Me Tot Wa	Worksheets tabolism mid al questions: 44 rksheet time: 3600secs tructor name: Hind Shaker	Name Class Date	
1.	Why is oxaloacetate (OAA) converted to malate in the mitochor	ndria?	
	a) Malate is a direct precursor for gluconeogenesis	b) OAA is unstable and must be stored as malate	
	c) Malate can cross the mitochondrial membrane, whereas OAA cannot	d) OAA must be reduced to NADH before export	
2.	A mutation reduces succinate dehydrogenase activity by 50%, H this case?	How many ATP would be generated per turn of the TCA cycle in	
	a) 9.25 ATP	b) 8.5 ATP	
	c) 9 ATP	d) 7.5 ATP	
3.	Which of the following statements about hexokinase is correct?	?	
	a) It has low affinity and high Km for glucose	b) It is induced by insulin and glucose	
	c) It is expressed only in the liver	 It phosphorylates multiple hexoses, including glucose, galactose, and fructose 	
4.	Which of the following is incorrect about Aldolase A?		
	a) It uses fructose-1-phosphate as a substrate	b) It is found in most tissues, including muscle	
	c) It is not involved in fructose metabolism	d) It works only in non-specific glycolytic pathways	
5.	Which amino acid is directly converted into pyruvate?		
	a) Phenylalanine	b) Alanine	
	c) Methionine	d) Valine	

Which of the following statements is correct regarding the enzyme activity shown in the graph?

- a) Both hexokinase and glucokinase have the same Km but different Vmax values
- c) Glucokinase reaches half of its Vmax at fasting glucose concentrations
- 7. Which condition would most likely make an unfavorable reaction (Δ G>0) favorable?
 - a) Increasing the reactant concentration relative to the product b) Decreasing the reactant concentration.
 - c) Increasing the product concentration.

- b) Glucokinase reaches half of its Vmax at fasting glucose concentrations
- d) Hexokinase reaches its Vmax at a glucose concentration of 5 mmol/L

d) Decreasing the temperature of the system.

- 8. A reversible reaction is studied, and the equilibrium constant (K) is found to be 10⁻⁵. Which of the following conclusions can be drawn about the reaction?
 - a) The ratio [B]/[A] will fluctuate over time but tend to favor products.
 - c) At equilibrium, the forward and reverse reaction rates are unequal due to the large concentration difference between reactants and products
- b) The reaction heavily favors the reactants at equilibrium, and only a negligible amount of products will be formed
- d) The forward reaction is spontaneous because Delta $G^{\circ} < 0$

- 9. Which of the following is incorrect about glucagon's action during fasting?
 - a) Glucagon stimulates glycolysis by activating the kinase component of PFK-2/FBPase-2
- b) Glucagon reduces fructose-2,6-bisphosphate levels by activating phosphatase activity
- c) Elevated cAMP levels promote gluconeogenesis by reducing PFK-1 activity
- Glucagon activates adenylate cyclase, increasing cAMP levels

https://quizizz.com/print/quiz/673b55fdfa62b2a92be0daf6

10.	What is the primary lipid distinguishing the inner mitochondrial membrane from the outer membrane?		
	a) Sphingomyelin	b)	Cardiolipin
	c) Phosphatidylserine	d)	Cholesterol
11.	11. Which of the following complexes has no associated mitochondrial DNA (mtDNA) mutations?		
	a) Complex II	b)	Complex I
	c) Complex III	d)	Complex IV
12.	12. One of the following statements about FADH ₂ is WRONG:		
	a) It donates electrons to Complex II	b)	It leads to fewer protons being pumped compared to NADH
	c) It pumps 4 protons at Complex II	d)	It bypasses Complex I
13.	Leigh Syndrome is caused by mutations in which of the followin	g co	mplexes (nDNA)?
	a) Complex III only	b)	Complex I and IV
	c) Complex I, II, and IV	d)	Complex II and V
14.	What feature of the IMM allows it to sustain a proton gradient?		
	a) High protein content	b)	Presence of cardiolipin
	c) Embedded ATP synthase	d)	Impermeability to ions like H*
15.	Which of the following components of the alpha-ketoacid dehyd	roge	enase complex transfers the acyl group to CoA?
	a) E2	b)	E1
	c) E3	d)	All of the above
16.	Which step in glycolysis generates NADH?		
	a) Phosphoenolpyruvate \rightarrow Pyruvate	b)	Glyceraldehyde-3-phosphate \rightarrow 1,3-Bisphosphoglycerate
	c) Fructose-6-phosphate \rightarrow Fructose-1,6-bisphosphate	d)	1,3-Bisphosphoglycerate \rightarrow 3-Phosphoglycerate
17.	17. What enzyme converts 1,3-bisphosphoglycerate into 2,3-BPG in RBCs?		
	a) Pyruvate kinase	b)	Phosphoglycerate mutase
	c) 2,3-BPG mutase	d)	Phosphoglycerate kinase
18.	What type of bond does α -amylase hydrolyze during starch dige	estic	in?
	a) α-1,6 glycosidic bonds	b)	None of the following
	c) a-1,4 glycosidic bonds	d)	β-1,4 glycosidic bonds
		-	

19.	What is the role of calcium ions (Ca2+) in regulating isocitrate dehydrogenase?		
	a) They have no effect	b) They convert NADH to NAD ⁺	
	c) They activate the enzyme	d) They inhibit the enzyme	
20.	What does a negative E^{v} value signify about the reaction?		
	a) The reaction cannot occur in the cell.	b) The reaction is highly exergonic and spontaneous.	
	c) The reaction favors the oxidized form in the cell.	d) The reduced form is more stable than the oxidized form.	
21.	What is the function of glycogen synthase in glycogen synthesi	sis?	
	a) Forms the first glycogen molecule using glycogenin	 Adds glucose residues from UDP-glucose to form a linear chain 	
	c) Converts glucose-6-phosphate to glucose-1-phosphate	d) Creates a-1,6 glycosidic bonds for branching	
22.	Which complex contains the enzymatic activity to hydrolyze α	-1,2 bonds?	
	a) Maltase-exoglucosidase complex	b) Neither	
	c) Sucrase-isomaltase complex	d) Both	
23.	23. Which of the following correctly describes the form in which NAD and NADP accept electrons?		
	a) In the form of free protons (H+)	b) In the form of molecular hydrogen H_2	
	c) In the form of hydroxide ions (OH-)	d) In the form of a hydride ion (H-)	
24.	Which of the following is correct about the sucrase-isomaltase	e complex?	
	a) The N-terminus of the complex is extracellular	 b) Sucrase cleaves α-1,2 bonds in sucrose and also has maltase activity 	
	c) Isomaltase has no maltase activity	 It is encoded by two genes and then joined into a single complex 	
25.	25. Which of the following is wrong about the mechanism of regulated UCPs (uncoupling proteins) ?		
	a) UCP1 activity generates heat instead of producing ATP	b) UCPs allow protons to bypass ATP synthase.	
	c) UCPs generate ATP efficiently during thermogenesis.	 d) UCPs create an uncoupling between the ETC and ATP synthase 	
26.	One of the following is WRONG about Antimycin A:		
	a) It targets Complex III	b) It directly inhibits oxygen reduction	
	c) It prevents electron transfer from cytochrome b to cytochrome $\mathbf{c}_{_1}$	d) It blocks both NADH and $FADH_2$ pathways	

27.	27. Which of the following is incorrect regarding the comparison of MEOS and the main pathway?		
	 MEOS is more active at low ethanol concentrations compared to the normal pathway 	b) The normal pathway generates NADH, contributing to the high NADH/NAD⁺ ratio	
	c) Both pathways ultimately produce acetaldehyde as an intermediate	 MEOS is induced during chronic alcohol consumption, while the normal pathway is constitutive 	
28.	Why does the citric acid cycle generate only one molecule of higher?	f GTP per acetyl-CoA, while its indirect energy contribution is much	
	a) NADH and FADH ₂ produced in the cycle yield much more ATP in the electron transport chain.	b) The cycle is focused on storing acetyl groups for later use.	
	c) The electron carriers are less significant for energy production than GTP.	d) GTP is synthesized in the cytosol, while NADH and FADH ₂ are used in the nucleus.	
29.	Why are tissues like the lens and retina particularly affected b	by high glucose levels?	
	 They produce large amounts of fructose directly from glucose 	b) They convert glucose to lactate instead of sorbitol	
	c) They lack aldose reductase	 d) They lack sorbitol dehydrogenase, leading to sorbitol accumulation 	
30.	What is the effect of fluoroacetate on citrate isomerase (aconi	nitase)?	
	a) Non-competitive inhibition	b) It has no effect	
	c) Competitive inhibition	d) Activation	
31. Which <u>MAIN</u> factor drives the activity of the Krebs cycle, the ETC, and oxidative phosphorylation?		ETC, and oxidative phosphorylation?	
	a) The cellular demand for ATP	b) The proton gradient strength	
	c) The amount of oxygen consumed	d) The accumulation of NADH and $FADH_{_2}$	
32.	32. What is the primary cause of hereditary fructose intolerance (HFI)?		
	a) Sorbitol dehydrogenase deficiency	b) Hexokinase deficiency	
	c) Aldolase B deficiency	d) Fructokinase deficiency	
33.	A reaction has a Delta G° of +2.0 kcal/mol at 298 K. If the equil correct?	uilibrium constant Keq is 0.1 , which of the following statements is	
	 The reaction will always proceed in the forward direction regardless of concentrations. 	b) The reaction is at equilibrium if [products]=[reactants]	
	 c) The reaction can proceed in the forward direction if [products]<<[reactants] 	d) The reaction will only proceed in the reverse direction	

34.	All of the following are correct about the role of the β subunits in ATP synthase EXCEPT:		
	a) They release ATP in the open (O) state	b)	They undergo conformational changes (T, L, O) to synthesize and release ATP.
	c) They rotate with the $\boldsymbol{\gamma}$ subunit to generate ATP	d)	They bind ADP and Pi for ATP synthesis in the loose (L) state
35.	What is a "limit dextrin"		
	 A segment of glycogen containing four glucose residues near a branch point 	b)	A glucose residue attached to the glycogen core
	c) A free glucose molecule released by debranching enzymes	d)	A linear chain of glucose residues created by transferase activity
36.	36. What is the <i>main</i> function of Complex IV in the electron transport chain?		
	a) Transfer of electrons from ubiquinone to cytochrome c	b)	Pumping protons into the matrix
	c) Synthesis of ATP	d)	Reduction of oxygen to water
37.	What happens when a large amount of ethanol is metabolized?		
	a) Pyruvate is converted to acetyl-CoA directly	b)	The NADH/NAD* ratio decreases.
	c) Gluconeogenesis is inhibited	d)	Fatty acid oxidation is enhanced
38.	What distinguishes ATP synthase's F_0 component?		
	a) Mobile electron carrier	b)	Proton channel spanning the IMM
	c) Catalytic ATP synthesis site	d)	Contains iron-sulfur clusters
39.	39. The enzyme succinate dehydrogenase in the TCA cycle is unique because:		
	a) It is involved in GTP production	b)	It catalyzes the production of NADH
	c) It is located in the cytosol	d)	It is part of the inner mitochondrial membrane
40.	40. Which enzyme's activity is reduced, preventing pyruvate from entering the TCA cycle and contributing to lactic acidosis?		
	a) Lactate dehydrogenase	b)	Phosphofructokinase
	c) Pyruvate kinase	d)	Pyruvate dehydrogenase
41.	Which of the following diseases is associated with Complex V n	nuta	tions in mitochondrial DNA?
	a) Sporadic Myopathy	b)	Paraganglioma
	c) Leigh Syndrome	d)	NARP (Neuropathy, Ataxia, and Retinitis Pigmentosa)

- b) ATP acting as a negative regulator for PFK-1
- d) ATP being inhibited by AMP

43. Which physiological factor activates both isocitrate dehydrogenase and α-ketoglutarate dehydrogenase?

a) ATP	b)	Succinyl-CoA
c) GTP	d)	Ca ²⁺

44. Which GLUT transporter has a high capacity but low affinity for glucose and may act as a glucose sensor in the pancreas?

a)	GLUT 1	b)	GLUT 2
c)	GLUT 3	d)	GLUT 4

Answer I	Keys
----------	------

 c) Malate can cross the mitochondrial membrane, whereas OAA cannot 	2. a) 9.25 ATP	 d) It phosphorylates multiple hexoses, including glucose, galactose, and fructose
 a) It uses fructose-1-phosphate as a substrate 	5. b) Alanine	 d) Hexokinase reaches its Vmax at a glucose concentration of 5 mmol/L
 a) Increasing the reactant concentration relative to the product concentration. 	 b) The reaction heavily favors the reactants at equilibrium, and only a negligible amount of products will be formed 	 a) Glucagon stimulates glycolysis by activating the kinase component of PFK-2/FBPase-2
10. b) Cardiolipin	11. a) Complex II	12. c) It pumps 4 protons at Complex II
13. c) Complex I, II, and IV	14. d) Impermeability to ions like H ⁺	15. a) E2
 d) 1,3-Bisphosphoglycerate → 3- Phosphoglycerate 	17. c) 2,3-BPG mutase	18. c) α-1,4 glycosidic bonds
19. c) They activate the enzyme	20. c) The reaction favors the oxidized form in the cell.	21. b) Adds glucose residues from UDP-glucose to form a linear chain
22. c) Sucrase-isomaltase complex	23. d) In the form of a hydride ion (H-)	 b) Sucrase cleaves α-1,2 bonds in sucrose and also has maltase activity
25. c) UCPs generate ATP efficiently during thermogenesis.	26. b) It directly inhibits oxygen reduction	27. a) MEOS is more active at low ethanol concentrations compared to the normal pathway
 a) NADH and FADH₂ produced in the cycle yield much more ATP in the electron transport chain. 	29. d) They lack sorbitol dehydrogenase, leading to sorbitol accumulation	30. a) Non-competitive inhibition
31. a) The cellular demand for ATP	32. c) Aldolase B deficiency	 c) The reaction can proceed in the forward direction if [products] <<[reactants]
34. c) They rotate with the γ subunit to generate ATP	35. a) A segment of glycogen containing four glucose residues near a branch point	36. d) Reduction of oxygen to water
37. c) Gluconeogenesis is inhibited	38. b) Proton channel spanning the IMM	39. d) It is part of the inner mitochondrial membrane
40. d) Pyruvate dehydrogenase	41. d) NARP (Neuropathy, Ataxia, and Retinitis Pigmentosa)	42. c) ATP acting as a substrate for PFK-1
43. d) Ca²⁺	44. b) GLUT 2	