1 - Cerebrosides Cerebroside => ceramide + Monosaccharide Cerebroside Cerebroside Ceramiole + galaclose - galaclocerebroside Sulfatioles (sulfated galactocerebroside) sulfatioles => ceramicle (sphing osine + FA) + galactose + sulfur in myelin

2 - Giloboside

Globoside => 2 or more sugars. <u>NO</u> end sialic Acid (N-acetyl neurominic Acid) The sugars are on C1 of ceramide Sugars include: Glucose N-acetyl glucosamine Glalactose 3- Ganglioside: Granglioside => 3 or more sugars WITH end sialic Acid (N-acelyl neurominic acid) The sugars are on C1 of ceramide Sugars include: Galucose N-acetyl glucosamine Galactose Gangliosides bind cholera toxin. Endorylosis.

Steroids:
Steroid nucleus:
$\sim\sim\sim$
Cholesterol: Don't memo
just understand
Cholesterol is amphipathic
Cholesterol:
Sex hormones - testosterone / progesterone
isoprene
precursor bile salts - amphipathic. Forms micelles. Emulcification of fals
Functions:
* Regulate membrane fluidity. Not too fluid. Not too rigid.
* regulare removed and room to high
* Forms sex hormones
* Forms vitamin D
* Forms bile salls
Too much cholesterol causes atherosclerosis

Cell membrane composition: * 457. lipids lipids = proleins * 45%. proteins * 10% carbs Outer Part: * Leçithin / phosphatidylcholine * Sphingonyelin (sphingosine + fatty acid + phophate - choline) * Glycolipid (Cell recognition) (ceramide + sugar) (cerebroside/globoside/gangioside) * Cholesterol Inner Part: * Cephalins - phosphalidylsenne \$ phosphalidyl ethanulamine * Phosphaticly/inosited - Cell signalling (inosite) * Cholesterol Protein: Membrane (outside) (associated with integral + Can be removed easily [mild detergent]) * pheripheral G-protein bacteria humans * integral (spanning) (hydrophobic interactions + single/multiple + or-helix + B-sheat + form chamels) * Lipid - anchored

Amino Aciols:		
Name: Amino Acid X		
Type: Polar/Non-polar/charged	COOH	
Type: rolar / Non-point / Charged	COOH	
0		
R group: +	$H_2 N - C - H$	
	-	
Unique name of functional unit: *	R	
Memorization tip: *		
- 		
Grossod Lu	ick (
1-		
Name: Glycine (Gly)		
	$C \cap C \setminus U$	
Type: non-polar	СООН	
·		
R group: - H	$H_{0}M - C - H$	
V	$H_2 N - C - H$	
Unique name of functional unit: N/A		
V ····································	P1	
Mounialize lie Challed only a stat		
Memorization tip: Simplest amino acid.		
Extra info: *		

2-	
Name: Alanine (Ala)	
Type: non-polar	COOH
R group: - CH3	$H_2 N - C - H$
Unique name of functional unit: Methyl group	CH3
Alount alter the Marine of Are Production of the	
Memorization tip: Alanine => A => first letler => only	j <u>yne</u> Menigi group.
Extra info: *	
3→	
Name: Valine (Val)	
Τ	COOH
Type: non-polar	COOH I
R group: - CH_ CH3	
CH3	$H_2 N - C - H$
Unique name of functional unit: Branch	ĆH.
	HaC CH3
Memorization tip: Looks like a valley valine.	
•	
Extra info: One of three essential am	ino acids

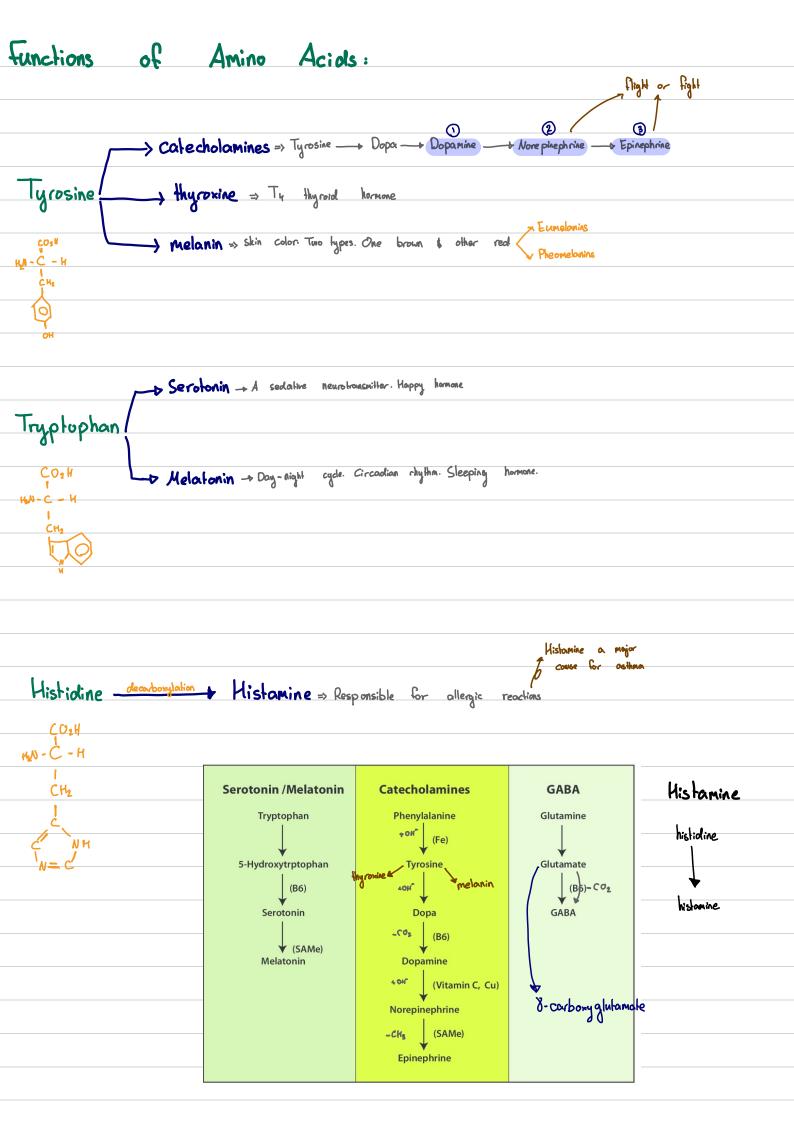
COOH 4-Name: Loucine (Lou) $H_2 N - C - H$ $C H_2$ I C HType: non-polar R group: - CH2-CH/CH3 H3C CH3 Unique name of functional unit: branch Memorization tip: Lucy => 4 letters => leucine has 4 Methyl groups Extra info: One of three essential amino acids 5-Name: Isoleucine (Ile) COOH Type: non-polar R group: - CH cH2 H2N-C-H H3C-CH-CH2-CH3 Unique name of functional unit: branch Memorization tip: just different form of Leucine (Leu). 4 methyl groups Extra info: One of three essential amino acids

6-+ Name: Methionine (Met) COOH Type: non-polar $H_2 N - C - H$ R group: - CH2 - CH2 - S - CH3 CYI2 ĊH2 S-CH3 Unique name of functional unit: throether -> R-S-R' Memorization tip: This as sulfur. Me - thionine as me having sulfur Extra info: methionine forms SAM. SAM is a methyl (-CHs) group alonor. -> Methionine = SAM = methyl group donor 7→ COOH secondory omine 1 H2N-C-H H2N-C-H CH2 CH2 CH2 Name: Proline (Pro) Type: non-polar R group: / l N > c 4 CH2 Unique name of functional unit: Memorization tip: Proline... Pro.. Pro at being only cyclic amino acid Extra info: The only cyclic amino acid. The ring is small so rigid. Pephide bonds with proline DONT form hydrogen bonding. Peptide bonds with proline are 50/60 cis / trans.

COCH 8-Name: Phenylalanine (Phe) $H_2 N - C$ Type: non-polar aromatic CH2 R group: - CH2-0 R-Unique name of functional unit: phenyl group. Memorization tip: Phenylalanine = phenyl group + alanine amino acid Extra info: * COCH 9-Name: Tryptophan (Trp) notice its Trp NOT Try H2N Type: Non-polar aromatic R group: - CH2 NH Unique name of functional unit: in dole ring. Memorization tip: Tryptophan => Tryp => trip over the R group => big R-group Extra info: Tryptophan has amine group. BUT it is not positively charged. Tryptophan is the biggest amino acid. phenylalonine => phenyl + alanine tryptophan => indole + alanine

role:
* All positive optilio acids have autilia group (except highlophan).
$$HAL$$

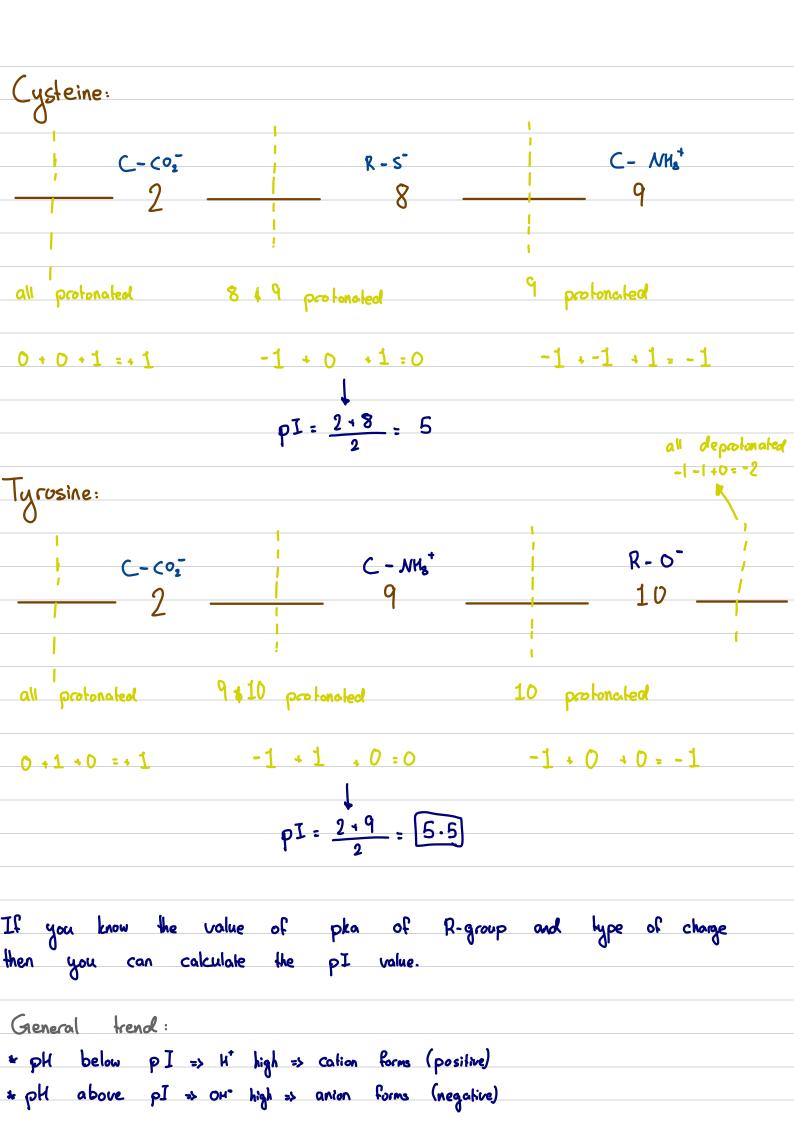
* All regalize autilia acids have $-CO_{2}H$ group. GA
10-+
None: Lysine (Lys)
Type: positively charged $H_{2}N - C - H$
R group: $-(CH_{2})_{V} - MH_{2}$
Unique name of functional unit: amino group
Memorization tip: Leucine is Lucy is 4 webyl groups.
Lysine inflo: HAL we avise acids
 $COOH$
11-+
Type: positively charged $(CH_{2})_{V}$
 $Max = 1$
 $Name: Arginine.$
 $H_{2}N - C - H$
Type: positively charged $(CH_{3})_{V}$
 $Memorization tip: Charged $(CH_{3})_{V}$
 $H_{2}N - C - H$
Type: positively charged $(CH_{3})_{V}$
 $H_{2}N - C - H$
Type: positively charged $(CH_{3})_{V}$
 MH_{2}
 $MH_{2}N - C - H$
Type: positively charged $(CH_{3})_{V}$
 $MH_{2}N - C - H$
Type: positively charged $(CH_{3})_{V}$
 $MH_{2}N - C - MH_{2}$
 $MH_{3}N - C - MH_{4}$
 $MH_{3}N - C - MH_{4}$
 $MH_{4}N - C - MH_{4}$
 $Mexorization tip: Arginine has not belies g and of HAL So it has not be.$$

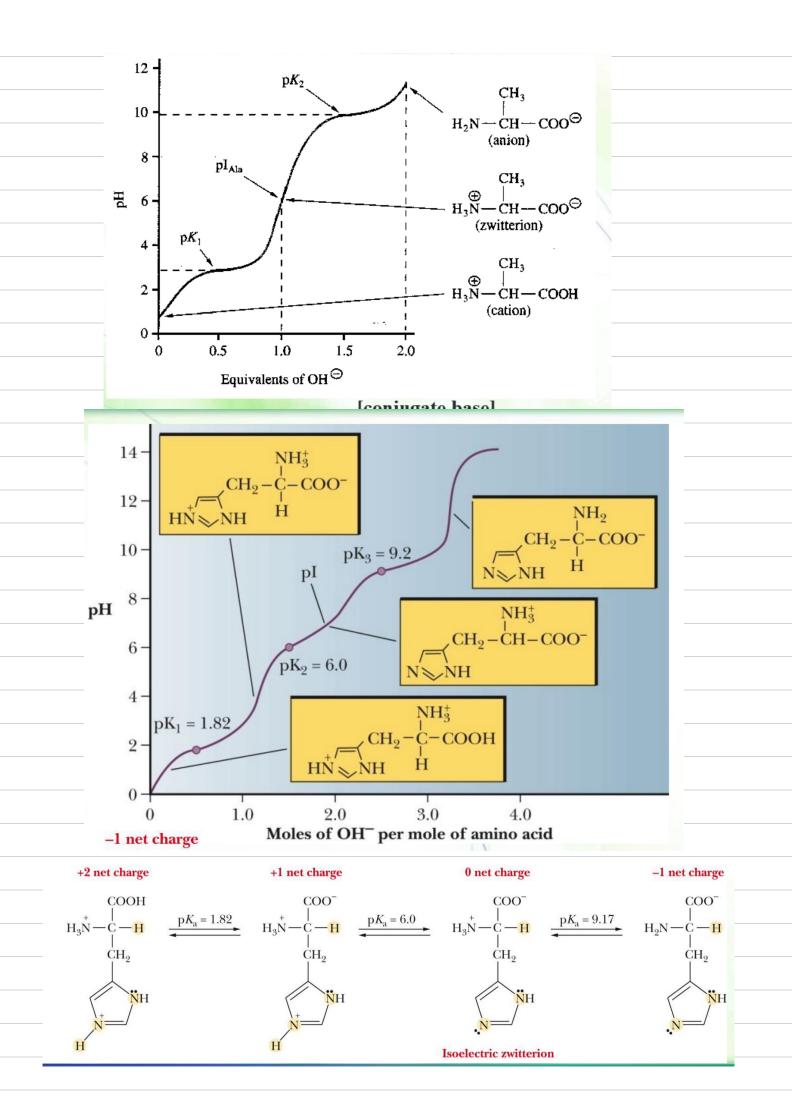

12 -COCH Name: Histidine (His) $H_2 N - C - H$ Type: positively charged R group: - CH2 - C N HN - CH Unique name of functional unit: imidazole. Memorization tip: Histioline => Imiolazole. _c N Looks like lefter H. <u>_ </u>C Extra info: the aromatic ring of imidazole can be charged. Ring of tryplophan cant Histioline has one ring. Tryptophan has 2. Histioline is decorboxylated to form histomine. 13-Name: Gilutamic Acid (Glu) / Gilutamate 13→ COOH $H_2 N - C - H$ Type: negatively charged CH2 R group: - CH2 - CH2 - CO2 H $\frac{1}{CH_2}$ Unique name of functional unit: corboxylic acid CO2H Memorization tip: Glute >> means 5. Glutamate has 5 total corbons. So R. CH.-CH.-COLH Extra info: Glutamine is some with amide group.

14-Name: Aspartic Acid (Asp) / Aspartate COOH Type: negatively charged $H_2N-C - H$ R group: - CH2 - CO2H CO2H Unique name of functional unit: carboxylic acid Memorization tip: Aspartic Acid alanine. So alonine + CO2H Extra info: Asparagine is same with amide group. 15-Name: Gilulamine (Giln) COOH Type: polar R group: -CH2 - CH2 - C - N-H H_2N-C-H CH2 Unique name of functional unit: amide CH2 Memorization tip: Glutamic Acid... but amide I н С – Л-н Extra info: *

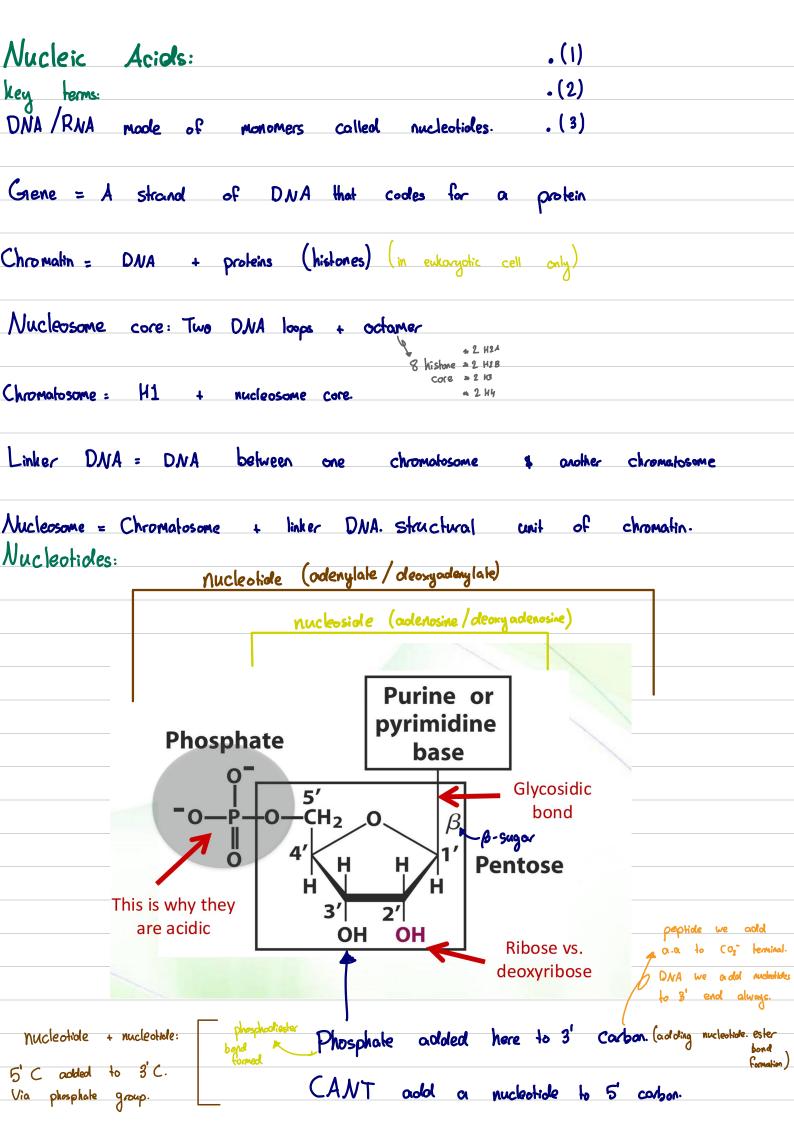
16-Name: Asparagine (Asn) COCH Type: polar R group: - CH3 - C - N-H H_2N-C-H CH2 Unique name of functional unit: carboxamiole | | С - Л -н Memorization tip: Aspartic aciel but amide D Extra info: 40 COOH 17- $H_2 N - C - H$ Name: Tyrosine (Tyr) Type: polar R group: - CH2 - OH OH Unique name of functional unit: phenyl + hydroxyl => phenol Memorization tip: Ty rosine looks like a tire. Also it is phenylalanine + - OH Extra info: makes catecholamine

18-Name: Serine (Ser) COCH Type: polar $H_2 N - C - H$ R group: - CH3- OH CH2 1 04 Unique name of functional unit: hydroxy Memorization tip: O-Ghycoside. Have - OH. Thr. Ser. Hyd. Lys Extra info: * 19 -Name: Threenine (Thr) COCH Type: polar $H_2 N - C - H$ HC-OH R group: -CH - CH3 OH CK3 Unique name of functional unit: hydroxy Memorization tip: Like serine but add an extra -CH3 at end. Extra info: *

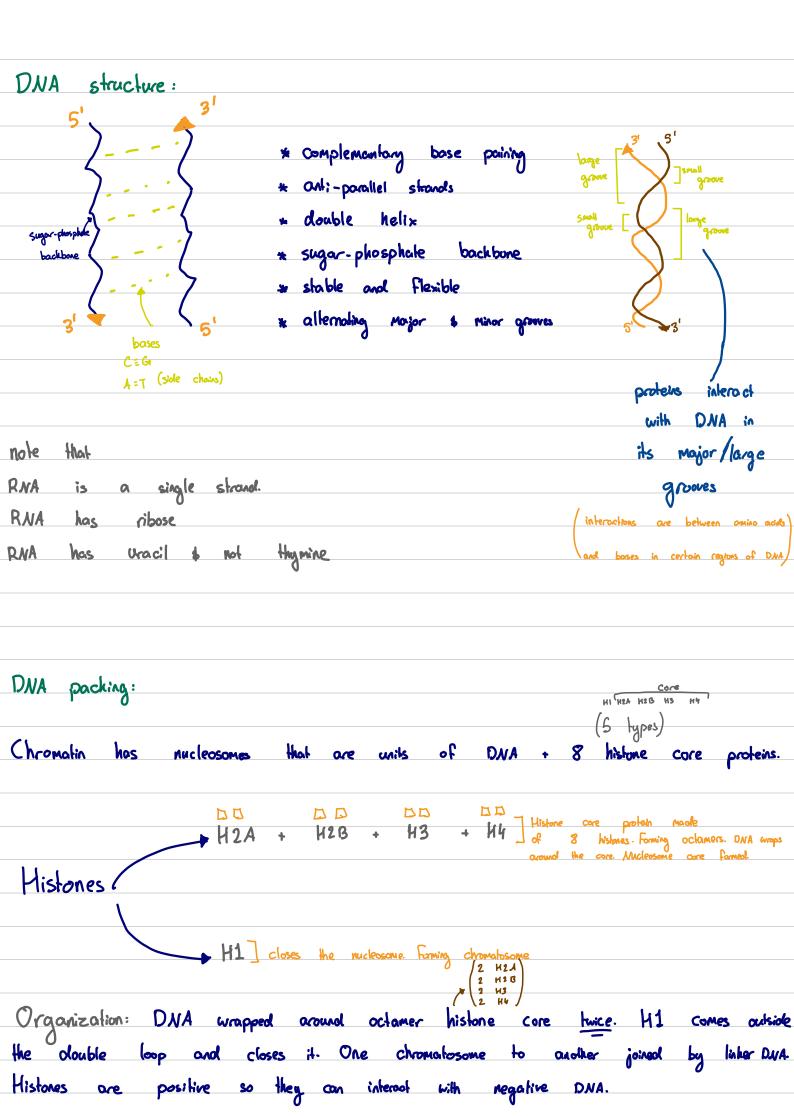

0 ->	
Name: Cysteine (Cys)	COCH
Q. 0	
Type: polar	
0, 1	H_2N-C-H
R group: - CH2- SH	
0	
Unique name of functional unit: sulfhydryl	/thiol - SH
Memorization tip: like serine but - SH.	Cussesseine = sulfur.
	0
Extra info: Cysteine sulfur is so rea	active cuz at end. forms oli-sulfur bridge.
/~\//98./11/1/2/ 8.65 //20.75//// (~\17 48.0/296//	· Makes the Sullive highdren
rethionine not reactive cuz thioether	makes the sulfar hidlolen.
Methionine not reactive cuz thioether	r Makes the Sulfar higlolen.
riethionine not reactive cuz thiogher	makes the Sulfar hiddlen.
riethionine not reactive cuz thiogher	makes the Sulliv hiddlen.
"Tethionine not reactive cuz thioether	makes the Sulliv hiologen.
Tethionine not reactive cuz throether	makes the Sulliv hiologen.
Tethionine not reactive cuz throether	makes the Sulliv hidlolen.
Tethionine not reactive cuz throether	makes the sulfar hiddolen.
	Morkes the Sulliv hiologen.
	Morkes the Sulliv higtoren.
	Morkes the Sulliv higtoren.
	Makes the Sultin hiddlen.
	Molkes the Sullin hiddolph.
	Makes the Sullin hiddolph.
	Makes the Sultive higholen.
	Molkes the Sultive hiologen.
	Monkes the Sutika hiologen.
	Makes the Sutika hiologen.
	Makes the Sulliar hiddlen.

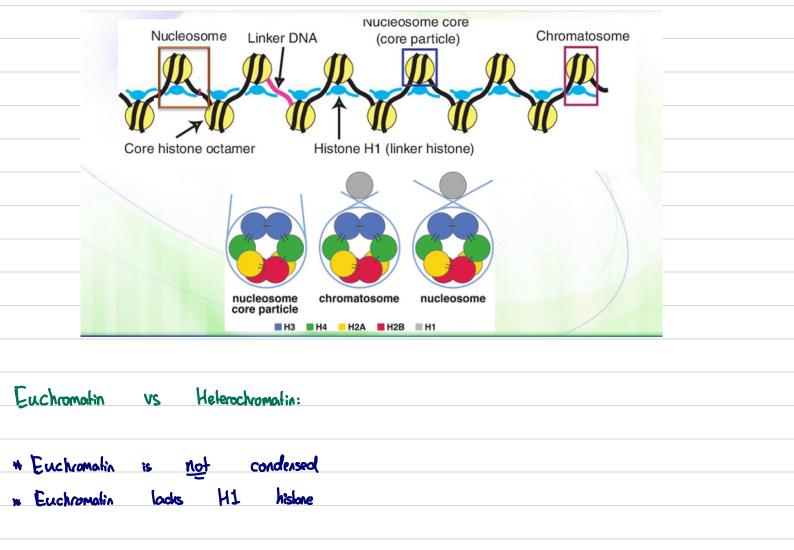


Glutamale \$ GABL: Glutamate loses its ac-carboxylic group to form GABA (8-amino butyric acid) 8-aminobulyric acid GABA Galutamale (glutamic acid) $\frac{-CO_2}{(\alpha)} \xrightarrow{-CO_2} -CH_2 - CH_2 - CH_2$ $C_{0}H$ $C_{12} - C_{12} - C_{12} - M_{2} - M_{2}$ Functions of GABA: * Inhibitory nourotransmitter * Relaxing affect * onli-anxiely Glutamate and 8-carboxyglutamate (Gla): Gilutamate (Glu) gets carboxylated to form X-carboxy glutamate (Gla) * 8-carboxy glutamote and vitamin K play a role in blood clothing. -DX-carboxy glutamate (Gla) => Gla with vilamin k responsible for blood clotting Inhibitory neurotransmillion
V - amino bulyric acid (GABA) => ** Relaxing:
* anti-anxiety. Glutamate


L-Arginine and nitric oxide, NU: note that in our boolies: * Carbohydrates => D * amino acids => L Arginine has a nitrogen rich guanialium group... one of those nitrogens are broken off and <u>ND</u> and citrulline are formed. Arginine b citrulline Functions of nitric oxide: * vaso dilation * anti-inflamitory * inhibit blood Congulation. Hydroxylated amino acids: After protein synthesis... we get hydroxylation. ** proline hydroxylated to hydroxyproline Hydroxyproline and hydroxylysine play + Lysine hydroxylated to hydroxylysine of vitamin C. O-glycoside => Thr (threenine) / Ser (serine) / hyd Lys (hydroxy lysine)

Monoscolium Glutamate (MSG): * sodium ion with glulamate * flavour enhancer * Has some side affects for some people. Chinese Restaurant syndrome. Amino Acid ionization: * Zwillerion => Molecule with two opposite charges and net charge is zero * Isoelectric point => pH or which molecule exists as zwitterion. pI = pka, + pkae How to calculate isoelectric point: ① pH < pka => protonated ② pH > pka => Ole protonated -1+0+0 =-1 all deprotoncled Histidine: С - Лін_а 9 _____ рка____ Č-C00 R - NH3+ 9 _____ 2 ____ 6 Pka enly 6 & 9 protonated -1 + 1 + 1 = +1 -1 + 0 + 1 = 0 $\frac{6 + 9}{2} = 7.5$ all protonated +2=0+1+1





N - no	- NH2 - 1	10 - (024 -	- M ₂ - No	- Nn -	CO ₂ H	
	6	4	12.5	6	2	
rol.	6 50 /S0 + 0.5	deprot.	prol.	50/50	deprol.	1
1	+ 0.5	- [+1	+0.5	-1 .	j > + -

Naming nucleoficles / nucleosicles: Im taking adenine as a base. Note that riboses with warcil Deaxyriboses with thymine. 1-+no phosphate + ribose. Ribose nucleaside: adlenosine 2 - Phosphale + ribose . Ribose nucleofide: Adenylate / adenosine 5'-monophosphate 3-no phosphate + deoxyribose. deoxyribose nucleoside: deoxyadenosine 4- Phosphate + deoxy ribose. deoxyribose nucleotide: Deoxyadenylate / deoxyadenosine 5'-Monophosphole 01 = Cleoxygenated Bases: * Purines = two rings. G1 A => guanine & adenine * Pyrimiolines = one ring. CUT => cytosine \$ uracil \$ Hymine RNA DNA Chargaff rule А 🞞 Т A = T C = Gc) ---- (G G === C A+G=C+7 H-banding purine = pyrimidines Same length always CG length = AT length

* Heterochromatin	is	condensed	
* Heterchromatin			

DNA stabalizing factors: * Histones * Cations (Nat (Mg²¹) * Hydrophobic Stacking Propeller twists + Helical responsible for DNA's helical shape. (hydrophic interactions blw bases)

RNA: * Ribozymes - RNA acting as enzymes 1 - miRNA: micro RNA -> post-transcription transpason repression 2→ pi RNA: piwi interacting RNA -+ transposon repression by DNA methylation 3- si RNA short RNA - RNA interference 4- sno RNA small RNA - RNA modification - rRNA processing 5- + RNA transfer RNA -+ m RNA translation

6 + rR1	Av		
ribosomal			
- mRNA			