Yacoub Irshaid MD, PhD, ABCP Department of Pharmacology

- **1.** α-Adrenoceptor Antagonists.
- **2.** β-Adrenoceptor Antagonists.

Prazosin: $\alpha_1 >>> \alpha_2$ Terazosine: $\alpha_1 >>> \alpha_2$ Tamsulosin: α_{1A} and α_{1B} Phentolamine: $\alpha_1 = \alpha_2$

Pharmacodynamics:

A. Cardiovascular system: Block of α_1 -receptors in arterioles leads to vasodilation, lowering of peripheral vascular resistance and blood pressure.

- Block of α₁-receptors in venules leads to venodilation, postural hypotension and reflex tachycardia.
- Tachycardia is more marked with nonselective α-blockers (α₁, α₂) because of increased release of norepinephrine (why?).

- **B. Other effects:**
- Miosis (α₁ receptors in dilator pupillae).
- Nasal stuffiness (α₁ receptors in blood vessels).
- Decreased resistance to the outflow of urine (α_{1A} and α_{1B} receptors in the base of urinary bladder and the prostate).

 These drugs occupy β receptors and competitively inhibit occupation of these receptors by catecholamines.

Classifications:

- β-Adrenoceptor antagonists are not the same, regarding their antagonism of receptors and lipophilicity.
- Lipophilic antagonists cross the blood brain barrier and affect the central nervous system in addition.

- 1. Non-selective ($\beta_1 = \beta_2$): Propranolol, Timolol, Sotalol.
- 2. Non-selective $(\beta_1 = \beta_2 \ge \alpha_1 > \alpha_2)$: Carvedilol, Labetalol. They have alpha blocking activity also.
- 3. β_1 selective or cardioselective ($\beta_1 >>> \beta_2$): Atenolol, Bisoprolol, Metoprolol, Esmolol.

- Propranolol undergoes extensive hepatic first-pass metabolism → low bioavailability → oral dose is much larger than IV dose.
- Metoprolol and carvedilol are metabolized.
- Atenolol is mainly excreted unchanged in urine. Its half-life is prolonged in renal failure.
- Bisoprolol is partly exceted unchanged and partly metabolized.

Pharmacodynamics:

 A. Effects on the cardiovascular system:
1. Lowering of blood pressure in patients with hypertension. The mechanism is probably multifactorial and may involve:

- a) Negative inotropic effect on the heart \rightarrow reduction of cardiac output.
- b) Suppression of renin-angiotensin system.
- c) A centrally-mediated effect due to reduction of sympathetic outflow from the CNS.

2. Negative chronotropic effect \rightarrow bradycardia.

3. Slowing of AV nodal conduction and prolonging its refractory period. This is useful for treating supraventricular arrhythmias.

- B. Effects on respiratory tract: Increased airway resistance (bronchoconstriction) due to block of β_2 receptors.
- C. Effects on the eye: Reduce intraocular pressure (useful for glaucoma) due to reduction in aqueous humor production (timolol).

- D. Metabolic and endocrine effects:
- 1. Inhibition of lipolysis (β_3).
- 2. Inhibition of glycogenolysis (β_2).
- 3. Impair recovery from hypoglycemia in insulindependent diabetic patients.
- 4. Chronic use increase plasma concentrations of VLDL and decreased concentration of HDL \rightarrow atherosclerosis \rightarrow increased risk of coronary artery disease.

- Carvedilol is extensively metabolized in the liver.
- It attenuates oxygen free radical-initiated lipid peroxidation.
- It inhibits vascular smooth muscle mitogenesis. (the last 2 are important for its use in the treatment of chronic heart failure).

- Esmolol is an ultra-short-acting β_1 -selective adrenoceptor antagonist.
- It is rapidly inactivated by red blood cells esterases. (t¹/₂ ~ 10 min).
- It is useful in controlling supraventricular arrhythmias, arrhythmias associated with thyrotoxicosis.

- Abrupt discontinuation of these drugs leads to rebound effects (exaggeration of the condition they were used to treat) because of upregulation (increased number) of receptors during treatment.
- Therefore, when these drugs are to be discontinued, tapering of the dose (gradual reduction) rather than sudden withdrawal is recommended.