## 4- Parvoviruses

Jordan University Faculty of Medicine, 2nd year Dr Mohammad Al-Tamimi, MD, PhD

# Objectives

- Describe general structure, properties, replication and control of Parvovirus
- Describe the virology, epidemiology, pathogenesis, clinical presentation and management of Parvovirus B19

### Structure

- Parvoviruses are very small (18 to 26 nm), naked virions that contain a linear single-stranded DNA (the smallest DNA animal viruses)
- Icosahedral with 32 capsomers and 2 protein coats (VP2 and VP1)
- Parvovirus B19 is pathogenic for humans



### Replication and control

- Because of the limited coding capacity of their genome, viral replication is dependent on functions supplied by replicating host cells or by coinfecting helper viruses
- Autonomously replicating and defective parvoviruses that require a helper virus for replication.
- It is difficult to culture human B19 parvovirus
- Viral DNA replication occurs in the nucleus
- Viral replication results in cell death
- Virions are extremely resistant to inactivation.
- They are stable between a pH of 3 and 9
- Withstand heating at 56°C for 60 minutes
- Can be inactivated by formalin, and oxidizing agents

#### **TABLE 31-1** Important Properties of Parvoviruses

Virion: Icosahedral, 18–26 nm in diameter, 32 capsomeres

Composition: DNA (20%), protein (80%)

Genome: Single-stranded DNA, linear, 5.6 kb, MW 1.5–2.0 million

Proteins: One major (VP2) and one minor (VP1)

Envelope: None

Replication: Nucleus, dependent on functions of dividing host cells

Outstanding characteristics:

Environmentally stable

Human pathogen, B19, has tropism for red blood cell progenitors.

#### Parvovirus B19 Infections

# Viral target



- The cellular receptor for B19 is blood group P antigen (globoside).
- P antigen is expressed on mature erythrocytes, erythroid progenitors, megakaryocytes, endothelial cells, placenta, and fetal liver and heart, which helps explain the narrow tissue tropism of B19 virus
- the major sites of virus replication in patients are assumed to be the adult marrow, some blood cells, and the fetal liver
- A primary site of replication appears to be the nucleus of an immature cell in the erythrocyte lineage.

- Epidemiology The viral infection is common among children 5-15 years old
- Epidemiologic evidence suggests that spread of the virus is primarily by the respiratory route, and high transmission rates occur in households
- Once skin rash appear the virus is no more contagious
- Outbreaks tend to be small and localized, particularly during the spring months, with the highest rates among children and young adults
- Seroepidemiologic studies have demonstrated evidence of past infection in up to 60% of all adults and 90% of elderly people (seropositive IgG)

# Pathogenesis



- Viral replication causes cell death interrupting red blood cell production (anemia)
- Bone marrow biopsies from infected patients show erythrocyte maturation arrest, with erythroblast intranuclear inclusions
- Both virus-specific IgM and IgG antibodies are made after B19 infections which form immune complex
- The clinical consequences of the viral effect on erythrocytes are generally trivial, unless patients are already compromised by a chronic hemolytic process, such as sickle cell disease or thalassemia or in immunocompromised patients



В

Α

#### TABLE 31-2 Human Diseases Associated with B19 Parvovirus

| Syndrome                     | Host or Condition                  | <b>Clinical Features</b>               |
|------------------------------|------------------------------------|----------------------------------------|
| Erythema<br>infectiosum      | Children (Fifth disease)<br>Adults | Cutaneous rash<br>Arthralgia–arthritis |
| Transient<br>aplastic crisis | Underlying hemolysis               | Severe acute<br>anemia                 |
| Pure red cell<br>aplasia     | Immunodeficiencies                 | Chronic anemia                         |
| Hydrops fetalis              | Fetus                              | Fatal anemia                           |

# 1- Erythema infectiosum

- Erythema infectiosum (also referred to as fifth disease, slapped check, apple face, or academy rash)
- After an incubation period of 4 to 12 days, a mild illness appears, characterized by fever, malaise, headache, myalgia, and itching in varying degrees
- Viremia occurs 1 week after infection and persists for about 5 days
- A confluent, indurated rash appears on the face, giving a "slapped-cheek" appearance. The rash spreads in a day or two to other areas, particularly exposed surfaces such as the arms and legs, where it is usually macular and reticular
- During the acute phase, generalized lymphadenopathy or splenomegaly may be seen, along with a mild leukopenia and anemia

- The illness lasts 1 to 2 weeks, but rash may recur for periods of 2 to 4 weeks thereafter, exacerbated by heat, sunlight, exercise, or emotional stress
- Arthralgia sometimes persists or recurs for weeks to months, particularly in adolescent or adult females
- Serious complications, such as hepatitis, thrombocytopenia, nephritis or encephalitis are rare







### 2- Transient Aplastic Crisis

- Transient aplastic crisis may complicate chronic hemolytic anemia (sickle cell disease, thalassemias), acquired hemolytic anemias in adults, and after bone marrow transplantation.
- Abrupt cessation of RBCs synthesis in the bone marrow (reduction of erythroid precursors), accompanied by a rapid worsening of anemia.
- The infection lowers production of erythrocytes, causing a reduction in the hemoglobin level.
- The temporary arrest of production of RBCs becomes apparent only in patients with chronic hemolytic anemia because of the shortened life span of their erythrocytes

# 3. Pure red cell aplasia

• B19 may establish persistent infections and cause chronic suppression of bone marrow and chronic anemia in immunocompromised patients.

PURE RED CELL APLASIA

- The disease is called pure red cell aplasia.
- The anemia is severe, and patients are dependent on blood transfusions.
- It has been observed in patient populations with congenital immunodeficiency, malignancies, AIDS, and organ transplantation



- Maternal infection with B19 virus may pose a serious risk to the fetus, resulting in hydrops fetalis and fetal death due to severe anemia.
- The overall risk of human parvovirus infection during pregnancy is low; fetal loss occurs in fewer than 10% of primary maternal infections.
- Fetal death occurs most commonly before the 20th week of pregnancy.

# Diagnosis

Viremia usually lasts 7 to 12 days but can persist for months in some individuals

VIP

- CBC (low Hb)
- Polymerase chain reaction (PCR)
- IgM-specific antibody late in the acute phase or during convalescence strongly supports the diagnosis
- Antigen detection assays
- Bone marrow biopsy

## Management

- Fifth disease and transient aplastic crisis are treated symptomatically
- Severe anemia due to the latter may require transfusion therapy
- Commercial immunoglobulin preparations contain neutralizing antibodies to human parvovirus. These can sometimes ameliorate persistent B19 infections in immunocompromised patients and in those with anemia
- There is no vaccine against human parvovirus
- There is no antiviral drug therapy