Degradation of fatty acids

Dr. Diala Abu-Hassan

Lippincott's Biochemistry, Ch. 16

Why FAT not Carbohydrates?

* More reduced:

- 9 kcal per gram compared with
- 4 kcal per gram of carbohydrates

* Hydrophobic:

can be stored without H₂O carbohydrates are hydrophilic

1 gram carbohydrates: 2 grams H₂O

Triacylglycerol (TAG) or FAT is the major energy reserve in the body

It is more efficient to store energy in the form of TAG

FATTY ACID as FUELS

 The major fuel used by tissues but Glucose is the major circulating Fuel

Fuel type Amount used/kcal/12 hours (gram)

FA 60 (540)

Glucose 70 (280)

The release of fatty acids from TAG

Acetyl CoA carboxylase (important for fatty acid synthesis) is inhibited by the same signaling pathway of glucagon or epinephrine

Hormonal regulation

Hormone-sensitive lipase

Glycerol in liver and adipose tissues

Glyceroneogenesis

- Purpose: regulating the levels of FAs in blood.
- In liver and adipose tissue
- Glycerol leaves the adipocytes into the liver.
- Failure in regulating glyceroneogenesis may lead to Type 2 diabetes due to excess fatty acids and glucose in the blood

PC: Pyruvate carboxylase
PEPCK: phosphoenolpyruvate
carboxykinase

β-oxidation of Fatty acids

- ✓ Fatty Acids are transported to tissues bound to albumin
- Degraded by oxidation at β
 carbon followed by cleavage of
 two carbon units

β Oxidation of Fatty Acids (overview)

Activation of Fatty Acids

- Joining F.A with Coenzyme A
- RCO~SCoA (Thioester bond)

Thiokinase (Acyl CoA Synthetase)

$$FA + HSCoA + ATP \longrightarrow FA^{C}OA + AMP + PP_i$$

$$PP_i + H_2O \longrightarrow 2P_i$$

$$FA + HSCoA + ATP \longrightarrow FA^{COA} + AMP + 2P_i$$

Location:

LCFA: outer mitochondrial membrane

Short and medium chain FA: mitochondrial matrix

Transport of LCFA

The transport system consists of:

- 1. A carrier molecule (carnitine)
- 2. Two enzymes
- 3. Membrane transport protein (translocase)

Transport of SCFAs and MCFAs

Application: Carnitine sources

Source: meat product and synthesis from Lys and Met (liver and kidney)

L- methionine L-lysine
S-adenosylmethionine

Protein-6-N-trimethyllysine

Lysosomal hydrolysis

6-N-trimethyllysine

(TML)

contains ~97% of all carnitine in the body. No ACC1, no FA synthesis but contains a mitochondrial ACC2 to regulate fatty acid degradation.

Cardiac muscle

Do not memorize this pathway

Other functions:

Skeletal muscle

- Export of branched chain acyl groups from mitochondria
- -Binding to acyl groups derived of AA metabolism and their execration functioning as a scavenger

CO₂ + Succinate

NAD+

NADH

HTMLA

PLP

Glycine

Application: Carnitine deficiencies

- Primary carnitine deficiency
 - Defects in a membrane transporter: No uptake of carnitine by cardiac and skeletal muscles and the kidneys, causing carnitine to be excreted.
 - Treatment: carnitine supplementation.
- Secondary carnitine deficiency
 - Taking valproic acid (antiseizure) \rightarrow decreased renal reabsorption
 - Defective fatty acid oxidation \rightarrow acyl-carnitines accumulate \rightarrow urine
 - Liver diseases → decreased carnitine synthesis
 - CPT-I deficiency: affects liver; no use of LCFA, no energy for glucose synthesis during fasting → severe hypoglycemia, coma, and death
 - CPT-II deficiency: affects liver, cardiac muscle, and skeletal muscle
 - Treatment: avoidance of fasting and adopting a diet high in carbohydrates and low in fat but supplemented with medium-chain TAG.

β-carbon CH₃-(CH₂)_x-CH₂-CH₂-C-S-CoA **Fatty acyl CoA** Acyl CoA Oxidation dehydrogenases FADH₂ CH3-(CH2)x-CH=CH-C-S-COA **Enoyl CoA** H₂O Enoyl CoA **Hydration** hydratase CH3-(CH2)x-CH-CH2-C-S-COA 3-Hydroxyacyl CoA NAD+ 3-Hydroxyacyl CoA Oxidation dehydrogenase NADH + H⁺ CH3-(CH2)x-C-CH2-C-S-COA 3-Ketoacyl CoA

β-Oxidation of fatty acids

Number of cycles: (n/2)-1

Energy Yield from FA Oxidation

✓ Oxidation of C 16 FATTY ACID

```
    7 FADH<sub>2</sub>
    → 14 ATP
    7 NADH
    → 21 ATP
    8 Acetyl CoA
    → 96 ATP
```

- ✓ Activation of the Acid consumes 2 ATP
- ✓ Net 129 ATP mole per mole of C16 Fatty Acid

CH₃-CO-CoA + CH₃-CO-CoA + FADH₂ + NADH

Induction of gluconeogenesis and fates of acetyl CoA

Application: MCAD deficiency

- There are 4 isozymes of fatty acyl CoA dehydrogenase for SCFA, MCFA, LCFA, and VLCFA.
- Medium-chain fatty acyl CoA dehydrogenase (MCAD) deficiency,
 - An autosomal-recessive disorder
 - Most common inborn error of β -oxidation (1:14,000 births worldwide)
 - Higher incidence among Caucasians of Northern European descent
 - Decreased ability to oxidize MCFAs (lack of energy)
 - Severe hypoglycemia and hypoketonemia
 - Treatment: avoidance of fasting

Regular and frequent meals and snacks
Diet high in carbohydrates and low in fat

Oxidation of odd-numbered FAs

Starts as cycles of beta-oxidation producing acetyl-CoA and propionyl-CoA

Monounsaturated fatty acid β-oxidation

But this reaction is skipped resulting in one less FADH₂
→ loss of electrons

Polyunsaturated FA will also need an *NADPH-dependent* 2,4-dienoyl CoA reductase in addition to the *isomerase*.

→ loss of electrons

Peroxisomal β-oxidation

Peroxisomal α -oxidation of branched chain FAs

- Phytanic acid is a breakdown product of Chlorophyll.
- It is activated by CoA, transported into peroxisome, hydroxylated by phytanoyl CoA α-hydroxylase (PhyH), and carbon 1 is released as CO₂.
- When fully degraded, it generates formyl-CoA, propionyl-CoA, acetyl-CoA, and 2-methyl-propionyl-CoA.

Refsum disease is an autosomal-recessive disorder caused by a deficiency of peroxisomal PhyH.

ω-Oxidation

- ω-Oxidation is a minor pathway of the SER
- It generates dicarboxylic acids.

It is upregulated in certain conditions such as MCAD deficiency.

Lipids and energy

- TAGs are the body's major fuel storage reserve.
- The complete oxidation of fatty acids to CO_2 and H_2O generates 9 kcal/g of fat (as compared to 4 kcal/g protein or carbohydrate). Why?

	carbohydrates	lipids
Stored as?	Starch - plants Glycogen - animals	Fats & oils (plants Fat (animals)
Long/short term storage?	Starch: long-term Gylcogen: short-term	Long term
Ease of digestion/ release of energy?	Easy to release energy	Harder to release energy (needs more oxygen)
Energy per gram?	17kJ/g	38kJ/g
Solubility in water? (and consequence)	Soluble	Not soluble
Use of oxygen in metabolism? (and consequence)	Needs less oxygen, useful for high-demand activity	Needs more oxygen, less efficient to release energy

Exercise and sources of energy

Figure 15.7 Biochemistry, Seventh Edition © 2012 W. H. Freeman and Company