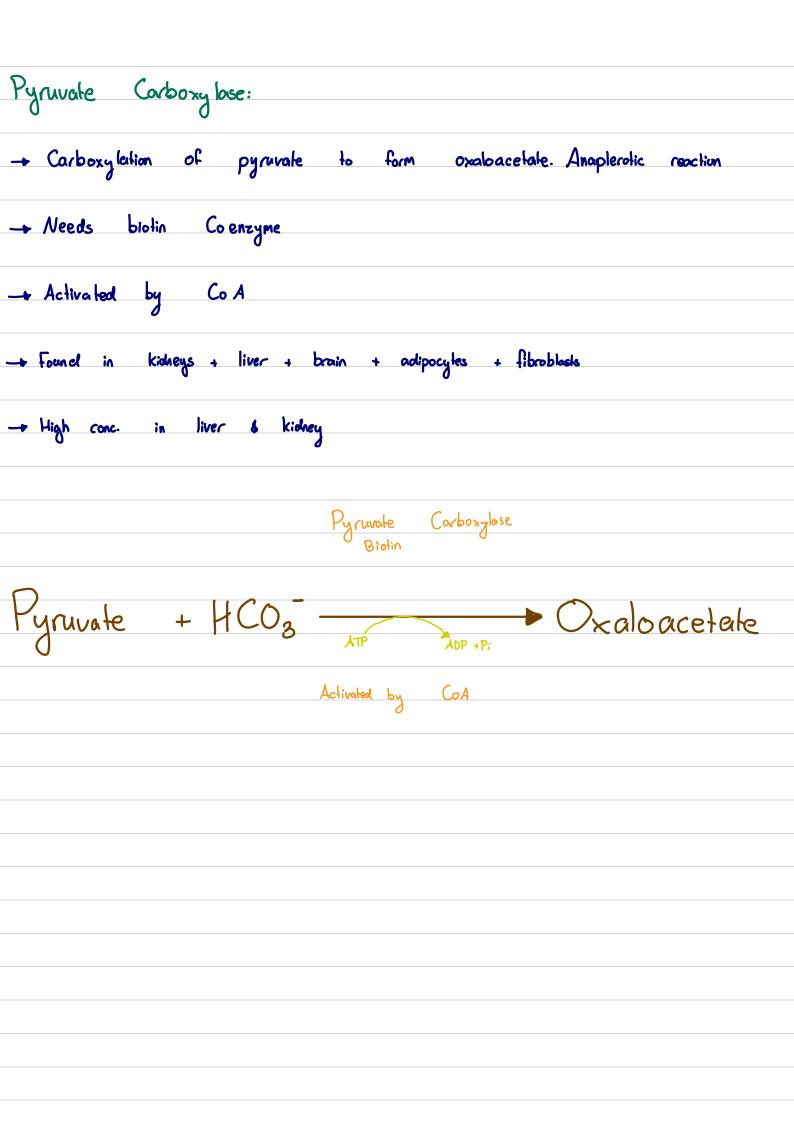



FAD vs NAD: ()→FAD gains e one by one, sequential. By different sources. form of H. \rightarrow NAD gains pair of electrons at once by same source. Form of hydrole \ddot{H} $\bigcirc \rightarrow FAD$ used in succinate dehydrogenose. + FAD used in a-keto glutarate dehydrogenase complex, FAD oxidized disulfide bridge in Lipoic acial in Transacylase to form FADH2 then transfers electrons to NAD+ - NAD used in most dehydrogenases. Oxidizes alcohol to ketones 3 - Since FAD forms free radicals, if forms fight Covalent bonds to enzymes. This changes the E^O - NAD can be free () -> NADH used in regulating krebs cycle, acting as inhibitor. While FADH2 not used $\bigcirc \rightarrow NADP^+$ used to convert malate to pyruvate Malate Madph Pyruvale Matate MADPH ATP ADP + Pi Cos Oxa loace tale Malate NADH NAD+

Details of steps: Step 1: Reaction: Oxaloacetate + Acetyl CoA - Citrate + CoASH Enzyme: Citrate synthase Regulation: Activation / Inhibition of enzyme - Activated by oxaloacetate which results in Conformational shape change allowing Acelyl - CoA to bind to enzyme. - Inhibited by citrate - Inhibited by ATP allostenically - Inhibited by NADH - Inhibited by succinyl-CoA Other regulations using citrate: - Inhibiting rate -limiting step of glycolysis. Inhibiting phosphofructokinose - In gluconeogenisis, it stimulates fructose-1,6-Bisphosphatase - Plays role in fatty acid synthesis La Provides Acetyl CoA source Lo Activates a cetyl CoA carbonylase Lo Inside mitochandria, fatty acid andized. Outside mitochandria fatty acid synthesized Le Citrate breaks down to Acetyl COA + Oxaloacetate. Oxaloacetate reduced to malate to cross mitochandrial membrane then axidized actain to avaloacetate

Step 2: Reaction: Citrate ____ Cis-aconitate ____ Iso-citrate 3° alcohol 2° alcohol - isomerization Enzyme: Aconilase Regulation: - Inhibited by Fluoroacetate. Toxic, stops Krebs cycle. Non-competitive - Aconitase enzyme contains Fe-S clusters - isomerization RXN Step 3: NAD+ ← ∝-ketoglularate Reaction: Isocitrate Enzyme: Isocitrate dehydrogenose Regulation: -> Dehydration + decarboxylation. - Rate - Limiting Step !! Best regulation - Inhibited by NADH - Inhibited by ATP - Activated albeterically by ADP C a²⁴ => shift to left. Lower Km. Higher affinity - Activated allosterically by lo muscle - contraction => octive => more ATP

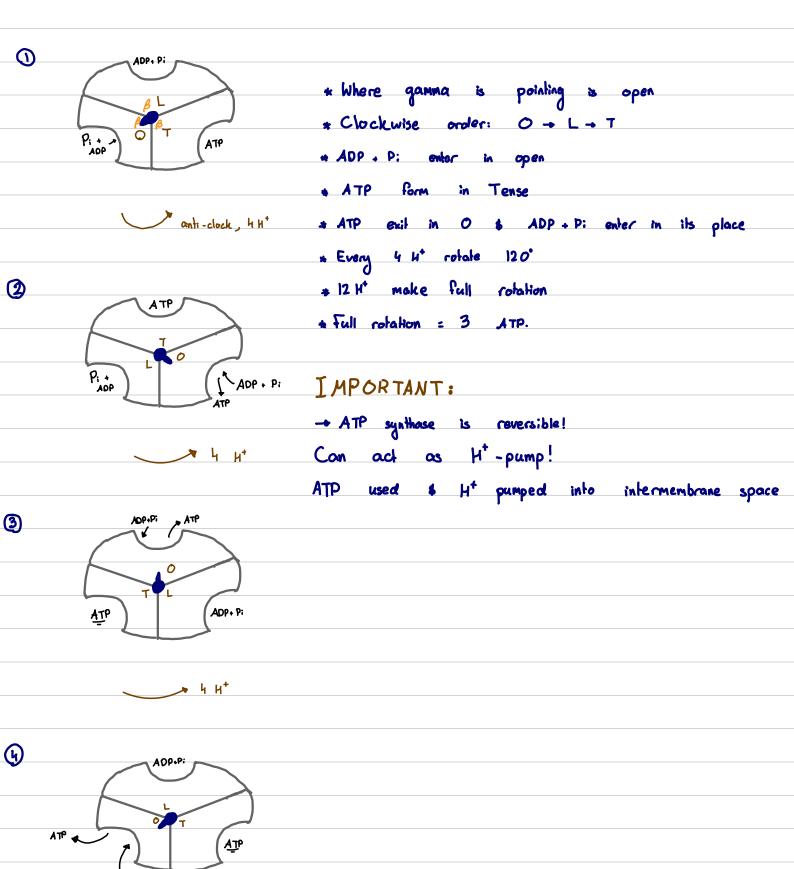

Step 4: NADH NAD+ Reaction: oc- Keto glubarate + CoA ----Succinyl COA Enzyme: a-ketoglutarate complex Mechanism of a-keto acid dehydrogenese complexes: -> Include oc-ketoglutarate / pyruvate / branched chain keto acid DH complexes le alonine keto aciel - Three enzymes. 5 cofactors - Take Louing Care For Mancy. TLCFN ① Decarboxylase (E1). Cofactus: Thiamin Pyrophosphate TPP (2) Trans acylose. (E2) Adds CoA and uses -S-S- to transfer H to FAD. Cofactors: Lipoic acid 3 Dehy alrogenase. FAD takes H from Lipoic acid on transacylase then it transless them to NAD+. NADH formed. (E3) - Me chanism: 1: CO2 removed from a-KG. TPP used. Decarboxylase 2: -S-S- Oxidize a-kG to form -SH + -SH. Lipoic aciel used. Transacylase 3: COA is added to Succinyl COA released. Transacylase 4: FAD takes H From -SH & forms -S-S- again 5: FAD transfers H to NAD+ Forming NADH 6: Energy conserved in NADH & thisester of COA Regulation: - Activated by Ca2+ - Inhibiled by NADH - Inhibited by GIP - Inhibiled by Succinyl - CoA - Inhibited by Arsenite. Toxic. Non-competitive

Toxins on the Krebs cycle: * Flouroacetale: Aconitase non-competitive inhibitor Citrate — Isocitrate * Arsenite: a-keto glutarate olehydrogenase non-competitive inhibitor a-keto glutarate COA COL * Malonate: Succinate Dehydrogenase competitive inhibitor Succinate FADH FADH Krebs Cycle intermediates used in other pathways: * Citrate: Lo fatty acid synthesis in liver 4 Activales Acetyl CoA carbonylose 4 Breaks down to form Acetyl CoA, building blood of fatty acids. 4 Occurs in cytosol NOT mitochandra * X-Ketoglutarate: Lo Converted to glutamate 4 Forming GABA Lo Neurotransmitter on NS * X- Ketoglularale: La Converted to glutamine La skeletal muscle i other tissues Le Protein synthesis

* Succinyl - CoA:
Le Heme synthesis in bone marrow
0
* Malates
4 Increase blood glucose when fashing vior gluconeogenisis
le In liver
* Oxaloacetate:
La Amino acid synthesis
Anaplerotic Reactions:
-> Since intermediates can be used, we need reactions that replenish those
intermediates called anaplerotic reactions.
inicipie unares curred unapricone reactions.
* Aspartate Oxolo acetate
* Alanine Pyruvate + HCO3 Oxaloacetate !! imp
x Glubanate ~ d. Vola alubate
* Glutamate Xetoglutarate
N Anna Aarde & Dencional Cal Succional Cal
* Amino Acids - Propionyl CoA - Succinyl CoA
n Anna Andre - A Trucata
* Amino Acids — Fundrate
-+ All anapleratic reactions use amino acid except pyruvale to onabacetale
both pyruvate \$ oxaloacetate
are keto acids.

Oxidative Phosphorylation ETC in inner mitochondrial membrane: I٧ Ш NADH Complex I: -> NADH dehydrogenase CoQ oxidoreductase OR NADH TWNH2 - Flavoprotein. FMN. FMN takes 20- from NADH. FMN-Le tightly bound to protein Fe-S iron-sulfur complex. (7 complexes. ≥2 types) - FMN gives e to Lo bound to protein NADH debydrogenose on Cys - Lipid-soluble Co-enzyme Q/ubiquinone/Q takes ecomplex I. Ubiquinole / QH2 forms. Complex I: - Has succincite dehydrogenase part of it. FAD. part of enzyme FAD Fumarale. FADNe produced is directly - Succinate used. Electron transfer flavoprotein, ETF-CoQ oxireductase. Jike complex I - FADH2 - FAD + 2H. FAD part of the complex. Flavo protein - Fe-S takes e and gives it to CoQ

Complex II:


$$ABH$$
 is a complex. Q = Cyl C oncreated as a complex if a complex is a complex is a complex if a complex is a complex is a complex if a complex is a complex is a complex is a complex if a complex is a complex is a complex is a complex if a complex is a complex is

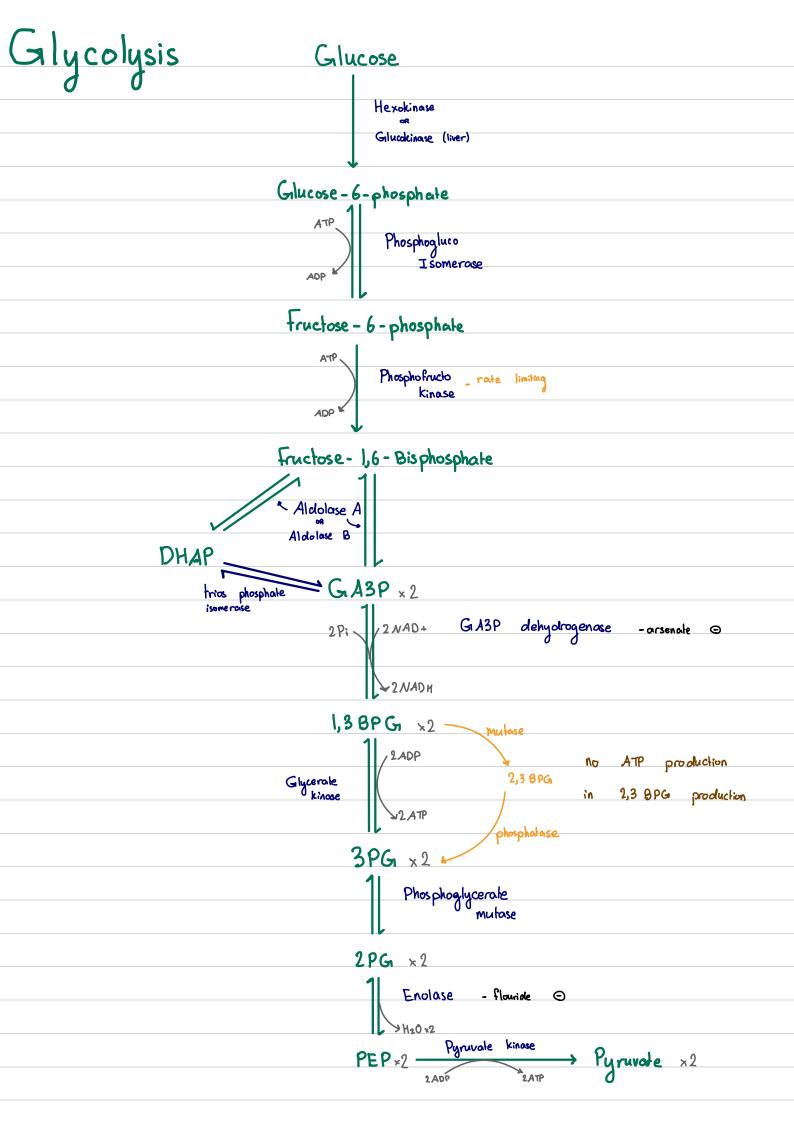
Ш FMA Cat C. QH2 20 T١ Succin 02 + 24 Q-cyele NADH NAD+ H20 FAON FAD Complex IV : -> Uses Cu-a, Cu-az, Cyl-a, Cyl-az. NO Fe-S \rightarrow Transfers e⁻ to O_2 . Final e⁻ acceptor. (1 O_2 needs 4 e⁻). We need full reduction because partial reduction gives radicals. - Binds to Oz to reduce it. Very very high affinity. Km for IV lower than Hb **s** myoglobin! Proton pump: **4 H*** Lи 2H Cyt C C Ш FMN ى QH2 20 2e Π Cy Succinal Q-cyele NADH NAD+ H20 FAON FAD - Complex II doesn't pump e. ~ O kcal -+ Each 4 e⁻ produce 1 ATP. 4 H+ 4 H⁺ 2H+ NADH: Complex I Coa Complex II Cyl C Complex IV = 4+4+2:10 = 2.5 ATP -> FADH2: Complex II - Complex II - Cyt C - Complex IV = 0+4+2 = 6 = 1.5 ATP 2H⁺

Mituchandrial membrane composition:
Inner membrane:
- High amount of caroliolipin. 22%
V
-> NO cholesteral
\rightarrow Impermeable. NOT permeable to H^+ , need specific transporters. Why? to maintain an H^+ gradient
Outer membrane:
- Similar to plasma membrane. Permeable
-> Has cholesterol 45%
-+ Low caroliolipin 3%
Electron Carriers:
Ubiquinone:
-> Lipid solube & carries e from I/II to III through inner membrane
-> Mas benzoquinone and isoprenoid (long)
- Can carry 1 e ⁻ (semiquanone radical ·QH) or 2e ⁻ (Ubiquinol) thus used
in R cycle of Complex III
-> Prescriped for myocardial infraction patients

ATP Synthose:	b_2 H^+ $C_1 C_2 C$		eadpiece		
	Оуюрная	Sinic Side			
to a subunit ho	H ⁴ enters and exit into M which rotate whe	lahrix	C subunits	then goes l	ad
F₁: → Middle & subur	uit which is b	ient \$ n	olates Liken	c subunits r	otate
\rightarrow 8 subunits hil the		•			
- oc subunits present	for support				
'					
- O estimate have					
- β subunits have:					
T - tense					
L - 1005e					
O- open					
· · · · · · · · · · · · · · · · · · ·					

B-subunits & ATP production:

ADP +P;



Regulation - ADP
-> ADP most important. ADP increases oxal. Phos. rate
- Called Respiratory control Acceptor control
O ₂ used
ADP Finish
ADP added
Time
Regulation. Inhibitor Toxins
6
RAACACO
Inhibit:
- Rotenone
- Amytal
•
-> Antimycin A Complex III
U C C C C C C C C C C C C C C C C C C C
→ C0
-> Azide complex IV, mimic O2
- CN
- Oligomycin ATP synthuse
•
RAACAC 0
- Cyanoglycosides (amygolalin, misnomer B17) act as cyanide inhibiturs \$ inhibit
Complex IV.

Regulation - Uncoupling Proteins (UCPs) So important! Exam question - Short circuit the ETC, Ht enters through UCPs, not ATP synthese. -> No ATP produced heat produced instead! non-shivering thermogenesis - UCP1 4 Thermogenin La Brown adipose fissue in neck/breast/around kidney Lo Activated by fatty acids - UCP2 most cells - UCP3 skeletal muscles -UCP4, UCP5 brain - UCP mutations increase cardiometabolic disease risks -> Dinitrophenol, DNP, \$ other acidic aromatic compounds can act like UCPs. DNP takes H⁺ in intermembrane space & DNP in matrix release H⁺, functioning, like UCP \$ no ATP produced. Heat produced - DNP and UCP use NADH & O2 but dont produce ATP. Heal instead -+ FOA banned DNP

Grenetic Oxolidative Phosphorylation diseases:
Complex I:
nDNA: Leigh syndrome / Leuko dystrophy 35 proteins
mt DNA: LHON / Dystonia / Sporadic myopathy 7 11
Complex I:
n ONA: Leigh syndrome / Paragangliona 4
mt DNA: none 0
Canala III.
Complex IL:
nDNA: none 10 nL Data Seconda mumbre 1
mt DNA: Sporadic myopathy 1
Complex IV:
nDNA: Leigh syndrome / cardioencephalomyopally / Leukoencephalomyopally 10
MIDNA: Sporadic myopathy / Sporadic anemia / encephalomyopathy 3
Complex V:
n DNA: none 14
mt DNA: NARP/MILS/FBSN 4

Lactic Acidosis:
- Inhibiting Oxidative phosphorylation:
-> Gilycolysis take over, anaerobically. Oz cant be used
-Alcohol intoxication:
- Causes high NADH : NAD + ratio.
- Many NADH, low NAD +.
-> Pyruvale to lactic acid to regenerate NAD+.
- l Pyruvale dehydrogenase activity: (arsenite)
- No acelyl CoA formation
-> Pyruvale accumulate \$ turn to lactic acid
U
- + Krebs cycle:
-> Pyruvate accumulate \$ turn to lactic acid
- l Pyruvate carbonylase (pyruvate lo oxaloacetate)
-> Pyruvale accumulate \$ turn to lactic acid
- Ciluconeogenesis
-> Pyruvale accumulate \$ turn to lactic acid
- Нурожа
0) -> Kemorrhage
- Respiratory failure
-> Impaired O2 transport
•

Insulin	n :											•
FBP-P);	FBP	+ Pi		Dec	activate -	FBP will	1 Giluco	5e % 0	deactivate	al with	ко Р:
PFk-2-	- P;		`k-2 →	Pi	Acl	ivate -	PFk-2 w	ill 🖡 Glu	cose So	activate	ol with	No Pi
So I	Insulin	activ	ales	PFk-2	by	removing	P:, mor	e f.	2,6-BP	So	less	glucose!
More	g ly colysis	rate										
Decreas	es c	4мр	\$ F	^D k A								
				Tusu	lin		Gilucagon					
PFK-	2 => Dea	crease	Gilucose	. Active	NO	Pi/In	active wil	h Pi				
FBP-	2 ⇒ Inc	crease	Gilucose	. Inactive	e no	Pi / Acti	ve with	Pi				

External inhibitors of glycolysis: non-physiological A. Flouride: -> Inhibilis enclose. 2 PG (enclose PEP - Inhibits glycolysis in bacteria! - In tooth pasle & flouristated water B. Arsenite: (krebs cycle!) - Trivalent Arsenic - Inhibits keto acids dehydrogenases. Pyruvate dehydrogenase \$ ox-keto dehydrogenase - How? It forms stable complex with -SH of lipoic acid! - Causes neurological alisturbances & aleath C. Arsenate: - Pentavalent arsenic. Looks like Pi - Since similar to Pi. Competes with Pi for GA3P dehydrogenase. Less 1,3 BPG луларн , 3- В РС - GA3P Pr As - Less ATP produced

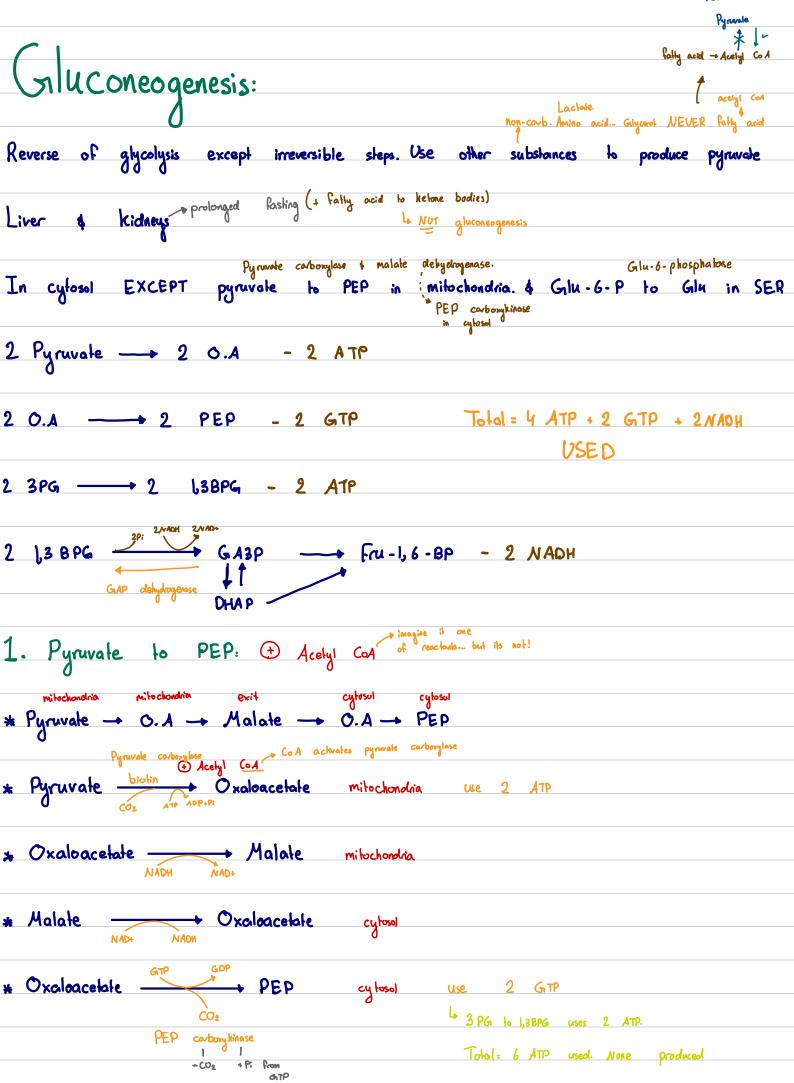
Pyruvate kinase Deficiency / Abnormality: Most common - RBC's most affected because no mitochondria - Low ATP = I Not - kt pump = cell swell & die - Mild to severe chronic hemolylic anemia -> Due to altered kinetic properties. Varies mutant forms of pyruvate kinase. - Abnormal response to fru-1,6-BP activator - Weird km or Vmax values - Decreased amount of enzyme - Stability / Activity lower

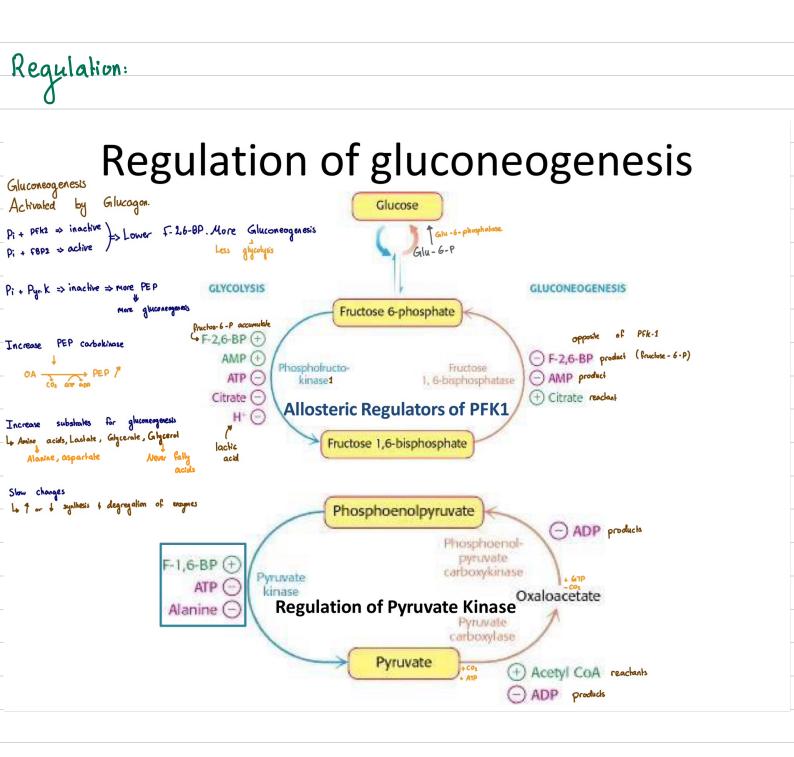
Keto acid dehydrogenases: * Pyruvate - Acetyl CoA + NADH + Coz * a-keto glutarate --- Succinyl CoA + NADH + CO2 Enzyme complex: E1 : * De carboxylase · Uses TPP. * CO2 removed from pyruvate & alcohol formed E2: * Dihydrolipoyl transacelylase * Uses lipoic acid. $-L_{5}^{SH} \rightarrow -L_{5H}^{SH}$. e^{-} carrier! * Takes H * e from alcohol, ketone formed + Adds COA to ketone. Acetyl COA formed Eg: * Di hydrolipoyl dehydrogenase * Uses FAD to take 11 6 et from reduced lipoic acid. * Transfers H & e⁻ from FAD to NAD+. * NADH formed \$ -L(\$ regenerated

Regulation:		
8		
A. Feed back	inhibition:	
* 👄 Acetyl CoA	<u>ا</u>	
S O NADH		


B.	Regulation	by Phosphopor	lein Dhos	phatase:	
		by Phosphoprol (insulin). So			
- ele	Kemore Pi.	(insulin). So	activales	PUH	
*	Activated by	Ca ²⁴			
	Ŭ	ATP = activate	ohosohatase	= activote	Рри

C. Regulation by Protein kinase: * Add P: (Glucagon). So inactivates PDH * Activated by: ATP / NADH / Acetyl CoA * Inhibited by: Pyruvale


Diseases:


Pyruvale dehydrogenase deficiency:
- Most common is E1 deficiency. No decarboxylation
-> X-linked genetic
- More anaerobic respiration. Lactic acidosis
-> Brain most allected
-> Neuro degeneration
-+ Muscle spasms
→ Neonalal form → early death
-> Reduce carb intake
- Take TPP supplements
Arsenic poisoning:
- Arsenile/Trivalent affects keto acid dehydrogenases by binding to lipoic acid.
- Arsenale / Pentavalent affects GA3P dehydrogenase by mimicking Pi

Calycogen Metabolism: Gilycogen Catabolism Gilycogenolysis: Enzymes: phosphelose AUSCLE ONLY A. Glycogen phosphorylase Pi active. No Pi inactive. Glu LIVER OMLY Cat MUSCLE ONLY -> Breaks glucose at non-realucing end ATP - Produce glucose - I - P - ONLY works on oc-1,4 -> Does NOT use ATP. Catabolism release energy... used to add free Pi. B. Phosphoglucomutase - Convert Gilu-1-P to Gilu-6-P C. Debranching enzyme - Works on "limit deutrin" 1) Transferase: Transfers branch from a-1,6 to a. 1,4. Only works on a. 1,4 bonds ② α - 1,6 glucosiolase: Breaks the single ∝ - 1,6 glucose using H2O. No P: ! D. Glucose - 6 - Phosphatase $\rightarrow ONLY$ in liver. NOT in muscle. -+ Liver can release glucose in blood. Auscle is greedy \$ holds Gilu-6-P -> Gilucose - 6 - Phosphate _____ Gilucose / E. 02-1,4 Glucosidase - 37. of glycogen metabolism - in lysosomes - Removes a-1,4 glucose at non-reducing end. Use HzO, no Pi. - Deficiency in Pompe disease.

B. Type II / Pompe Disease: * Lysosomal &-1,4 glucosidase deficiency (3% of glycogenolysis) * Glycogen accumulation IN Lysosomal vacuales. Affects entire lysosome. * Due to lysosomal failure & NOT blood glucose. Normal blood glucose levels * Affects Head + Liver + muscle * Death from heart failure. Mossive cardiomegaly * Tip = Pompe disease = om = Lysosomal &-1,4 glucosidase C. Type V / McArdle : * No Muscle glycogen phosphorylose * Low glucose \$ ATP in muscle. Muscle weakness \$ cramping * NO lactate production cuz low glucose * Ca²⁺ release. Ca²⁺ - Calmodulin complex, activates phosphonylase kinase, no glycogen phosphorylase to be phosphorylated. * Tip = Mc Ardle = M = muscle glycogen phosphorylase

Monosaccharide Metabolism:

Fructose	Kinases:
Hexokina	NSC :
* Most	tissue types
	se to Fructose-6-P continue like glycolysis, PFK-1
	000
Fructoking	nse:
* Liver	(4 Kidney & Small intestine) like glucokinase
	e to Fructose-I-P turned then into DHAP \$ G.A via aldolase B
	PFK-1 step. So fructose metabolism faster than glucose metabolism Gily.colysis. Rate limiting
Aldolase	51
Aldolase	A:
n Most	tissue types
	works on F-1,6-BP Hemokinase & PFK-1
o * Doesn't	Work on F-I-P Fru-6-P Fru-60-P
* Fru-b	6-BP to GA3P t DHAP
Tip: Aldolo	se <u>A</u> = First letter = more esential = Glycolysis pathway = work on Fru-1,6-BP
Aldolase	
* Only	liver (+ kidney + small intestine)
e Both	liver (+ kidney + small intestine) Fru-1,6-BP \$ Fru-1-BP + Fructokinase
a Either	GA3P + DHAP OR GA + DHAP
	plase B = Both Fru-1-BP & Fru-1, 6-BP

Fractokinase Deficiency:

$$\rightarrow$$
 Benign. Nol two dangerows. Herokinase pathway
 \rightarrow Accumulation of fractose => fractosuria
Aldolase B deficiency.
 \rightarrow Heriotatory
 \rightarrow No Fra-1: P cleanage
 \rightarrow Fractose intolerance / poisoning
 \rightarrow 1 Fra-1: P \rightarrow 4 ATP \rightarrow 11 AMP \rightarrow Degrade AMP
 \rightarrow Aldolase B in Liver (+ hidney + SZ)
 \rightarrow 1 AMP, so activate glucose metabolism => Hypoglycemia
 \rightarrow 1 AMP, so activate glucose metabolism => Hypoglycemia
 \rightarrow 1 AMP, so 1 Galycelysis => Lactic acidosis
 \rightarrow 4 ATP, so hepatic failure
 \rightarrow 1 AMP => 1 AMP degradation => 1 Uric acid \Rightarrow Hypervisenia
 \rightarrow Avoid fractose, succese, sorbiol
 $\xrightarrow{\text{Charge exactly to sorbiol}}$ $\xrightarrow{\text{Charge exactly to sorbiol}}$

Aldose reductase:
- Glucose to sorbitol
- Think of places affected by diabeles:
* Lens
* Refina
* Schwann cells
* Liver
* Kidneys
* Seminal vesicles sperm use fructose
\$perm use fructose
Sorbitol Dehydrogenase:
- Sorbitol to fructase
-> Places that need fructose ~ sperm
* Seminal vesicles
* Ovaries
Diabetes:
-> Gilucose enters cells NOT via GLUT. Insulin independiant
- Glucose to sorbitol via aldose reductase
- Sorbitol retains water 4 causes cell swelling.
- Affects fissues with aldoce reductase mentioned above.
Exes, nerves, kiolneys, liver etc.
•

Glucuronic Acid Metabolism: Glucose oxidation = Glucuronic Acid | UDP-Glu dehydrogenase Minor route. Produce precursors for other pathways. Similar to glycogen synthesis Use I ATP & I UTP. Requires energy to produce Glucuronic Acid - UDP Used to produce GrAGs Used in pentos e phosphale palhway Glucose Glu-6-P - Glu-1-P UDP-Glu glucokinose phophoglucomutase UDP-Glu herekinose phophoglucomutase DD-Glu UDP-xylose GAGs Uses of UDP-Glucose: - Gilycogen synthesis - Oxidation into glucuronic acid pentose-phosphale pathway - Galactose metabolism. Galactose metabolism diseases: Galactokinase defiecency: - NO Gola to Gala-1-P - Galactose accumulation. - Cause glactosemia + galactosuria. - Galactose <u>Aldose reductose</u> Galacitol. Aldose reductose also in Glu & Fru CONVERSION Glu to sorbital. It is in places affected by diabetes -> Excess galacticol can cause Cataracts

Gilycogen epimerase Glu GALT deficiency: -> NO Gala-1-P + Glu-UDP GALT Galactokinase X Glycogen Gala - UDP + Glu - 1 - P Galactose Glu - UDP - Gala-1-P & Gala accumulate - Cause glactosemia & galactosuria. Classic galactosemia - Same idea as aldolase B deficiency. ATP L & AMP 1. Problems. - Increase galacticol. Gala <u>Aldose reductase</u> Galacticol - Galacticol accumulate where Aldose reductase is present. Think places where aldose reductose is present → Jaunalice -> Vommiling + diarrhea Lactose synthase protein complex: - UDP - Galactose + Glucose Protein A + Potein B UDP + Lactose / Galactosyl B(1-4) glucose Lo UDP detach = release energy = build lactose Jactose Synthose Scatabolic ~ Jactose Mammany gland - F - Both males & females. Females use for milk production when prolactin high. Both use for glycolipids \$ glycoproteins! all cells * Protein A = Galactosyl transferase => A only = Lactose in glycolipid & glycoprotein (M + F) * Protein B = x-lactal albumin A+B = Lactose in milk, <u>mammany gland</u>. Prolactin (females) & mammany gland - UDP- Galactose + N-acetyl glucosamine Protein A OMY N-acetyl Lactosamine Many cells

Alcohol Metabolism:

Large Alcohol consumption: Way 1 : Acetylaldehyde ALDH Acetate ACS Alcohol ADH Acelyl CoA Many NADH, Pew NAD+. Bad. Alot of NADH. No NAD+. Glycolysis stop. krebs stop. High NADH/NAD+ NADH - NADH Inhibition of FA oxidation L+ FA-+ COA Inhibition of CoA products. I CoA so inhibition gluconeogenesis 🗡 Lactic acidosis 📖 + CYP460 + liver busy dealing with alcohol Lo Lactale & Cuz NADH P. Pyr. - > Lactate NADH NAD+ So not free A. / Acelyl CoA 🕣 C. Pyruvale / 🕤 Pyravale to 0.1 step B. TH* () So less substrole so less glucontogenesis Way 2: MEOS, use CYP2E1. Produce free radicals. 10%. NADPH give H to MEOS, this forms free radicals Way 3: Catalase, use H2O2 oxidizing agent instead of NAD+ \$ MEOS