

Metabolism Enzymes

The Citric Acid Cycle

Enzyme	Enzyme Structure	Substrate	Reaction	Inhibited by	Activated by	Notes
Citrate Synthase	_	Acetyl CoA	Acetyl CoA → Citrate	High [ATP] High [citrate]- product inhibition High [succinyl CoA]	High [ADP] Oxaloacetate	Citrate inhibits phosphofructokinase (glycolysis) Irreversible reaction
Aconitase	Fe-S protein	Citrate	Citrate \rightarrow isocitrate Isomerization- 3° alcohol to 2°	Fluoroacetate (rat poison)	_	Reversible reaction
Isocitrate Dehydrogenase	_	Isocitrate	Isocitrate \rightarrow α -ketoglutarate <i>Oxidative</i> <i>Decarboxylation- loss</i> <i>of CO2 + reduction of</i> <i>NAD+ \rightarrow NADH¹</i>	NADH ATP	High [Ca2+]- calcium signifies that a muscle cell is contracting, which requires energy. ADP	Irreversible reaction
α-ketoglutarate Dehydrogenase	An aggregate of 3 enzymes: E1: Decarboxylase TPP deficiency- a-keto acids accumulate in the blood E2: Transacylase E3: dehydrogenase	α-ketoglutarate	α -ketoglutarate \rightarrow succinyl CoA <i>Oxidative</i> <i>Decarboxylation- loss</i> of CO2 + reduction of $NAD+ \rightarrow NADH^2$	Succinyl CoA- product inhibition NADH GTP Arsenite– trivalent As forms a stable complex with SH of lipoic acid Neurological disturbances, death.	High [Ca2+]	Irreversible reaction TLCFN (coenzymes) TPP- decarboxylase Lipoic acid + CoA- transacylase FAD + NADH- dehydrogenases

Succinate Thiokinase Succinyl CoA Synthase (Reverse rxn)	_	Succinyl CoA	Succinyl CoA + GDP→ Succinate + GTP Cleaves thioester bond, which results in substrate-level phosphorylation.	_	_	Reversible reaction Nucleoside diphosphate kinase rxn converts GTP→ ATP.
Succinate Dehydrogenase	Coenzyme: FAD FAD is reduced instead of NADH because the reducing power of succinate isn't sufficient for NAD+ reduction.	Succinate	Succinate + FAD \rightarrow FADH2 + Fumarate Oxidizes succinate $H_2 lost \rightarrow double$ bond	Malonate	_	Reversible reaction The only TCA cycle enzyme that's embedded in the inner mitochondrial membrane. Functions as Complex II in ETC.
Fumarase	_	Fumarate	Fumarate → Malate Hydration- breaks double bond	_	_	Reversible reaction
Malate Dehydrogenase	_	Malate	Malate + NAD+ \rightarrow NADH ³ + Oxaloacetate Oxidation of malate- 2° alcohol \rightarrow ketone	_	_	Reversible reaction Positive delta G value, however, the largely negative delta G value of the citrate synthase rxn allows this rxn to proceed.

Oxidative Phosphorylation

Enzyme	Enzyme Structure	Electron Source	Transports Electrons To	Specific Inhibitor	Notes
Complex I	Flavoprotein 7 Fe-S centers (at least 2 different types) > than 25 polypeptide chains FMN is tightly bound Binds NADH & CoQ	NADH → NAD+ Hydride	Coenzyme Q Ubiquinone	Rotenone (pesticide/ insecticide) or amytal (sedative) No transfer of electrons from Fe-S to coenzyme Q	4 protons transported across the IMM
Complex II Succinate Dehydrogenase	Flavoprotein Fe-S centers	$FADH_2 \rightarrow FAD$ Hydrogen atoms	Coenzyme Q Ubiquinone		Doesn't fully penetrate the IMM→ no H+ transported
Complex III <i>Cytochrome bc1</i>	Hemoprotein- <i>hemes</i> b_{I} , b_{L} , c_{I} Fe-S centers 11 subunits including 2 cyt. subunits	Coenzyme Q	Cytochrome C Present on the outer leaflet of the IMM.	Antimycin A (antibiotic) Blocks transfer of e ⁻ complex III cyt. C to the mobile e ⁻ carrier cyt. C	4 protons transported across the IMM
Complex IV Cytochrome a + a3 Cytochrome oxidase	Fe-Cu 2 copper sites Contains oxygen binding sites.	Cytochrome C	Oxygen Final electron acceptor	Azide (N ³⁻), cyanide (CN ⁻), amygdalin, and carbon monoxide (CO)	2 protons transported across the IMM. Reduction of oxygen to H2O. O_2 must accept 4 electrons for Partial reduction results in ROS formation. Much lower Km for O_2 than myoglobin & hemoglobin.
Complex V ATP Synthase	2 domains: F° & F ₁ F°: transport of protons F ₁ : enzymatic domain, synthesizes ATP from ADP + Pi	_	_	Oligomycin (antibiotic) Prevents the influx of H+ through ATP synthase.	Responsible for the synthesis of ATP. Protons flow down their concentration gradient, inducing conformational changes in the F ^o domain, thereby causing the rotation of adjacent subunits. This facilitates the phosphorylation of ADP \rightarrow ATP

Glycolysis

Enzyme	Reaction	Requires/Pr oduces	Regulation	Notes
Hexokinase	Glucose → Glucose-6-phosphate	Uses ATP for phosphorylation + energy		Irreversible step (not committed) Hexokinase is nonspecific– phosphorylates glucose, galactose, fructose, and mannose. Present in all tissues. Low Km (high affinity) Activated at any [].
Glucokinase	Glucose → Glucose-6-phosphate	Uses ATP for phosphorylation + energy	Regulated by the GKRP, where GK is sequestered in the nucleus and bound to GKRP when [glucose] is low. Once glucose is present in the cell in high []s, GK is released to the cytoplasm to phosphorylate glucose to G6P. G6P then undergoes isomerization to F6P. High [fF6P] induce the sequestering of GK in the nucleus. Activation: Insulin <i>well-fed state</i> Inhibition: Glucagon <i>fasting</i>	Irreversible step (not committed) Glucokinase is specific to glucose only. Present in the liver. Higher Km than hexokinase Activated only at high []s.
Phosphoglucose isomerase	Glucose-6-phosphate → Fructose-6-phosphate	-		Reversible step
Phosphofructokinase-1	Fructose-6-phosphate → fructose 1,6-bisphosphate	Uses ATP	Activation: Fructose-2,6-bisphosphate activates glycolysis & inhibits gluconeogenesis AMP low-energy state Insulin well-fed state Inhibition: ATP high-energy state Glucagon fasting Citrate high TCA cycle activity, sufficient energy	Irreversible step Committed step Rate-limiting step Last step of the preparative phase of glycolysis.

			production H+ Active oxidative phosphorylation, high energy production	
Aldolase	Fructose-1,6-bisphosphate \rightarrow DHAP Fructose -1,6-bisphosphate \rightarrow G3P			Reversible step
Triose phosphate isomerase	DHAP \rightarrow G3P Subsequent steps occur twice because we now have 2 G3Ps.			Reversible step
Glyceraldehyde-3-phos phate	$G3P + NAD + \rightarrow NADH +$ 1,3-bisphosphoglycerate Oxidation reduction reaction	Produces NADH (cytosolic)	Inhibited by arsenate– a pentavalent As <i>competes</i> with inorganic phosphate, directly affects ATP synthesis.	Reversible step Adds inorganic phosphate without the need for ATP.
Glycerate Kinase	1,3-bisphosphoglycerate → 3-phosphoglycerate	Produces ATP		Reversible step
Phosphoglycerate Mutase	3-phosphoglycerate → 2-phosphoglycerate <i>Isomerization</i>			Reversible step
Enolase	2-phosphoglycerate → phosphoenolpyruvate Dehydration		Fluoride (non physiological) inhibits enolase in bacterial glycolysis, preventing dental caries.	Reversible step
Pyruvate Kinase	PEP → pyruvate	Produces ATP	Activation: Fructose-1,6-bisphosphate glycolytic intermediate Insulin well-fed state Inhibition: ATP high-energy state Alanine source of pyruvate via transamination rxn, high [pyruvate] inhibits glycolysis from running further. Glucagon fasting	Irreversible step Most common glycolytic enzyme deficiency. Affects RBCs the most, compromising its structure → hemolytic anemia.

Phosphorylation of Enzymes

Enzyme	Phosphorylated	Dephosphorylated	Phosphorylated by	Effect
Bifunctional enzyme: Phosphofructokinase-2	ACTIVE	INACTIVE	Insulin well-fed state, green light for glycolysis	Phosphorylates fructose-6-phosphate to fructose-2,6-bisphosphate, stimulating glycolysis.
Bifunctional enzyme: Fructose bisphosphatase-2	INACTIVE	ACTIVE	Glucagon Fasting state, glycolysis shouldn't run	Removes a phosphate from fructose 2,6-bisphosphate, converting it to fructose-6-phosphate. → no stimulation of glycolysis.
Pyruvate Kinase	INACTIVE	ACTIVE	Glucagon PKA phosphorylates pyruvate kinase, inhibiting glycolysis	cAMP/PKA leads to the phosphorylation of pyruvate kinase, this inhibits glycolysis and promotes gluconeogenesis (makes sense in a fasting state)
Pyruvate Dehydrogenase Complex	INACTIVE	ACTIVE	PDH kinase Dephosphorylated by PDH phosphatase	
Glycogen Phosphorylase Kinase	ACTIVE	INACTIVE	Epinephrine (muscle and liver) and glucagon (liver) Dephosphorylated by insulin, activates phosphatase to inactivate glycogen degradation and stimulate glycogen synthesis.	Phosphorylates glycogen phosphorylase
Glycogen Phosphorylase	ACTIVE	INACTIVE	Glycogen phosphorylase kinase Phosphorylase kinase (IP3 pathway) In muscle cells, it is activated by AMP binding	Glycogen degradation

			Dephosphorylated by insulin, activates phosphatase to inactivate glycogen degradation and stimulate glycogen synthesis.	
Glycogen Synthase	INACTIVE	ACTIVE	By cAMP/PKA pathway because of EP/glucagon. Calmodulin-dependent protein kinase (IP3 pathway) Phosphorylase kinase (IP3 pathway)	Glycogen synthesis is inhibited– remember the cell wouldn't allow two contradictory pathways to operate simultaneously

Pyruvate \rightarrow Acetyl CoA

Enzyme	Regulation	Deficiency
PDH Complex	Acetyl CoA- product inhibition Directly binds to PDHC NADH NAD+ is needed, indicating that TCA cycle won't proceed either. Arsenite poisoning produces a stable complex with lipoic acid	Deficiency in E1 is the most common cause of congenital lactic acidosis. X-linked Pyruvate accumulation, activating alternative pyruvate pathways: lactate production. Lactate production → lactic acidosis
PDH Kinase	Activation: ATP high-energy state, phosphorylates PDHC and inactivates it. Acetyl CoA (indirect activation) NADH Inhibition: Pyruvate high [pyruvate] activates PDHC to fuel TCA cycle.	
PDH Phosphatase	Activation: Calcium signifies high activity in a muscle cell and a need for energy production.	_

Glycogen Metabolism

Enzyme	Reaction	Regulation	Notes
Glucose-6-Phosphatase	Glucose-6-phosphate → glucose	Activation (liver & muscle) Glucose-6-Phosphate <i>well-fed state</i>	 Deficiency (Von Gierke Disease): Affects liver, kindey, intestine (not muscle cells, because they dont have this enzyme) Severe hypoglycemia Hepatomegaly (fatty liver) Growth retardation <i>brain requires glucose, and a quick supply of it.</i> Progressive renal disease
Glycogen phosphorylase	Glycogen (n) → Glycogen (n-1) + Glucose-1-Phosphate	Inhibition (Liver) Glucose-6-Phosphate intermediate in the pathway ATP high-energy state Glucose product inhibition Inhibition (Muscle) G6P + ATP Activation (Muscle) Ca ²⁺ muscle contraction, need for energy AMP low-energy state	 Deficiency (McArdle Syndrome) Only affects the muscle isoform Weakness and cramping of muscle after exercise No increase in lactate during exercise no glucose → no pyruvate → no lactate
Debranching enzyme (Transferase + α-1,6- Glucosidase)	Transferase: transfers 4 glucose residues from a branch to the linear chain. α-1,6-Glucosidase: cleaves the branching glucose reside (α-1,6 linkage) and phosphorylates it to G1P	_	
Phosphoglucomutase	Glucose-1-Phosphate → Glucose-6-Phosphate	-	Reversible reaction In the cytosol

UDP-Glucose Pyrophosphorylase	Glucose-1-Phosphate + UTP → UDP-Glucose + PPi	_	Reversible
Glycogen Synthase	Removes UDP from UDP-glucose + attaches glucose to glycogen fragment/glycogenin in a linear chain (no branches yet)	_	_
4:6-Transferase	Cleaves a fragment of the linear chain and attaches it via am α-1,6 linkage (hence the name 4:6). Formation of branches.	_	_

وتضيقُ دُنيانا فنحسَبُ أنَّنا سنموتُ يأساً أو نمَوت نحيبا وإذا بلُطفِ اللهِ يَهطُلُ فجأةً يُربي منَ اليَبَسِ الفُتاتِ قلوبا

Gluconeogenesis

Enzyme	Reaction	Regulation	Location	
Pyruvate Carboxylase	$\begin{array}{l} Pyruvate + ATP + CO2 + \\ NAD+ \rightarrow Oxaloacetate + \\ ADP + NADH \end{array}$	Activated allosterically by acetyl CoA	Enzyme is found in both the mitochondria and the cytosol	Biotin <i>covalently</i> <i>attached</i> In the mitochondria
PEP Carboxykinase	Oxaloacetate \rightarrow PEP + CO2 Decarboxylation	_	Occurs in the cytosol	OAA is reduced to malate, then oxidized to OAA again to be transported to the cytosol
Fructose-1,6-Bisphosphatase	$F1,6B \rightarrow F6P$ Dephosphorylation	Same allosteric regulators of the reverse reaction Activation: Citrate TCA cycle operates (fatty acid degradation), signifying enough energy for gluconeogenesis Inhibition: AMP low-energy state, this pathway needs energy Fructose-2,6-bisphosphate activates PFK-1		
Glucose-6-Phosphatase	G6P → Glucose	_	In the ER lumen translocase enters G6P into the ER, then GLUT 7 transports it to the cytosol.	Not present in muscle cells

Pyruvate \rightarrow Ethanol (in yeast)

Pyruvate Decarboxylase	Pyruvate \rightarrow acetaldehyde <i>decarboxylation</i>	
Alcohol Dehydrogenase	Acetaldehyde + NADH → ethanol + NAD+ Dehydrogenase	Produces NAD+

Pyruvate \rightarrow Lactate

Lactate Dehydrogenase	$\begin{array}{l} Pyruvate + NADH \rightarrow lactate + NAD+\\ Dehydrogenase \end{array}$	Produces NAD+ Reversible reaction

النفسُ ترجو والأماني بَمّةُ والعبدُ يدعو والكريمُ كريمُ

Metabolism of Mono & Disaccharides:

Enzyme	Location	Mechanism	Product	Function	Deficiency	Notes
Fructokinase	Liver, kidney, & small intestines	Phosphorylates fructose	Fructose → Fructose-1-Phosphate	F1P can then be converted into DHAP or glyceraldehyde which can become G3P and enter glycolysis.	A minor problem, because the fructose can still be metabolized by the nonspecific pathway.	Uses ATP. present in the specific fructose metabolism pathway.
Aldolase A	Present in most tissues	Cleaves fructose- 1,6-bisphosphate	G3P	Produce an intermediate of glycolysis.	Aldolase B can catalyze the same reaction aldolase A can.	
Aldolase B	Liver, kidney, & small intestine	Cleaves fructose-1,6-bisphospha te & fructose-1-phosphate	G3P (nonspecific & glyceraldehyde (specific)	Produce an intermediate of glycolysis.	No utilization of fructose-1-phosphate = loss of ATP for its phosphorylation. Glycolysis is activated to compensate for lost ATPs → hypoglycemia. Glycolysis → pyruvate → lactate → lactic acidosis. AMP increases, its accumulation stimulates its degradation. Degradation of purines produces uric acid → Hyperuricemia Reduced hepatic ATP → hepatic failure	
Aldose Reductase	Liver, kidney, retina, lens, Schwann cells, ovaries, seminal vesicles.	Reduces glucose into sorbitol, and oxidizes NADH to NAD+.	Glucose + NADH → Sorbitol + NAD+		_	
Sorbitol Dehydrogenase	Ovaries, liver, seminal vesicles.		$\begin{array}{c} \text{Glucose} \rightarrow \text{sorbitol} \rightarrow \\ \text{fructose} \end{array}$	Direct conversion of glucose to fructose.	_	Fructose is sperm's main source of energy.

Galactokinase		Phosphorylates galactose	Galactose + ATP → Galactose-1-phosphate + ADP		Galactose is trapped in the cell, which activates aldose reductase. Galactose is converted to polyalcohol– galactitol. It's trapped in the cell, causing water retention due to the messed up osmotic pressure. Fructose deficiency is less severe than galactokinase deficiency (no alt. pathway).	
GALT Galactose-1-Phosphate Uridyltransferase		A trade/exchange between Gal-1-P & UDP Gluc, and vice versa.	Gal-1-P + UDP Gluc. ←→ UDP Gal + Gluc-1- Phosphate	UDP-Gal can synthesize glycolipids, glycoproteins, GAGs, lactose. Gluc-1-phosphate is converted to G6P by phosphoglucomutase. In muscle cells (where no glucose-6-phosphatase is present), this is where this pathway ends. In liver cells, however, G6-phosphatase converts G6P→ glucose. Gluc-1-P can also react with UDP-glucose pyrophosphorylase to produce UDP-glucose and either is ¹ used in glycogen synthesis or ² reacts with galactose.	Galactosemia, a genetic disease. ATP is used for the phosphorylation of galactose → increased [AMP] → hyperuricemia. Accumulation of galactose-1-phosphate & galactitol, causing cataracts & mental retardation, because of the damage/death of neurons.	
Epimerase	_	Epimerase galactose into glucose and vice versa.	UDP Gal $\leftarrow \rightarrow$ UDP Glu	UDP Glu. can be used for glycogen synthesis when it is present in excess []s.	_	_

UDP-Glucose Dehydrogenase	_	Oxidizes UDP-Glucose	UDP-Glucose + NAD+ → UDP-Glucuronic acid + NADH	Glucuronic acid can be used to synthesize GAGs, or it can supply the pentose phosphate pathway.	_	_
Lactose Synthase	Mammary glands		UDP-Galactose + Glucose → Lactose + UDP	Lactose synthase complex: Galactosyl transferase (Protein A): enzyme , transfers UDP-galactose to glucose and links them together. Alpha-lactalbumin (Protein B): not an enzyme , makes sure that protein A only uses glucose to ensure lactose synthesis, in mammary cells (selectivity). In other cells where protein B isn't present, there's no selectivity for what binds to UDP-galactose. Modified lactose forms such as N-acetyllactosamine (UDP-gal + N-acetylglucosamine), used for glycoproteins, glycolipids, GAGs.		Lactose: Galactosyl β-1,4 Glucose

Alcohol Metabolism

Enzyme	Reaction	Location	Notes
Alcohol Dehydrogenase	Ethanol + NAD ⁺ \rightarrow Acetaldehyde + NADH	Cytosol of hepatocytes	Responsible for 80-90% of ethanol metabolism (main pathway) Has 5 classes/isoenzymes, different isoforms are expressed in different tissues
Acetaldehyde Dehydogrenase	Acetaldehyde + NAD ⁺ \rightarrow Acetate + NADH	Mitochondria of hepatocytes	
Acetyl CoA Synthetase	Acetate \rightarrow Acetyl CoA	Muscle cells	
MEOS Microsomal Ethanol Oxidizing System	Ethanol + NADPH + H ⁺ + O2→ Acetaldehyde + NADP ⁺ + 2H2O	Hepatocytes	High Km for ethanol- <i>induced by</i> <i>high [ethanol]s</i> CYP2E1 is involved Responsible for 10-20% of ethanol metabolism Contributor of oxidative stress in hepatocytes due to the production of ROS (H2O2, OH ⁻ , O2 ⁻)
Catalase	Ethanol + H2O2 → H2O + Acetaldehyde	Peroxisomes	Very minor pathway Very small % of ethanol metabolism Expressed by some microflora in the colon Relies on H2O2

الله يعطيكم العافية و يوفقكم و يرزقكم العلامات والسعي اللي ترضيكم يا رب ادعوا لاخوتنا في كل بلاد السلمين و مش غلط تدعولي كمان :)