

Bacterial Growth & Physiology

increase in the size & number of organisms

* Detection of bacterial growth * sa) on liquid meduim; Broth b) Defection on Solid media apperance of usible colonies increased turbidity (cloudiness) bacterial cloudiness is due to bacterial cells dispersing macroscopic !! through medium a single bacterium 6 divides on a solid medium. guantitative Prespective on bacterial growth after 20-30 rounds of binary dission, bacterial aster 20-30 divisions Population (an reach approx. I million cells through binary Sission a Visible colony apears 2; the base 2 represent division of one cell into two cells & 20 signifies which is the macroscopic result of many bacterial number of divisions cells orginating from a Single bacterium

Generation time (or doubling time) The time it takes for a backerial (cll to undergo division & double Cytoplasm ils population Chromosome DNA Cytokinesis **Two Identical** Replication Daughter Cells V. cholerae M. Tuber (ulosis Jast generation time Very Slow; 24 hours 13 mins Slow rate of division meaning it can double its population in this short Period Bacterial reproduction/binary Dission 0 a single bacterial cell divides to produce two genetically identical daughter cells S cell sepration Producing two identical > Steps ≤ daughter cells ① Elongation 2 Sepration of the 2 strands 3 Seprate SSDNA & (1) Sormation of each ssD becomes attatched become ds DNA division Septum of the bacterial DNA. This to mesosome, the enzyme each ssDNA serves as a Process occurs in a single The backerial mb & Facilitates sepration of Ds direction, ensuring daughter Peplidoglycan (ell wol template to synthesize complementary strand into ss Cells will be the Same size begin to grow inward 1050500 a structure creating a septum within bacterial cell that Provides 0 made linear a site for entymatic Sorsimplification activity Septal Po is hydrolyzed

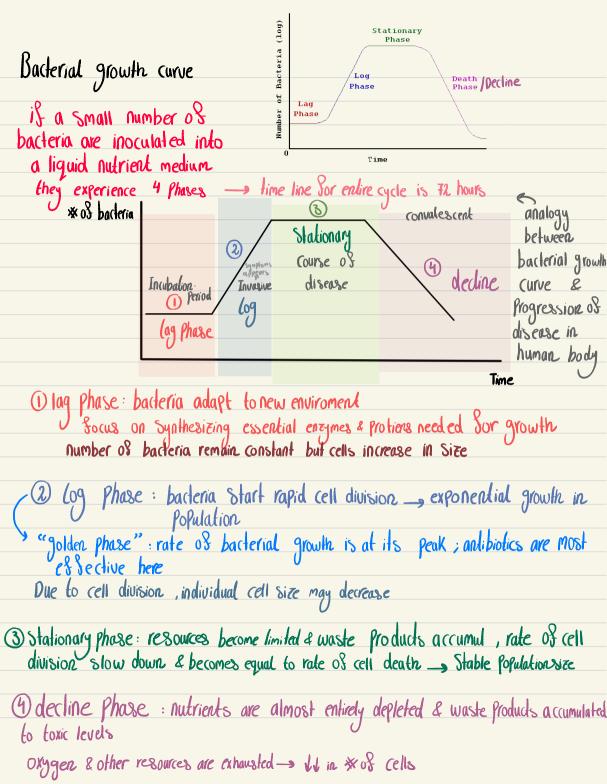
Types of media 1. Simple media ---> Serve as the basic nutrient sources required by most bacteria for growth, they provide minimal ingredients necessary for bacteria to thrive in a lab setting B Nutrient broth © Nulrient agar Plate 1 A Peplone water consist of protien contains meat extract Nutrient broth + Jource & 0.5% Nacl Providing essential 2% agar agar nutrients that supports enhance bacterial bacterial growth derived from growth Specially Seaweeds ads When Supplemented as a gelling with Sugar agent Suitable for 8 staph. aureus 2. Enrinched media : Justidous baderia -> have complex nutritional requirments & need Blood & Serum to grow (A) Blood Agar → streptococci > strept · Pyogenes -> Exhibit hemolytic activity !! nutrient -rich by ading sheep blood to nutrient agar . The agar is healed to 45°C to create a semisolid medium before adding (Sheep blood)

3. Selective media -> Specialized types of growth media used to cultivate specific microorganisms while suppersing growth of others.

This is achived by adding certain chemicals, dyes, anti-biolics or other compounds that inhibit the growth os unwanted microorganisms, thus allowing only the desired species or group of organisms to thrive

löwenstein Jensen medium b isolating Mycobacterium Tuberculosis Selective agent here is Malachite green which in hibits non-myobachrid organisms

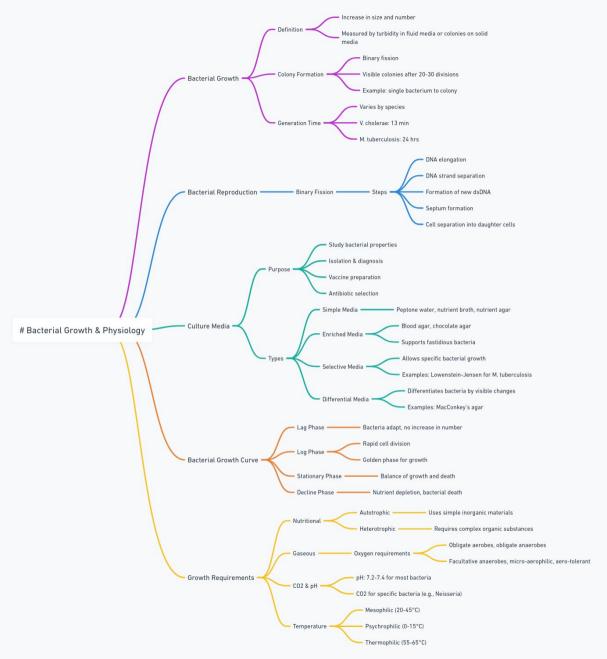
,Blood tellurite agar


6 selective for C. diptheriae

inhibiling other bacteria

VIJJERNIAL media — Combine Selective Properties with indicators to allow Specific Organisms to grow while revealing differences between bacteria by a visible indicator change 4. Differntial media

MacConkey's Agar: disservitate bacteria that can bernead lactose from those that Cannot components _____ Bile Salts : Selective Sor Enteropacteria Bacteria that Serment lactose : Test sugar lactose produce acid, Peptone: Source of nitrogen for bacterial growth turning medium pink * Non - lactose Sementers produce NO acid & appear Pale or yellow Natural red: PH indicator


Bacterial growth requirments ____, A) Nutrition B) Gaseous C) Temp·& PH A) Nutrition - Maintenance of bacterial growth Hetrofrophic Autotrophic Self - nutrition differnt nutrilion require complex preformed organic substances like → Utilize simple inorganic Sugars & Protiers Substances like (02 & ammonium ulilize simple [Coz ammonium] Due to their dependency inorganic Substance carbon Nitroger on a host, these bacteria into complex organic material Can invade the host's tissue [Saprophytic] leading to infections ediseases No medical importance. -> They don't rely on insecting a host for growth medically significant B) Gaseous requirments - Oz requirments - 5 groups 6 Respiration 6 break down of glucose - catabolism - release of 1) Obligate aerober 2) obligate anaerobes 3) faculative anaerobes Energy Acorbic Anaerobic 4) Nicro - aerobic without oxygen 5) Aero-tolerant requires O2 ycilds a high amount of energy

1 obligate aerobes	2. Obligate anaerobes them
* depends on presence OS Oxygen for growth	* no growth in Oz Presence
* wilhout 02 -> no growth or Survival	* growth in absence of or
ex. Psuedomonae aeruginosa	Ex. Bacteroides Sragilis
2 aerobic respiration -> Productionos ATP	4ATP
-, glucose (atabolism (glycolysis) glucolousis luchis cuta orabos -228 ATA	*lack suppoxidase dimutase & catalase
glycoloysis lireb's cycle_ Oxphos ->38ATP	Molecules
Produces highly Toxic materials Superoxide O2- H2O2	Nitrite (Noz) Sulfate (Or
SuperoxideO2- H2O2 Superoxidemulase Calalase breaks il down Breaks it down	
	this process generates ATP but less essicient than aerobic
	13ATP + YATP Som ETC Soum glywlysis

3. Faculative anaerobes > Orginally lives in environments with oxygen. However, they are adaptable & can survive in low or no Oz Abserce of Oz presence of Or Switch to anaerobic ↑ generate a high Pathways, such as rate of ATP ~, 1 increased growth rate Sermentation to Produce energy Fermentation Glucose glycolysis 2 Pyruvate + 2ATP after glycolysis, Pyruvate is Surther metabolized when Oz is absent. Jaculative -No Kreb's cycle & other pathway anaerobes rely on glycolysis to (Absence of carriers) Acid & Alcoho in Selmentation process break down glutose into pyruvate leading to production producing a net gain of 2 ATP ____ no kreb's cycle 03 lactic acid & alcohol molecules per glucose or ETC 4 Micro - aerophilic Ex. campylobacter & Helicobader presence of Or IDW O2 Conditions (2 - 107)No growth ill growth VV Because they Produce low level of O2 EOXIC by-products HZOZ grow without Superoxide(02) accumulating toxic low levels of Superoxide dimutase levels of 0; & H102 & Catalose

, Ex. Clostridium Perbringens 5. Aeoro-folerant angerobes absence of O2 low of conditions grow and carry out typical metabolic processes ~ (an Survive in environments with low oxygen, They Posses Superoxide dimulase // uses inorganic molecules as the Sinal e acceptor Growth requirment : Cor requirments Co2 (5-10%) Standard (02 requirment (0.03%) requires higher Ievel of Co2 Sussient Sor growth for most bacteria Neisseria & brucella Growth requirment : PH acidic (PH=4) 5 Neutral (7.2-7.4) alkaline (PH=9) Ex. vibro cholerae *Most bacteria Ex lactobacilli * called Neutrophils Acido Philes

Growth requirment : tempreture				
Mesophilic	Psychrophilic	thermophilic		
(20 - 45)	(0-15)	(55-65)		
Most bacteria				

Bacteria	Characteristics/Notes	Media or Conditions	
V. cholerae	Rapid division time (13 minutes)	Thiosulfate-Citrate-Bile- Sucrose (TCBS) Agar	
M. tuberculosis	Very slow division time (24 hours)	Lowenstein Jensen medium	
Streptococcus pyogenes	Beta-hemolytic	Blood agar	
Streptococcus viridans	Alpha-hemolytic	Blood agar	
Staphylococcus aureus	Beta-hemolytic, can ferment mannitol	Blood agar, Mannitol salt agar	
Staphylococcus epidermidis	Cannot ferment mannitol	Mannitol salt agar	
Enterococci	Gamma-hemolytic	Blood agar	
Neisseria	Fastidious, requires enriched media, capnophilic (5-10% CO ₂)	Chocolate agar	
Haemophilus	Fastidious, requires enriched media	Chocolate agar	
Corynebacterium diphtheriae	Grows on selective medium	Blood tellurite agar	
Pseudomonas aeruginosa	Obligate aerobe	General media, requires oxygen	
Bacteroides fragilis	Obligate anaerobe	Grows in absence of oxygen	
Campylobacter	Microaerophilic (low oxygen requirement)	Requires reduced oxygen levels	
Helicobacter	Microaerophilic (low oxygen requirement)	Requires reduced oxygen levels	
Clostridium perfringens	Aero-tolerant anaerobe	Can tolerate low oxygen	
Brucella	Capnophilic (requires increased CO ₂)	Requires 5-10% CO₂	
Lactobacilli	Acidophilic, prefers acidic environments	Prefers low pH (around 4)	
Vibrio cholerae	Alkaliphilic, prefers basic environments	Prefers high pH (around 9)	