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Why FAT not Carbohydrates?

* More reduced:

9 kcal per gram compared with

4 keal per gram of Triacylglycerol (TAG) or FAT is the
major energy reserve in the body
* Hydrophobic:

. It is more efficient to store energy in
can be stored without H,0 oY

the form of TAG
are hydrophilic

1 gram : 2 grams



FATTY ACID as FUELS

* The major fuel used by tissues but Glucose is the major circulating
Fuel

Fuel type Amount used/kcal/12 hours (gram)

FA 60 (540)

Glucose 70 (280)
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Glycerol in liver and adipose tissues
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Glyceroneogenesis
y g Glycemueﬂgeuesi/

Purpose: regulating the levels of Glucose PEPCK-_C

FAs in blood. T Pyr +OA*3L_> PEP
In liver and adipose tissue

Glycerol leaves the adipocytes L?ctate

. . Alanine

into the liver. Aspartate TAG

Failure in regulating
glyceroneogenesis may lead

to Type 2 diabetes due to excess
fatty acids and glucose in the
blood
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PC: Pyruvate carboxylase

PEPCK: phosphoenolpyruvate
carboxykinase



B-oxidation of Fatty acids
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v Fatty Acids are transported to G6P Aeyega g C,°< . S
tissues bound to albumin ( Pruz )l . / -—
v' Degraded by oxidation at 3 > yruvate Acyl-CoA
carbon followed by cleavage of \ME1) ,\
two carbon units Malate _\{ Acetyl-Coa
Fatty Acid
Oxidation ACLY




B Oxidation of Fatty Acids (overview)
CH, (CH,) -CH,-CH,- COO"

1
1
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H, (CH,), -CO ~CoA  + CH,-CO ~CoA




Activation of Fatty Acids

* Joining F.A with Coenzyme A
e RCO~SCoA (Thioester bond)

Thiokinase
(Acyl CoA Synthetase)

FA + HSCoA + ATP FA~CoA + AMP + PP.

PP, + H,0 - 2P,

FA + HSCoA + ATP —— FA~CoA + AMP + 2 P,

Location:
LCFA: outer mitochondrial membrane
Short and medium chain FA: mitochondrial matrix



Transport of LCFA
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Transport of SCFAs and MCFAs

LCFA MCFA

LC{A MCFA
. Note: No regulation
LCFA-CoA Carnitine
| — Of entry like that of
LCFA-carnitine CPTI by malonyl CoA
v
LCFA-CoA MCFA

Acetyl-CoA > Ketones

!

Krebs’ cycle

Mitochondria

I
Energy




Application: Carnitine sources

Source: meat product and synthesis from Lys and Met
(liver and kidney)

L- methionine  L-lysine

l Protein-lysine

S-adenosyl-
methioninej 0, + 2-oxoglutarate
T™LD _ .
Protein-6-N-trimethyllysine -L—“y-;"ri‘l’;‘;‘;' 6-N-trimethyllysine
(TM L) NAD+ HTMLA

Skeletal muscle Cardiac muscle CO, + Succinate PLP
contains ~97% of all carnitine in the body.
No ACC1, no FA synthesis but contains a 5 : h . NADH Glycine
Llnelzg()r(;zggggal ACC2 to regulate fatty acid 2 it (=N ik pat way 4-trimethilaminobutyroaldehyde
: (TMABA)
Other functions: N
- Export of branched chain acyl groups from DH
. . BBD . 5. NADH+ H+
rr_uto_chondrla | | L-carnitine < ° Butyrobetaine
-Binding to acyl groups derived of AA metabolism f \ (BB)

and their execration functioning as a scavenger Succinate 2-orogutarate
+CO, +0,




Application: Carnitine deficiencies

* Primary carnitine deficiency
e Defects in a membrane transporter: No uptake of carnitine by cardiac and

skeletal muscles and the kidneys, causing carnitine to be excreted.
* Treatment: carnitine supplementation.

e Secondary carnitine deficiency
 Taking valproic acid (antiseizure) — decreased renal reabsorption

Defective fatty acid oxidation — acyl-carnitines accumulate — urine
Liver diseases — decreased carnitine synthesis

CPT-I deficiency: affects liver; no use of LCFA, no energy for glucose
synthesis during fasting — severe hypoglycemia, coma, and death

CPT-Il deficiency: affects liver, cardiac muscle, and skeletal muscle

* Treatment: avoidance of fasting and adopting a diet high in
carbohydrates and low in fat but supplemented with medium-chain
TAG.
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B-carbon
o ~ . . .
o e o® | B-Oxidation of fatty acids
Fatty acyl CoA
Acyl CoA g "2 Oxidation 0 0
dehydrogenases 1] 1
\p FADH; CH3' (CHz)X'C'CHz' C-Saitbaa
©
CHg- (CH,),~CH=CH- C- S- CoA 3-Ketoacyl CoA
Enoyl CoA
i’}%;g?sg / e Hydration th’olase COA
A\ Thiolytic
OH O / cleavage
CHs3- (CH,),~CH-CH,- C- S- CoA X
3-Hydroxyacyl CoA Acetyl V
NAD™ CoA/CoA @ 0O
e omecod g Oxidation L ]
Ny CHy(CH,),-C-S-CoA * CH4-C-S-CoA
A4
o o Fatty acyl CoA Acetyl CoA
CH3- (CH,),~C-CHy- C- S- CoA
S RTEETEaA Number of cycles: (n/2)-1



Energy Yield from FA Oxidation

CH,~(CH,),,-~CO-CoA
\

v' Oxidation of C 16 FATTY ACID

V[T—5A

cetyl CoA
6 FADH 7 FADH, = 14ATP

i \6 NADHZ 7 NADH > 21ATP

¥ 8 Acetyl CoA =2 96 ATP

‘1" v" Activation of the Acid consumes 2 ATP
v" Net 129 ATP mole per mole of C16 Fatty

CH3-CH2CH2-CO-COA Acid

|

CH,-CO-CoA + CH,-CO-CoA + FADH, + NADH



Induction of gluconeogenesis and fates of acetyl CoA

[ B- O><|dat|on

I /c‘\e Fatty acids

Pyruvate / Acetyl -COA m——) Kctones

r l Ketogenesis

Phosphoenolpyruvate

Oxaloacetate Citrate O
X

PCK] r TCA 8 i

ﬁ Fumarate Cycle  —
Gluconeogenesis A‘ aKetagll 0 P
Phenylalanine

tyrosin r} Succinyl-CoA & 5

Glutamate ROS

Glucose Valine
isoleucine J



Application: MCAD deficiency

* There are 4 isozymes of fatty acyl CoA dehydrogenase for
SCFA, MCFA, LCFA, and VLCFA. Fat from Food K Body Fat

e
* Medium-chain fatty acyl CoA dehydrogenase (MCAD) “. pu <
deficiency, s-o)
 An autosomal-recessive disorder

* Most common inborn error of B-oxidation (1:14,000 ey Aas

births worldwide) e ——— “agium Coe”
* Higher incidence among Caucasians of Northern S s w “"--
European descent
 Decreased ability to oxidize MCFAs (lack of energy) et s b
* Severe hypoglycemia and hypoketonemia
. . Health Probl
* Treatment: avoidance of fasting =
Medium Chain
Regular and frequent meals and snacks Normal Acyl-CoA Dehydrogenase
Deficiency (MCADD)

Diet high in carbohydrates and low in fat



Oxidation of odd-numbered FAs

Starts as cycles of beta-oxidation producing acetyl-CoA and propionyl-CoA
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Monounsaturated fatty acid B-oxidation

O FAD HHO
|
S-CoA FADH: (|

17 15 13 IR 8 © 8 i "
Oleoyl-CoA '
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Cis to trans But this reaction is skipped

o resulting in one less FADH,
— loss of electrons
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. Polyunsaturated FA will also
o V4 2,4-dienoyl CoA reductase in
addition to the isomerase.
6 Acetyl CoA

— loss of electrons




Peroxisomal B-oxidation

VLCFA 222
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Peroxisomal a-oxidation of branched chain FAs
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Fhytanic acid

ATP Mg** - oA
o Very-bong-chain
acyl-CoA synthetase

|
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@ Phytanic acid is a breakdown product of Chlorophyill.

Fhytanoyl-CoA

L 4
Peroxisomes

It is activated by CoA, transported into peroxisome,

hydroxylated by phytanoyl CoA a-hydroxylase (PhyH),

and carbon 1 is released as CO.,.
When fully degraded, it generates formyl-CoA,

propionyl-CoA, acetyl-CoA, and 2-methyl-propionyl-

COoA.

/ l alpha-oxidatio\
phytanoyl-CoA WWCO-S-COA

/— 0O,, 2-oxoglutarate
Fe?*

\-> CO,, succinate

y
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H
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0

Y\) formyl-CoA—-L-)formic acid —» CO,
0
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“H
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NADH
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Refsum disease is an autosomal-recessive
disorder caused by a deficiency of
peroxisomal PhyH.




w-Oxidation
O
* w-Oxidation is a minor pathway of the SER |

* It generates dicarboxylic acids. HO—C

* It is upregulated in certain conditions such as MCAD deficiency.

O H O
+\+u\ mixed function l
~ oxidase
H:a,(/ " OH / ¢ MO C n OH
fanty acid I fatty omega-hydroxyacid
120, H
H 0
| alcohol dehydrogenase ”
HO—C n OH / \ p e . OH
H fatty omega-hydroxyacid NAD®™  NADH + H’ fatty oroga-aldoacid
O
” aldehiyde delyydrogenase ”

fatty omega-aldoacsd NAD® NADM « H* fanty dicarboxilic acid

OH



Lipids and energy

* TAGs are the body’s major fuel storage reserve.

* The complete oxidation of fatty acids to CO, and H,0O generates 9 kcal/g of
fat (as compared to 4 kcal/g protein or carbohydrate). Why?

carbohydrates lipids
Starch - plants Fats & oils (plants
Stored 2.7 Glycogen - animals Fat (animals)
Starch: long-term
Long/short term storage? Gyicogen- shiont-térm Long term
Ease of digestion/ release of Harder to release energy (needs more
Easy to release energy
energy? oxygen)
Energy per gram? 17ki/g 38kl/g
SORiDERY In waters Soluble Not soluble
(and consequence)
Useof oxv'gen e Needs less oxygen, useful for Needs more oxygen, less efficient to
metabolism?
high-demand activity release energy
(and consequence)




Exercise and sources of energy

ATP Aerobic metabolism

n (Chapters 17 and 18) ACTIVE MUSCLE
T Creatine phosphate
> Anaerobic
g metabolism *Energy for muscle contraction -
c (Chapter 16)
w

| |
Seconds — Minutes — Hours —

Figure 15.7
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