

Gluconeogenesis (Production of glucose from noncarbohydrate precursors)

Dr. Diala Abu-Hassan

Glucose Synthesis is Required for Survival

- Brain is dependent on glucose 120g/day
- Body glucose reserve is limited
 - \approx 20 g (extra cellular fluid)
 - $\approx 75~g\,$ (liver glycogen); enough for 16 hours
 - ≈ 400 g (muscle glycogen); for muscle use only

Main source of energy for resting muscle in post-absorptive state

- 70 Kg man has ≈ 15 Kg fat
 - Fatty acids can not be converted to glucose
 - Utilization of FA is increased 4-5 X in prolonged fasting
 - In prolonged fasting; $FA \rightarrow ketone bodies$ at high rate

Where and when does gluconeogenesis occur?

- During an overnight fast, ~ 90% of gluconeogenesis occurs in the liver and10% by the kidneys
- During prolonged fasting kidneys become major glucoseproducing organs (40% of total glucose production)

Entrance of substrates into gluconeogenesis Lactate — Pyruvate — Amino acids Amino acids ---> oxaloacetate Glycerol -----> Triosephosphates

Reversing the irreversible steps

1. From pyruvate to phosphoenolpyruvate (PEP)

Carboxylation of Pyruvate Produces Oxaloacetate (OAA)

From OAA to PEP

Enzyme is found in both cytosol and mitochondria

- Acetyl CoA Pyruvate carboxvlase CO2 is activated and transferred to pyruvate The generated (with covalently by pyruvate carboxylase producing oxaloacetate. attached biotin) PEP in the mitochondria ATP ADP + P is transported Lysyl residue -0-0 of enzyme to the cytosol Pyruvate O-C-CH₂ Oxaloacetate by a specific Biotin Oxaloacetate NADH + H+ cannot cross transporter the mitochondrial membrane so it is NAD+ reduced to malate that can. Malate The PEP that MITOCHONDRION is generated CYTOSOL NADH + H+ NAD+ P-0-C-C-O GTP In the cytosol, malate in the cytosol is reoxidized to oxaloacetate, which is Oxaloacetate Malate Phosphoenolpyruvate requires the converted to phosphoenolpyruvate by PEP carboxykinase. transport of CO2
 - OAA from the mitochondria to the cytosol

Reversing the irreversible steps

2. From fructose-1,6-bisphosphate to fructose-6-phosphate

Dephosphorylation of fructose 1,6-bisphosphate

Reversing the irreversible steps

3. From glucose-6-phosphate to glucose

Dephosphorylation of glucose 6phosphate

- Bypasses the irreversible hexokinase reaction
- Only in liver and kidney
- Glucose 6-phosphate translocase is needed to transport G-6-P across the ER membrane

Glucose 6-phosphatase in Endoplasmic Reticulum (ER)

Hint: Muscle lacks glucose 6-phosphatase, and therefore muscle glycogen can not be used to maintain blood glucose levels.

Energy requirements of gluconeogenesis

Regulation of gluconeogenesis

- Mainly by:
- 1. The circulating level of glucagon
- Glucagon lowers the level of fructose 2,6-bisphosphate, resulting in activation of fructose 1,6bisphosphatase and inhibition of PFK-1
- Inhibition of pyruvate kinase
- Glucagon increases the transcription of the gene for PEP-carboxykinase
- 2. The availability of gluconeogenic substrates

3.Slow adaptive changes in enzyme activity due to an alteration in the rate of enzyme synthesis or degradation, or both

Regulation of gluconeogenesis

