

Bioenergetics

Dr. Diala Abu-Hassan, DDS, PhD

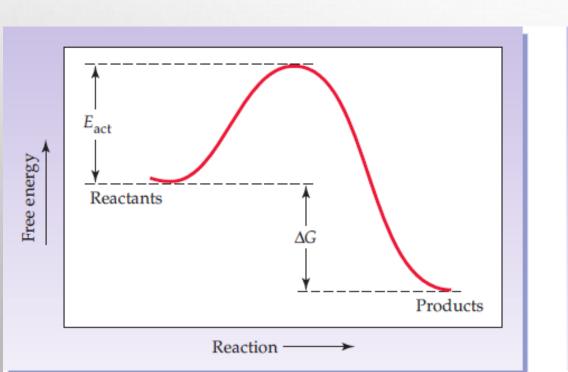
What is ENERGY? Why do we need it?

- Definition: Capacity to perform work
- What for? Mechanical, Active transport, Biosynthesis, Heat
- Types of energy:
 - ✓ 1- Kinetic: Energy in the process of doing work or Energy of motion
 - 2- Potential: Energy content stored in a matter such as chemical bonds
- Whether a reaction occurs or not!
- Bioenergetics describes the transfer and utilization of energy in biologic systems

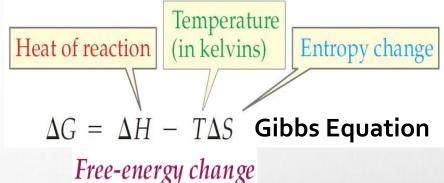
Purposes of metabolism

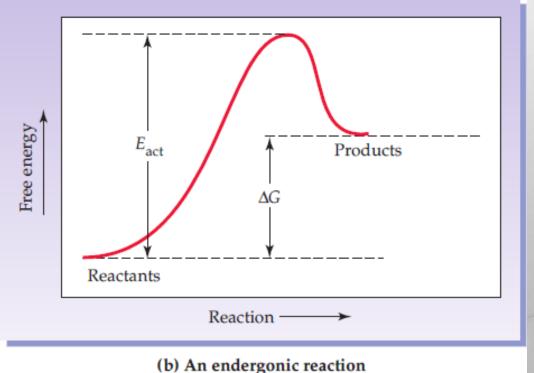
- > Metabolism: Sum of all biochemical reactions in living organisms
- Mainly for energy generation
- Other purposes:
 - Synthesis of building blocks
 - Synthesis of macromolecules
 - Degradation of biomolecules

Bioenergetics: Energy transformations in the cell



Free energy terms


- $\triangleright \Delta G$ = the free energy difference of a system at any condition
- Arr Arr


Why do chemical reactions occur?

- > Free energy change; with respect to its temperature
- Enthalpy; Entropy; Exergonic vs. endergonic; spontaneity
- > The concept of activation energy

(a) An exergonic reaction

ΔG, GIBBS FREE ENERGY

 $A \Longrightarrow B$

- This equilibrium is not determined by enzymes but determined by thermodynamics.
- If more equilibrium to A, you will not change the equilibrium by adding any amount of enzyme to the reaction.
- What determines the equilibrium between them? Gibbs free energy.
- ΔG which is related to equilibrium constant and can be used to determine if the reaction is favorable or not:
- if ΔG < 0, reaction is spontaneous,
- if $\Delta G > 0$, reaction is not spontaneous
- if $\Delta G = 0$, reaction is at equilibrium

Is ΔG affected by the mechanism of the reaction?

- \triangleright ΔG is not affected by the mechanism of the reaction
- ΔG depends only on initial state and final state of biochemical pathways

$$A \rightarrow B \rightarrow C$$

$$\Delta G_{A \rightarrow B} = GB - GA$$

$$\Delta G_{B \rightarrow C} = GC - GB$$

$$GC - GA = \Delta G_{A \rightarrow C}$$

$$A \xrightarrow{\text{Enzyme 1}} B \xrightarrow{\text{Enzyme 2}} C \xrightarrow{\text{Enzyme 3}} \dots$$

Combustion of glucose in calorimeter

Glucose
$$+O_2 \rightarrow CO_2 + H_2O$$

$$\Delta G = -680 \text{ kcal/mol}$$

In the cell

Glucose
$$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow CO_2 + H_2O$$
 $\Delta G = -680 \text{ kcal/mol}$

ΔG is affected by concentration

$$\Delta G = ---$$

$$\Delta G = -$$

$$A \Longrightarrow B$$

$$\Delta G = zero$$

$$\rightarrow$$
 \vdash

$$\Delta G = ++$$

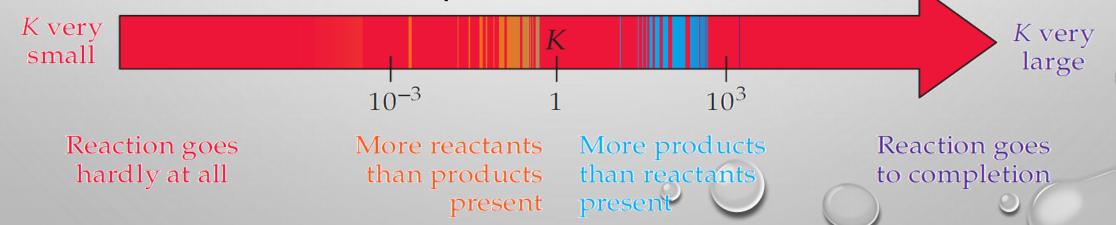
 ΔG measures the tendency of the reaction to proceed towards equilibrium

ΔG° , the standard free energy change \odot

Concentrations of reactants and products = 1 mole/L

•
$$\Delta G = \Delta G^{\circ} + RT \ln \frac{[Products]}{[Reactants]}$$

R is the gas constant (1.987 cal/mol K)
T is the absolute temperature (K)


-
$$\Delta G = \Delta G^{\circ} + RT$$
 2.3 log [Products] [Reactants]

A reaction with a positive ΔGO can proceed in the forward direction if the ratio of products to reactants ([B]/[A]) is sufficiently small (that is, the ratio of reactants to products is large) to make ΔG negative.

- \checkmark ΔG° is constant
- \checkmark ΔG° represents energy changes at non-physiologic concentrations of reactants and products

Reversible reaction and chemical equilibrium

- What is a reversible reaction?
- > What is the chemical equilibrium? Chemical equilibrium is an active, dynamic condition
- At equilibrium, no further net chemical change takes place (that is, when A is being converted to B as fast as B is being converted to A)
- > At equilibrium, are concentrations equal? No
- At equilibrium, the ratio of [B] to [A] is constant, regardless of the actual concentrations of the two compounds

Standard free energy change (\Darkov{G}^{\circ}) and equilibrium constant Keq

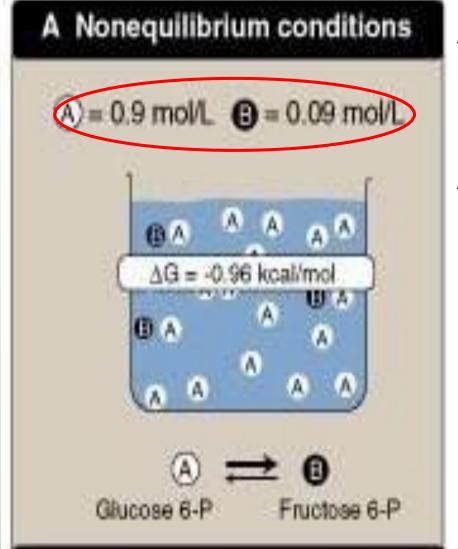
 K_{EQ} IS OBTAINED BY DIVIDING [PRODUCTS] BY [REACTANTS] WHEN THE REACTION REACHES EQUILIBRIUM

At equilibrium

$$O = \Delta G^{\circ} + RT \ln K_{eq}$$

$$\Delta G^{\circ}$$
= - RT In K_{eq}

At standard conditions


$$\Delta G = \Delta G^{\circ} + RT 2.3 log 1$$

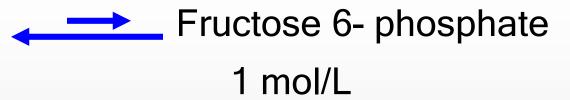
 $\Delta G = \Delta G^{\circ}$

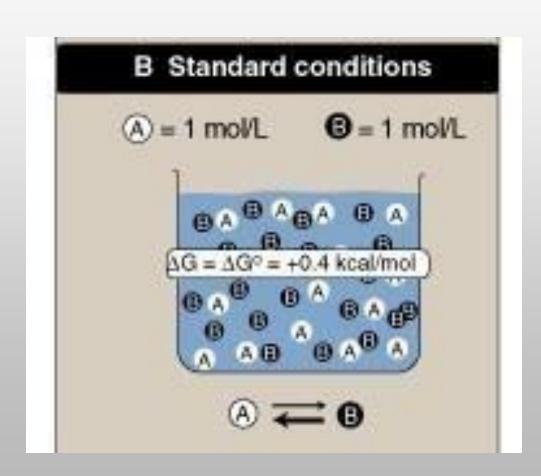
 \checkmark \triangle GO cannot predict the direction of a reaction under physiologic conditions because it is composed solely of constants (R, T, and Keq and is not, therefore, altered by changes in product or substrate concentrations.

$$K_{eq} = \frac{[Products]}{[Reactants]}$$

GLUCOSE 6- PHOSPHATE

Fructose 6- phosphate


$$\Delta G^{\circ} = + 0.4 \text{ kcal/mol}$$


$$\Delta G = \Delta G^{\circ} + RT 2.3 \log 0.09/0.9$$

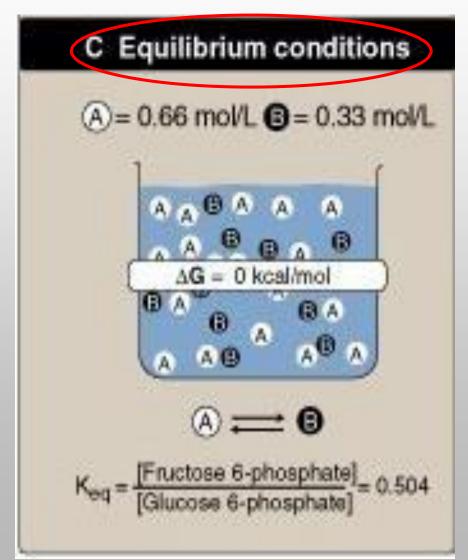
$$\Delta G = -0.96$$
 (negative)

Reaction goes forward

Glucose 6- phosphate 1 mol/L

$$\Delta G = \Delta G^{\circ} + RT 2.3 \log 1/1$$

$$\Delta G = \Delta G^{\circ}$$


GLUCOSE 6- PHOSPHATE

Fructose 6- phosphate

0.66 mol/L

0.33 mol/L

$$\Delta G = \Delta G^{\circ} + RT 2.3 \log 0.33 / 0.66$$

$$\Delta G^{\circ} = + 0.4 \text{ kcal/mol}$$

$$\Delta G = 0$$

ΔG & Keq

- \triangleright At equilibrium, $\triangle G=0$
- Can a reaction has a + ∆G° & still be favorable?

K'eq	Δ G °' kJ/mol	Starting with 1 M reactants & products, the reaction:
104	- 23	proceeds forward (spontaneous)
10 ²	- 11	proceeds forward (spontaneous)
$10^0 = 1$	0	is at equilibrium
10-2	+ 11	reverses to form "reactants"
10-4	+ 23	reverses to form "reactants"

For a reaction $A + B \leftrightarrow C + D$ $\Delta G = \Delta G^{o'} + RT \ln \left[\frac{[C][D]}{[A][B]} \right]$

$$\Delta \mathbf{G} = \Delta \mathbf{G}^{o}' + \mathbf{R} \mathbf{T} \ln \left[\frac{[\mathbf{C}] [\mathbf{D}]}{[\mathbf{A}] [\mathbf{B}]} \right]$$

$$0 = \Delta \mathbf{G^{o'}} + \mathbf{RT} \ln \left[\frac{[\mathbf{C}] [\mathbf{D}]}{[\mathbf{A}] [\mathbf{B}]} \right]$$

$$\Delta \mathbf{G}^{o}' = -\mathbf{RTln} \left[\frac{[\mathbf{C}] [\mathbf{D}]}{[\mathbf{A}] [\mathbf{B}]} \right]$$

defining
$$\mathbf{K'}_{eq} = \left(\frac{[\mathbf{C}][\mathbf{D}]}{[\mathbf{A}][\mathbf{B}]}\right)$$

$$^{\bigcirc}\Delta \mathbf{G^{o'}} = -\mathbf{RT} \, \mathbf{ln} \, \mathbf{K'_{eq}}$$

ΔG° and K_{eq}

K_{eq}	ΔGº	
10 ³	- 4.08	
102	- 2.72	
10 ¹	- 1.36	
1	0	
10-1	1.36	
10-2	2.72	
10-3	4.08	

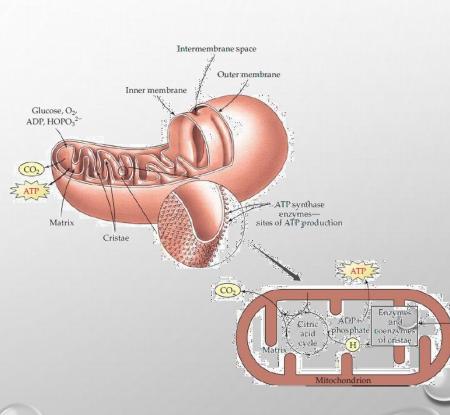
If
$$K_{eq} = 1$$
, then $\Delta G^{o} = 0$

If Keq > 1, then
$$\Delta G^{\circ}$$
 < 0

If Keq < 1, then
$$\Delta G^{\circ} > 0$$

ΔG & ΔG°

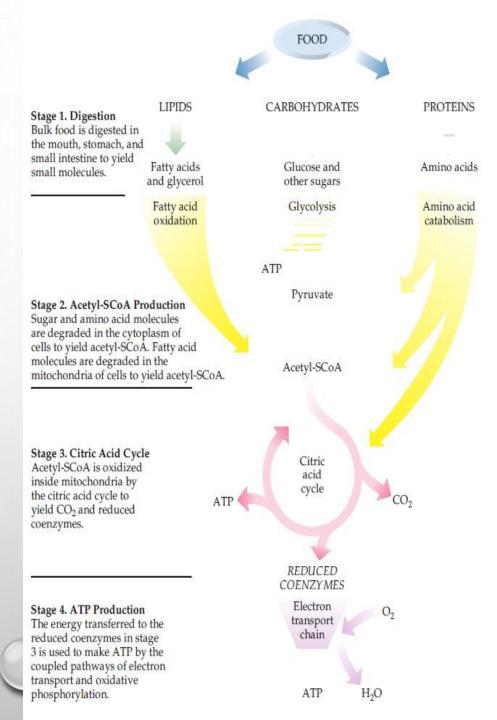
• The ΔG° s are additive in any sequence of consecutive reactions, as are the ΔG° s


Glucose + ATP
$$\rightarrow$$
 glucose 6-phosphate + ADP $\Delta G^0 = -4,000$ cal/mol Glucose 6-phosphate \rightarrow fructose 6-phosphate + ADP $\Delta G^0 = +400$ cal/mol Glucose + ATP \rightarrow fructose 6-phosphate + ADP $\Delta G^0 = -3,600$ cal/mol

• ΔGs of a pathway: $A \rightarrow B \rightarrow C \rightarrow D \rightarrow ...$

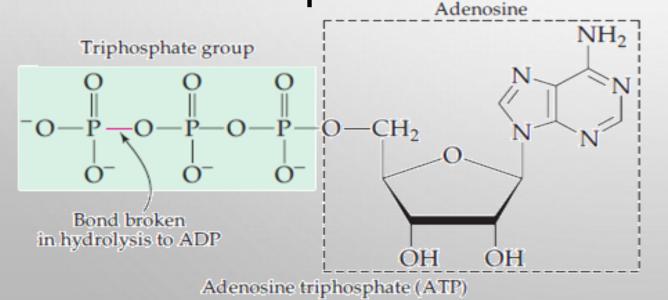
As long as the sum of the ΔGs of the individual reactions is negative, the pathway can proceed, even if some of the individual reactions of the pathway have a positive ΔG . However, the actual rates of the reactions depend on the lowering of activation energies (Ea) by the enzymes that catalyze the reactions

- > Prokaryotic cells vs. eukaryotic cells
- The mitochondria (singular, mitochondrion) (90% of the body's energy ATP)
- The number of mitochondria is greatest in eye, brain, heart, & muscle, where the need for energy is greatest
- The ability of mitochondria to reproduce (athletes)
- Maternal inheritance



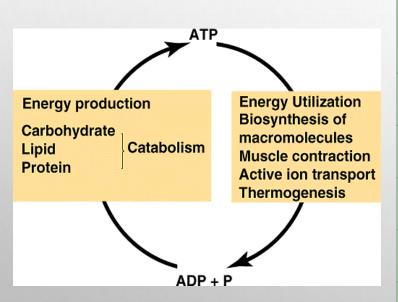
Energy production stages

- Stage 1 (Digestion):
 - ✓ Mouth, stomach, & small intestine
 - ✓ Carbohydrates to glucose & other sugars
 - ✓ Proteins to amino acids
 - ✓ Triacylglycerols to glycerol plus fatty acids
 - √ From there to blood
- Stage 2 (Acetyl-coenzyme A)
- ► Stage 3: citric acid cycle CH3—C—S—[Coenzyme A


Acetyl group

Stage 4: electron transport chain& oxidative phosphorylation

- > ATP is the energy currency of the cell
- > What is a high energy molecule?
- > Why ATP?
 - Has an intermediate energy value, so can be coupled

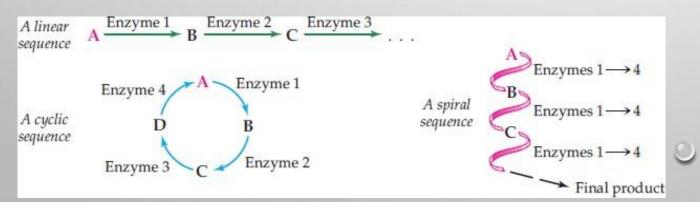

ATP to ADP and ADP to AMP -7.3 kcal/mole From AMP to adenosine and phosphate -3.4 kcal/mole

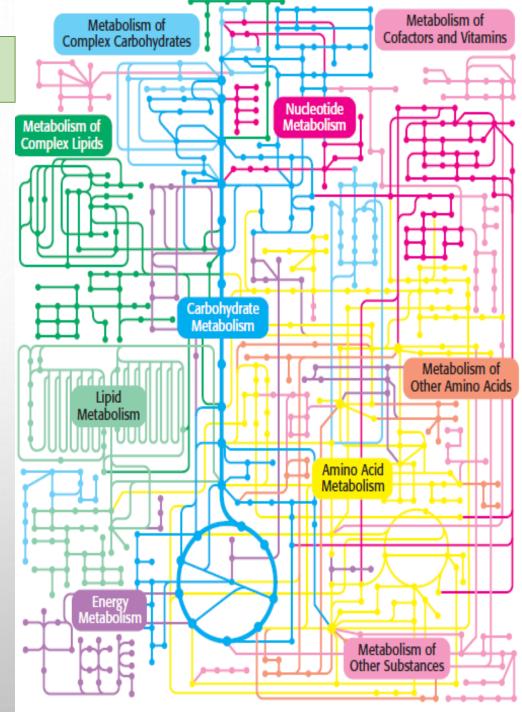
Compound +H₂O	Product + phosphate	ΔG°
Phosphoenol pyruvate	Pyruvate	-14.8
1,3 bisphosphoglycerate	3 phosphoglycerate	-11.8
Creatine phosphate	Creatine	- 10.3
ATP	ADP	- 7.3
Glucose 1- phosphate	Glucose	-5.0
Glucose 6- phosphate	Glucose	-3.3

Is ATP a good long-term energy storage molecule?

As food in the cells is gradually oxidized, the released energy is used to re-form the ATP so that the cell always maintains a supply of this

essential molecule


Tissue	ATP turnover (mole/day)
Brain	20.4
Heart	11.4
Kidney	17.4
Liver	21.6
Muscle	19.8
Total	90.6



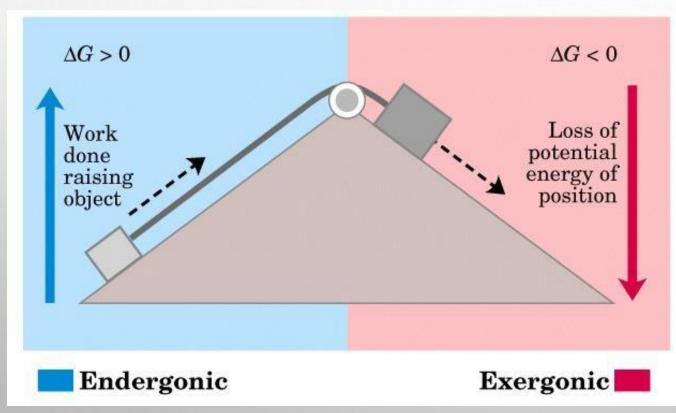
90.6 * 551 (g/mole) = 49,920 g ATP

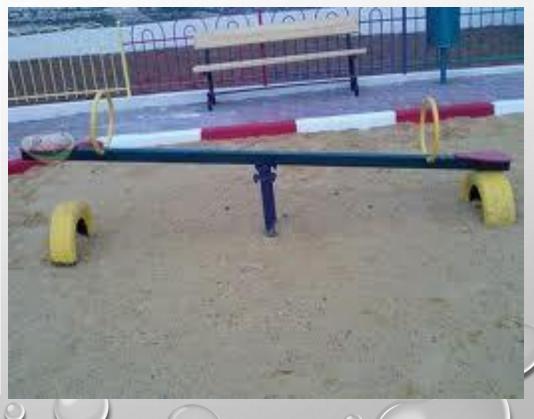
Biochemical metabolic pathways

- Are interdependent
- Are subjected to thermodynamics laws
- Their activity is coordinated by sensitive means of communication
- Allosteric enzymes are the predominant regulators
- Biosynthetic & degradative pathways are <u>almost</u> <u>always distinct</u> (regulation)
- Metabolic pathways are linear, cyclic or spiral

Exergonic reactions in Biochemistry

Complex structures → simple structures

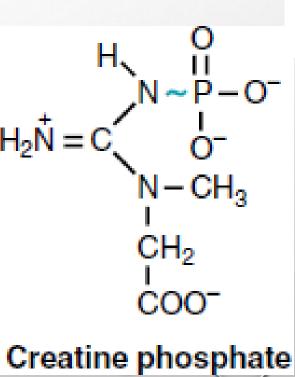

Starch
$$\rightarrow$$
 n glucose
glucose + O₂ \rightarrow CO₂ + H₂O
Proteins \rightarrow Amino acids


- More specifically
 - ✓ Hydrolysis reactions
 - ✓ Decarboxylation reactions (release of CO_2)

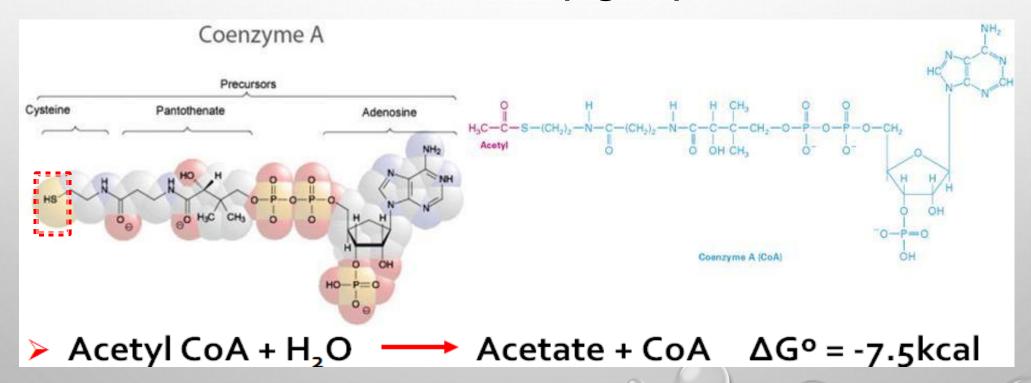
 pyruvate (C3) → acetyl-CoA(C2) +CO₂
 - ✓ Oxidation with O₂

Where do cells get energy for unfavorable biochemical reactions?


The concept of coupling

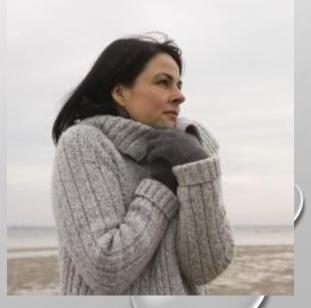

Where do cells get energy for unfavorable biochemical reactions?

- ΔG° Values are additive
 - i. Through phosphoryl transfer reactions:
 - √ Step 2 (+3.3 vs. -4 kcal/mole)
 - ✓ Step 2 + 4 = -2.35 kcal/mole
 - ✓ The net value for synthesis is irrelevant to the presence or absence of enzymes
 - ii. Activated intermediates (step 4 is facilitated by steps 5&6)
- II. ΔG Depends on Substrate and ProductConcentration (step 4 has a ratio of 6/94; +1.65 kcal/mol, if 3/94; -0.4kcal/mol)


III. Activated Intermediates other than ATP; UTP is used for combining sugars, CTP in lipid synthesis, and GTP in protein synthesis

O II CH₃-C ~ SCoA Acetyl CoA

Acetyl-CoA


- > Coenzyme A is a universal carrier (donor) of Acyl groups
- > Forms a thio-ester bond with carboxyl group

Thermogenesis

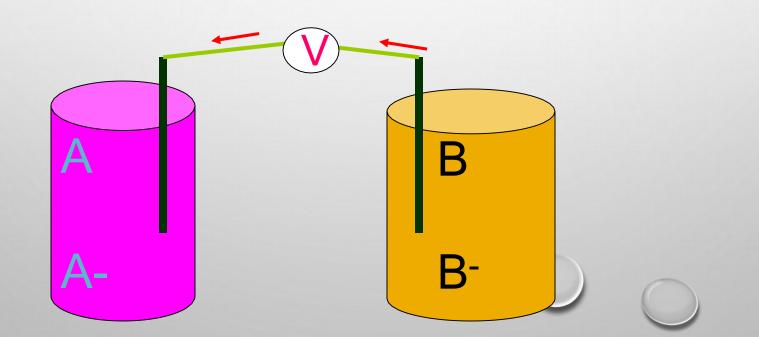
- Heat production is a natural consequence of "burning fuels"
- ➤ Thermogenesis refers to energy expended for generating heat (37°C) in addition to that expended for ATP production
- Shivering thermogenesis (ATP utilization): activation of exothermic reactions by responding to sudden cold with asynchronous muscle contractions
- Non-shivering thermogenesis (ATP production efficiency)
 - In the first 6 months of life
 - It is associated with brown adipose tissue

Oxidation reduction reactions (Redox)

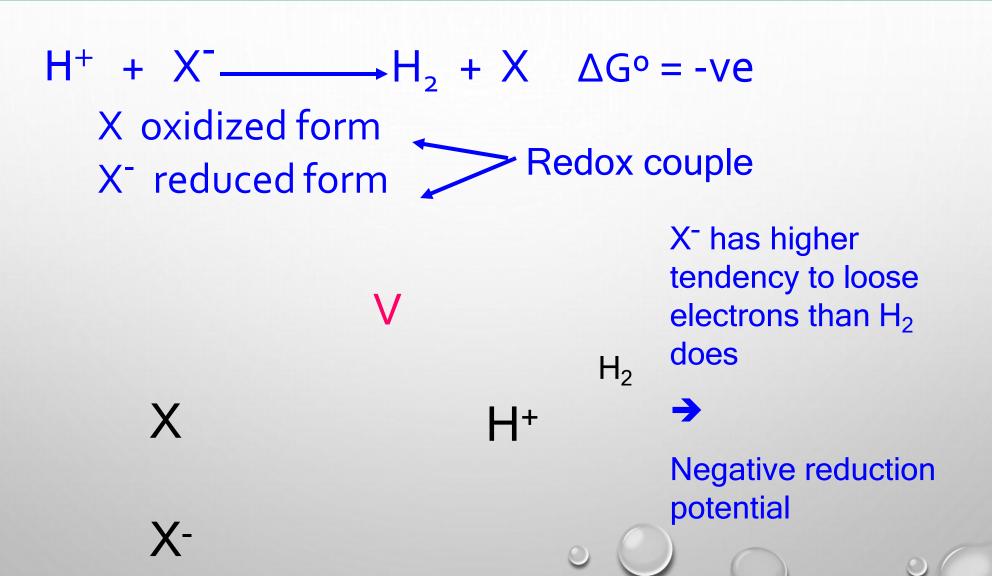
- > Oxidation:
 - ✓ Gain of Oxygen
 - ✓ Loss of Hydrogen
 - ✓ Loss of electrons

- > Reduction:
 - ✓ Gain of Hydrogen

D:H


- ✓ Gain of electron
- ✓ Loss of Oxygen
- > E= redox Potential: it is a POTENTIAL ENERGY that measures the tendency of oxidant/reductant to gain/lose electrons, to become reduced/oxidized
- Electrons move from compounds with lower reduction potential (more negative) to compounds with higher reduction potential (more positive)
- Oxidation and reduction must occur simultaneously

Reduction Potential and the direction of reaction


A + B⁻
$$\rightarrow$$
 A⁻ + B \triangle G° = -VE

B oxidized form \rightarrow Redox couple

B- reduced form

Reduction Potential and the direction of reaction

Reduction Potential: the ability to accept electrons

Oxidized + e ⁻	→ Reduced	$\Delta E^{o}(V)$
Succinate	α ketoglutarate	- 0.67
Acetate	Acetaldehyde	- 0.60
NAD+	NADH	- 0.32
Acetaldehyde	Ethanol	- 0.20
Pyruvate	Lactate	- 0.19
Fumarate	Succinate	+ 0.03
Cytochrome+3	Cytochrome ⁺²	+ 0.22
oxygen	water o	+ 0.82

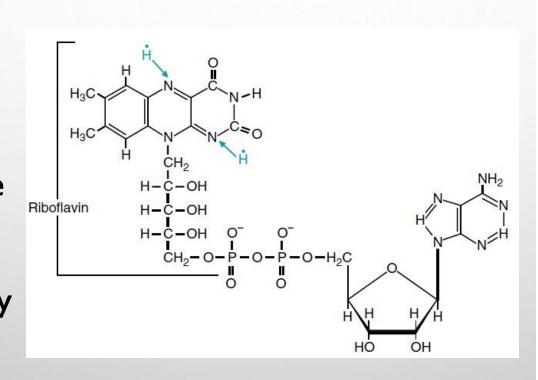
Calculation of ΔG^{o} and ΔE^{o}

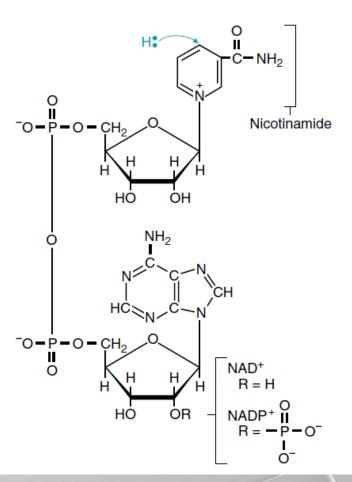
- $\Delta G^{\circ} = nf\Delta E^{\circ}$
 - F = Farady constant = 23.06 kcal/Volt
 - n is the number of moles of electrons transferred in the redox reaction
- Calculate ΔG° of the following reaction

NADH +
$$1/2O_2$$
 \longrightarrow NAD+ + $1/2O_2$ \longrightarrow NAD+ + $1/2O_2$ NAD+ + $1/2O_2$ \longrightarrow NAD+ + 1

$$\Delta G^{\circ} = -52.6 \text{ kcal/mol}$$

Oxidation reduction reactions (Redox)


- Arr = Redox difference of a system in standard condition (25°C and 1 atmosphere pressure, pH = 7)
 - \triangleright Does $\triangle E^o$ determine the feasibility of a reaction?


$$\triangleright \Delta G^{\circ} = -nf\Delta E^{\circ}$$

- > In other words; energy (work) can be derived from the transfer of electrons Or
- > Oxidation of food can be used to synthesize ATP

Oxidation reduction reactions (Redox)

- Always involve <u>a pair</u> of chemicals: an electron donor and an electron acceptor (Food vs. NAD+)
- NAD+ vs. FAD (hydride vs H-atom, number, energy)
- NAD+ vs. NADP+ (fatty acid synthesis and detoxification reactions)

