Past Papers

بسم الله الرحمن الرحيم

MID – Lecture 7 to 9 **metabolism**

﴿ وَإِن تَتَوَلَّوْا يَسْتَبْدِلْ قَوْمًا غَيْرَكُمْ ثُمَّ لَا يَكُونُوا أَمْنَ لَكُم ٢ اللهم استعملنا ولا تستبدلنا

Written by:

- Ammar Abusheikha
- Ahmad Rami Reviewed by:
- Laith Alhuniti

First we will start with (51) past Qs

then there will be (2) test bank Qs

(all Qs will be by default past unless it is written to be test bank)

Q1: If complex I of the electron transport chain is inefficient, which consequence is likely?

- a) No production of ATP in cell
- b) We can't use NADH as an electron carrier
- c) We can't synthesize H_2O from O_2
- d) ATP synthase turns off
- e) Increase O₂ consumption

Q2: What inhibits Complex IV in the electron transport chain?

A) Oligomycin

B) Antimycin A

C) Cyanide

D) Rotenone

E) Dinitrophenol

Answer: C

Q3: Incorrect about ATP / ADP translocase:

- A) Contains a single nucleotide binding site
- B) Is an exergonic process
- C) Its inhibition leads to inhibition of cellular respiration
- D) Has similar affinity to both ADP and ATP
- E) Allows ATP to flow with ADP exchange

Q4: The method discovered to reduce obesity:

A) Antimycin A

- B) Supplementing with ATP
- C) Uncoupling of oxidation and phosphorylation
- D) Reducing electron flow
- E) Increasing mitochondrial mass

Q5: Inhibit ATP synthase directly:

A) Oligomycin

- B) Amygdalin
- C) Antimycin
- D) Cyanide
- E) Rotenone

Answer: A

Q6: What is the effect of uncouplers on cellular respiration?

- a) Increase ATP production
- b) Inhibit electron transport chain
- c) Decrease proton gradient across inner mitochondrial membrane
- d) Decrease oxygen consumption
- e) More than one answer

Answer: C

Q7: If mitochondria are placed in a low pH solution, what would happen?

- a) Increased ATP production
- b) Decreased ATP production
- c) No change in ATP production
- d) Decrease in oxygen consumption
- e) B and D

Answer: A

Q8: True about uncoupling proteins:

- a) Increases ATP production
- b) Stops formation of H_2O
- c) Stops ATP synthesis but not consumption of O₂
- d) Stops O₂ consumption
- e) Decreases cellular respiration

Answer: C

Q9: A scientist made an experiment on mitochondria, he added antimycin, and then added an acid that lowered the PH. What is expected to happen?

- A) ATP synthesis will be observed
- B) Electrons from FADH2 will reach oxygen
- C) Cytochrome a3 will be in the reduced form
- D) Oxidation of NADH will continue
- E) Oxidation of FADH2 will continue

Answer : A

Q10: During electron transport, protons are pumped out of the mitochondrion at each of the major sites except for:

A) Complex I

B) Complex II

C) Complex III

D) Complex IV

E) Complex MIM

Answer: B

Q11: An advantage of oxidative phosphorylation uncoupling in brown adipose tissue:

- A) Improved ATP production
- B) Increased fatty acid synthesis
- C) Heat generation
- D) Decreased oxygen usage
- E) Reduced NADH production

Q12: Coenzyme Q (Ubiquinone) functions in the electron transport chain as:

- A) A lipid-soluble electron carrier
- B) A water-soluble electron donor
- C) A covalently attached cytochrome cofactor
- D) A lipid-soluble oxygen carrier
- E) A water-soluble proton carrier

Q13: Cytochrome c oxidase complex in the electron transport chain:

- A) Accepts electrons from cytochrome c
- B) Pumps two protons out of the matrix space
- C) Donates four electrons to O₂
- D) Produces two H_2O per O_2 reduced
- E) All of the above

Q14: Uncoupling oxidative phosphorylation results in:

A) Increased ATP production

- B) Increased heat generation
- C) Reduced respiration rate
- D) Enhanced NADH production
- E) Decreased O₂ consumption

Q15: Which of the following is true about NADH in the electron transport chain?

- A) It donates electrons to Complex II
- B) It pumps protons at Complex I
- C) It donates electrons to oxygen
- D) It donates electrons to FADH₂
- E) It transports protons directly

Q16: Dinitrophenol was a drug used for weight loss, which of the following molecules does it resemble the most?

- A)Thermogenin
- B) Rotenone
- C) Antimycin
- D) CO
- E) Cyanide

Answer : A

Q17: Which of the following is correct regarding Oligomycin:

A) It permits H+ transport through mitochondrial membrane

- B) It binds to complex 2 of the electron transport chain
- C) It binds to the catalytic subunit of ATP synthase without inhibiting the transfer of electrons
- D) It inhibits ATP synthesis
- E) None of the above

Answer: D

Q18: Which of the following doesn't contain iron sulfur center:

- A) Complex I
- B) Complex II
- C) Complex III
- D) Complex IV
- E) All of the following complexes contain iron sulfur center

Answer : D

Q19: Which of the following is true about CoQ:

- A) It is highly hydrophilic
- B) It can accept one or two electrons
- C) It can move freely in the cytosol
- D) It is not essential for ATP production
- E) All of the above are false

Q20: What would happen if the NADH-CoQ oxidoreductase complex (Complex I) in the electron transport chain does not function?

- a) Increased ATP production
- b) Decreased OxPhos ATP production
- c) Increased oxygen consumption
- d) Decreased glycolysis rate
- e) Production of H₂O stops

Q21: Is there any complex in the electron transport chain that does not require iron?

- a) Complex I
- b) Complex II
- c) Complex III
- d) Ubiquinone
- e) None of the above

Answer: D

Q22: Cyanide inhibits which complex in ETC?

A) Complex I
B) Complex II
C) Complex III
D) Complex IV
E) Complex MIM

Answer : D

Q23: Which of the following molecules has the highest reduction potential in the electron transport chain?

- A) Coenzyme Q
- B) FADH2
- C) Cytochrome c
- D) NADH
- E) Oxygen

Answer : E

Q24: The cytochrome c oxidase complex:

- A) accepts electrons from cyt c
- B) donates four electrons to O2
- C) produces 2 H2O per O2 reduced
- D) pumps 2 protons out of the matrix space
- E) All of the above are correct

Q25: The main regulator of electron flow in the electron transport chain is:

- a) The NADH level
- b) FAD/FADH2 ratio
- c) Calcium ions
- d) Oxygen
- e) ADP levels

Answer: E

Q26: A characteristic feature of glycerol phosphate shuttle is

- a) It operates through two isozymes, cytosolic and another in the matrix.
- b) Glycerol phosphate is oxidized to phosphoglycerate
- c) Malate is a component of the shuttle.
- d) It shuttles NADH across inner mitochondrial membrane by carrier molecule.
- e) It shuttles electrons from NADH across the inner mitochondrial membrane to FAD.

Q27: Copper ion is a prosthetic group of:

- a) NADH dehydrogenase
- b) Cytochrome reductase
- c) Succinate dehydrogenase
- d) Cytochrome oxidase
- e) ATP Synthase

Answer: D

Q28: Dinitrophenol inhibits:

- a) NADH oxidation by Complex I
- b) Electron flow in electron transport chain and ATP synthesis
- c) ATP synthesis but not oxidation of NADH
- d) Electron flow in Complex IV

Q29: The complex in electron transport chain that DOES NOT have a direct link to coenzyme Q in some form is:

- a) Cytochrome c oxidase
- b) Complex III
- c) Complex II
- d) Succinate dehydrogenase complex
- e) Complex I

Answer: A

Q30: Which statement is CORRECT considering ATP generation in the electron transport chain?

- a) Entry of protons occurs through the F0 piece into the mitochondrial matrix
- b) The F_o piece of the ATP synthase is composed of one subunit
- c) The F_1 piece of the ATP synthase is composed of one subunit
- d) The F_O piece of the ATP synthase binds ADP and P_i tightly before ATP synthesis occurs.
- e) Conformational changes are minimal in the $F_{\rm O}$ piece compared to the $F_{\rm I}$ piece

32

Q31: Uncoupling in mitochondria refers to:

- a) Stopping ATP synthesis but not stopping electron flow
- b) Increasing the pH value inside the mitochondrial matrix
- c) Blocking NADH electrons from entering the electron transport system
- d) Interruption of electron flow
- e) Stopping electron flow but not stopping ATP synthesis

Q32: If the inner mitochondrial membrane becomes more permeable to protons ,what happens?

- a) ATP synthesis increases
- b) No change
- c) inorganic phosphate concentration increases in the mitochondrial matrix
- d) ATP synthase become more active
- e) Inhibition of ATP synthase

Q33: How many molecules of ATP are produced in oxidative phosphorylation by using a single Acetyl COA?

- a) 10
- b) 36
- c) 20
- d) 5
- e) 15

Answer: A

Q34: How many O_2 molecules will be reduced by using 4 glucose molecules?

- a) 32
- b) 10
- c) 12
- d) 24
- e) 16

Answer: D

Q35: ATP synthase can produce ATP using this mechanism as a direct source of energy:

- a) The oxidation of pyruvate producing CO_2 , and H_2O
- b) The conversion of glucose to pyruvate
- c) The breakdown of NADH and FADH₂
- d) A proton gradient established in the mitochondria
- e) The metabolism of amino acids

Answer: D

Q36: Ubiquinone is one of the following:

- a) It is a small protein with an iron-sulfur center and can carry one or two electrons between complexes II and III
- b) It is a small organic molecule that can carry one electron between complexes I and III in the mitochondrial inner membrane
- c) It is a large protein embedded in the inner membrane of the mitochondria and can transfer two electrons between complexes I and III
- d) It is a small organic molecule that is free in the mitochondrial intermembranous space
- e) It is a small organic molecule in the mitochondrial inner membrane that can transfer 1 of 2 electrons to complex III

Answer: E

Q37: Most O₂ in your body consumed during breathing is converted into?

- a) CO then CO_2
- b) CO₂
- c) H_2O
- d) CO
- e) Acetyl CoA

Answer: C

Q38: Which membrane characteristic is not correct about the inner mitochondrial membrane (IMM)?

- a) Contains cholesterol
- b) Impermeable to most ions and small molecules
- c) Site of electron transport chain
- d) Contains ATP synthase
- e) Very high protein content

Answer: A

Q39: Which of the following is True about Ubiquinone – Cytochrome C

- a) Ubiquinone is a 2-electron donor Cytochrome C is a 1 electron acceptor
- b) Ubiquinone is a 1-electron donor Cytochrome C is a 2electron acceptor
- c) Ubiquinone has a higher reducing potential than Cytochrome C
- d) Both are mobile protein electron carriers
- e) More than one correct answer

Q40: Which of the following is correct about oligomycin, cyanide, 2,4-Dinitrophenol:

- a) DNP and oligomycin inhibits ATP synthesis, cyanide affects the respiratory chain.
- b) DNP and cyanide inhibit ATP synthesis, oligomycin affects the respiratory chain.
- c) DNP affects the respiratory chain, cyanide and oligomycin inhibit ATP synthesis
- d) All of them inhibit ATP synthesis and the respiratory chain
- e) All of them inhibit ATP synthesis but not the respiratory chain

Answer: A

Q41: A mutation in the coenzyme Q results in which of the following:

- a) Increased body pH
- b) Disturbance in the transport of electrons from malate to oxygen
- c) Increased generation of body heat
- d) Increased oxygen consumption
- e) None of the above

Answer: B

Q42: In a patient with cyanide poisoning, The expected effect on cytochrome C oxidase:

- a) More oxidized
- b) No effect
- c) More reduced
- d) Increased activity
- e) Not enough information, so can not determine

Q43: What subunit is the proton path in ATP synthase?

- a) α subunit
- b) β subunit
- c) γ subunit
- d) A subunit
- e) C subunit

Answer: D

Q44: What is the role of the γ-subunit in ATP synthase?

- a) Binding
- b) Rotation
- c) Structural
- d) Catalysis
- e) Point of entry and exit

Answer: B

Q45: How do uncoupling proteins influence ATP synthesis and oxygen consumption in mitochondria?

- a) Increase respiration & decreases ATP formation
- b) Decrease respiration & decrease ATP formation
- c) Decrease respiration & increase ATP formation
- d) Increase respiration & increase ATP formation
- e) Depends on the uncoupling protein

Test Bank

Test Bank

Q1: Which has the strongest tendency to gain electrons?

- a) O₂
- b) Coenzyme-Q
- c) Cytochrome-c
- d) FAD
- e) NAD⁺

Answer: A

Test Bank

Q2: 2,4-DNP, an uncoupler of Ox-Phos, was used as a weightloss agent in the 1930s. Reports of fatal overdoses led to its discontinuation in 1939. Which of the following would most likely be true concerning Individuals taking 2,4-DNP

- a) Greater ATP level than normal
- b) Body temperature is elevated as a result of hypermetabolism
- c) Cyanide has no effect on electron flow
- d) The proton gradient across the IMM is greater than normal
- e) The rate of electron transport is abnormally low

Answer: B

For any feedback, scan the code or click on it.

Corrections from previous versions:

Versions	Question #	Before Correction	After Correction
V1 → V2			
V2 → V3			