

Molecular Biology (12) Recombinant proteins

Prof. Mamoun Ahram School of Medicine Second year, First semester, 2024-2025

Expression of human proteins in bacteria

How do we select for human mRNA?

The power of reverse transcriptase (part 1)

The "many types of RNA" challenge

The "poly-T primer" solution

How do we deselect introns?

The power of reverse transcriptase (part 2)

Go for mature mRNA

The "reverse" solution

Expression vectors

 Expression vectors contain additional sequences:

- Promoter sequences upstream of gene to be inserted,
- Ribosomal binding sequences (Shine-Dalgarno [SD] sequences),
- A transcription termination sequence.
- The protein is expressed and purified.
 Examples: insulin, growth hormone, plasminogen activator, erythropoietin

Challenges of protein expression in bacteria

A state of the sta

- No internal disulfide bonds
- No post-translational modification (example: glycosylation)
- Protein misfolding
- Protein degradation
- Solution: use a eukaryotic system such as yeast

Production of a recombinant protein

GFP-tagged proteins

 Green Fluorescent Protein (GFP) allows for protein detection rather than for purification purposes.

A world of possibilities

Protein-protein interaction Co-immunoprecipitation

Proteins form complexes

(Co)-Immunoprecipitation

- Antibody molecules that target a specific protein are conjugated to special beads.
- A mixture of cell proteins are added to the beads.
- Only the protein of interest is precipitated as well as other proteins bound to it (co-precipitated).

Protein-protein interaction Yeast two-hybrid system starting from a cDNA library

Why is the LacZ gene used? What is X-gal?

- To test if a protein interacts with another protein, a genetic system is used on yeast cells.
- The yeast cells are allowed to express the bacterial βgalactosidase, whose gene is under control of the gal4 transcription factor.
- The gal4 protein has two domains, a DNA-binding (DB) domain and an activation domain (AD).
- Yeast cells are grown in the presence of a lactose analog called X-gal, which generates a blue product when cleaved.
- When the β-galactosidase gene is activated, beta-galactosidase is produced, which cleaves X-gal generating blue colonies.

A. Regular transcription of the reporter gene

Production of a recombinant protein

Cloning of hybrid proteins

- To identify the unknown proteins (Y's) that interact with a known protein (X), the X gene is cloned so it is produced recombined with the DNA binding (DB) domain, and the unknown Y gene is separately cloned so that it produced recombined with the activation domain (AD).
 - A cDNA library can be created of multiple genes (cDNAs).

Both recombinant plasmids are transferred into yeast cells so <u>all</u> cells express the known X -BD hybrid gene, but <u>each cell</u> expresses a different unknown Y-AD hybrid gene.

Quick illustration

The possibilities and outcomes

D. Two fusion proteins with interacting Bait and Prey

Blue yeast colonies are picked and plasmids are isolated to identify the unknown genes/proteins that interact with the known gene/protein.

The procedure

- A cDNA encoding a protein-of-interest is cloned into an expression plasmid adjacent to a cDNA encoding a DNA-binding domain (DBD) of a transcription factor (e.g., Gal4), yielding a DBD-fusion protein when expressed in cells.
- This plasmid is introduced into all yeast cells.
- A library of cDNAs is cloned into expression plasmids adjacent to a cDNA encoding a transcription factor activation domain (AD), yielding AD-fusion proteins when expressed in cells.
- The plasmids are introduced into the same yeast cells so that each one will have one.
- Protein–protein interactions between DBDand AD-fusion proteins.
- The cells are grown on plates containing X-gal and each cell form a colony.
- If colonies turn blue, there is interaction.
- If colonies stay white, there is no interaction.

