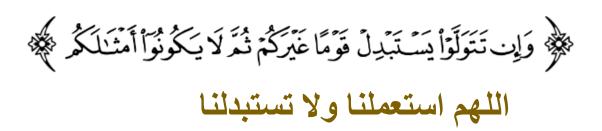
MICROBIOLOGY

بسم الله الرحمن الرحيم

MID - Lecture 6 Sterilization & Disinfection (Pt.1)


Written by:

- Bashar Khraisat
- Alharith Albakkar

Reviewed by:

Ð

Laith Joudeh

Objectives

Sterilization& Disinfection (Definitions)

Sterilization

Disinfection

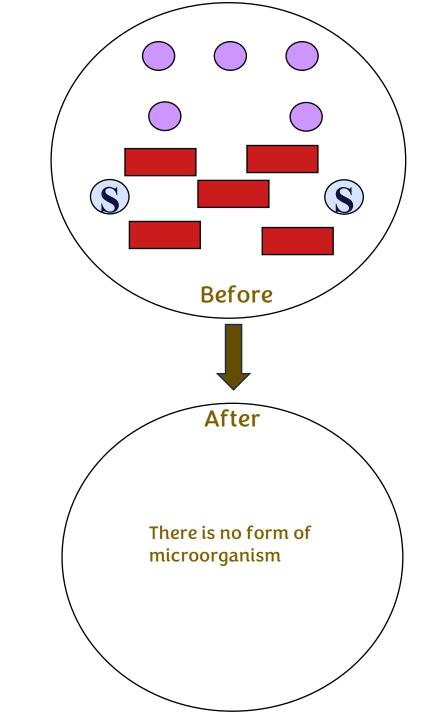
Antiseptics

Germicide

Cleaning

Decontamination

Sterilization & Disinfection


To fight the bacteria, we need to determine its location.

Fight bacteria

Removal or killing of <u>all forms</u> of living microorganisms including bacterial <u>spores</u> by physical or chemical methods.

When you see the word 'sterile' or 'sterilization', you should understand that all forms of bacteria have been killed.

Absolute term

Killing or removing All

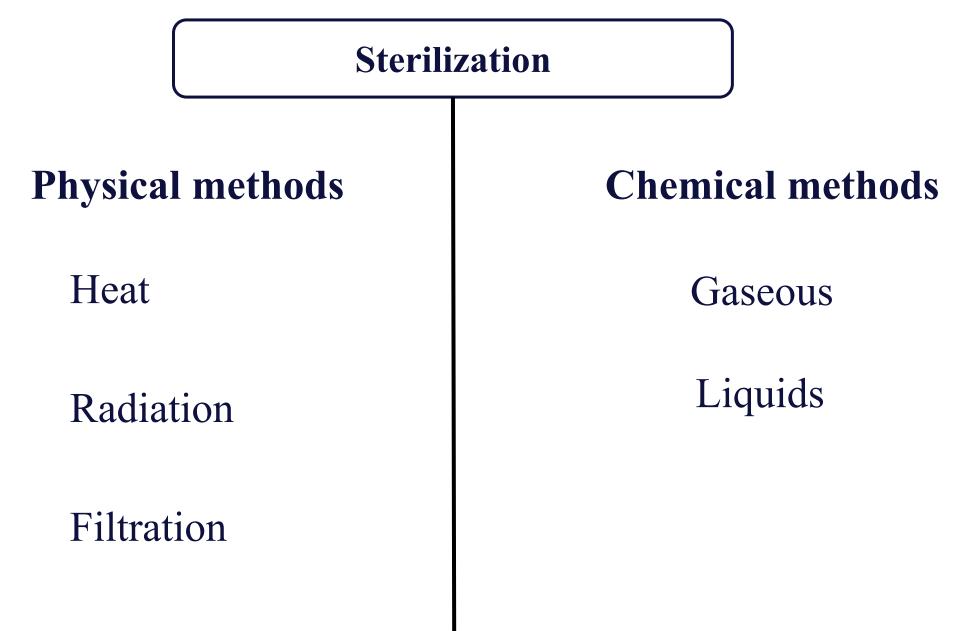
Microorganisms

Need for what

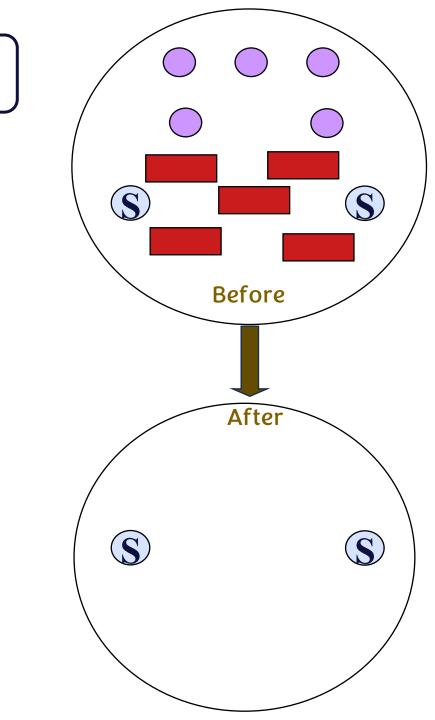
Surgical instruments

The surgical instruments must be **sterile**, with no bacteria or spores present.

Syringes, gloves, and catheters should be sterilized because they come into direct contact with patients, especially syringes and catheters as they go inside the body.



Culture media



When culturing bacteria, we are searching for the causative agent, or pathogen, responsible for the disease. Therefore, the culture medium must be sterile and free of contamination. If it is not sterilized, the investigation to identify the cause of the disease will be inaccurate.

These methods will be discussed in the following slides

<u>Removal of most</u> (if not all) pathogenic organisms <u>except</u> bacterial spores by physical or chemical methods.

O Disinfectants:

Chemical substances that are used to achieve disinfection.

The difference between disinfection and disinfectants: **disinfection** refers to the process itself. while **disinfectants** are the chemicals used to achieve disinfection.

- **O** Disinfectants may be:-
- A) High level disinfectant

B) Intermediate level disinfectant

C) Low level disinfectant

A) High level disinfectants

Kill all microbes EXCEPT Large number of bacterial Spores.

e.g. H₂O₂ For contact lens

High level disinfectants <u>can</u> approach sterilization-level effectiveness, especially when only a <u>small number of</u> <u>spores</u> are present, but it <u>typically</u> does not guarantee the complete elimination of all spores as sterilization does.

B) Intermediate level disinfectants

Kill all microbes EXCEPT Bacterial Spores.

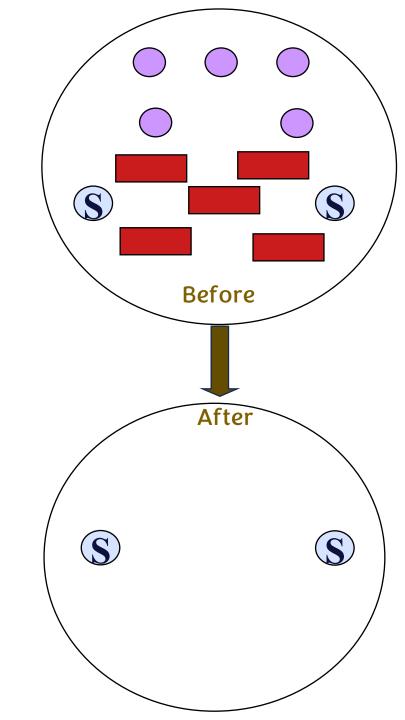
e.g. alcohol

C) Low level disinfectants

Kill MOST vegetative Bacteria EXCEPT

Mycobacterium tuberculosis

- We can use Mycobacterium tuberculosis as an indicator of disinfectant efficacy.
 - For example, if we have a disinfectant and want to assess its effectiveness, we can introduce this bacteria to it, as *M. tuberculosis* is resistant to low-level disinfectants.
 - If the bacteria survive, it suggests a low-level disinfectant, while if it is killed, it suggests an intermediate or high-level disinfectant.


Antiseptics

<u>Removal</u> of most (if not all) microbes Except

bacterial spores.

- Antiseptics have the same effect as the disinfection process, but the difference is:
- Antiseptics are non-toxic materials (so it can be applied to living tissue) while disinfectants are toxic.

Process	Definition	Effectiveness
Sterilization	Removal or killing of all forms of living microorganisms, including bacterial spores.	Kills all microorganisms, including spores.
Disinfection	Removal of most pathogenic organisms, except bacterial spores.	Kills most microbes; bacterial spores may remain.
Antiseptics	Removal of most microbes, except bacterial spores, from living tissue.	Kills most microbes without harming human tissue.

Germi-> microbe cide-> killer

Agent destroy microorganism

Different categories exist based on the type of microbe that it is killing.

- Virucide
- Bactericide
- Fungicide

Agent destroy microorganism and can act as

Disinfectant kills most bacteria, but spores may still be present Antiseptic

Sterilant All living microorganisms are killed, including spores.

Disinfectant

We refer to the Germicide as

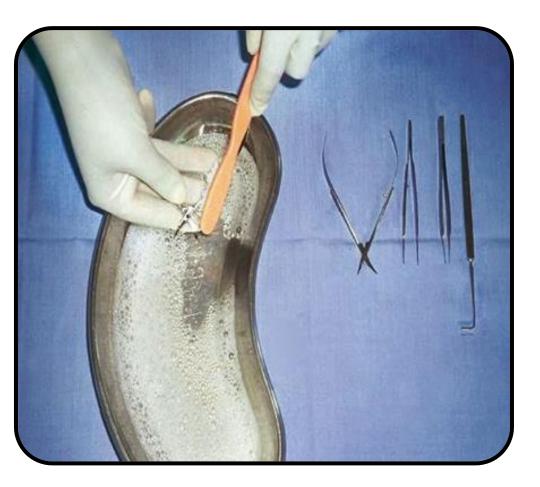
a Disinfectant, when it

achieves disinfection

Antiseptic

We refer to the Germicide as an Antiseptic, when it is non-toxic and achieves disinfection

Sterilant


Chemical germicide that achieves sterilization

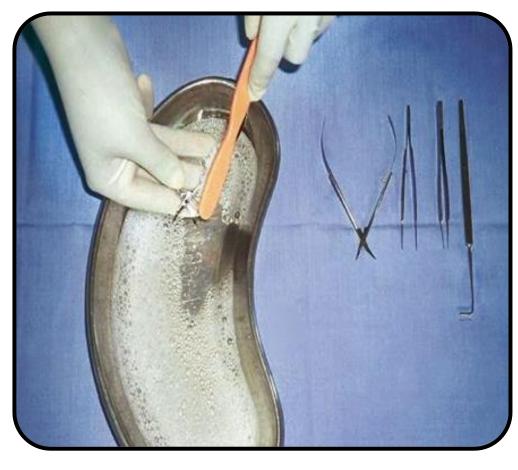
General Cleaning

Removal of foreign material from medical devices by water & soap

Precedes disinfection & sterilization

Decontamination

It is not logical to perform sterilization or disinfection when the tools are contaminated.


Reduction of organisms to a level at which

items are safe to handle

Include:-

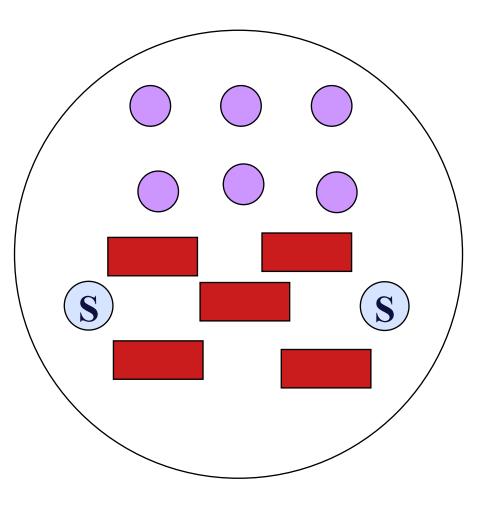
- O Cleaning Water & soap
- O Disinfection some spores left
- **O** Sterilization

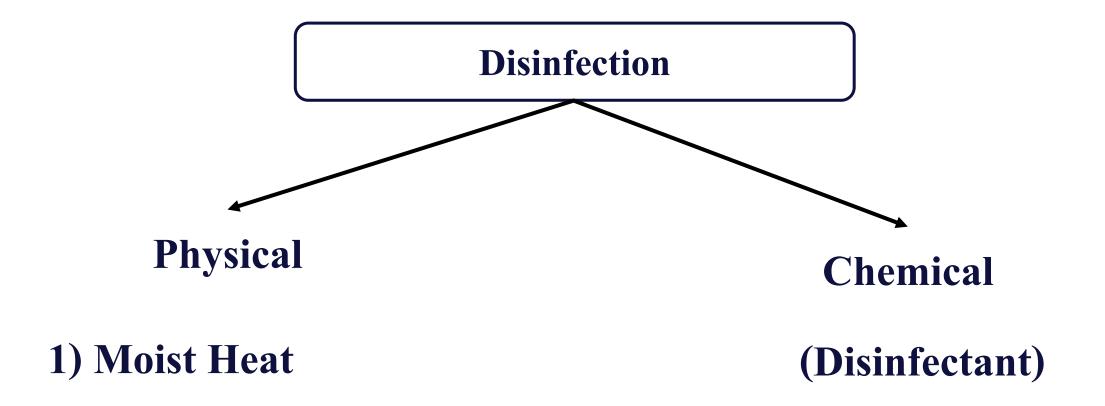
killing all microorganisms, spores included.

Objectives

Physical methods for disinfection

- > Moist heat is divided into three levels:
- 1. Below 100°C, which is pasteurization, typically occurring between 60°C and 85°C depending on the metho used.
- 2. Boiling at 100°C
- 3. Above 100°C, also known as autoclaving or steam sterilization, with temperatures often reaching 121°C or higher. this will be discussed in the next lecture on sterilization.


Moist heat


Radiation

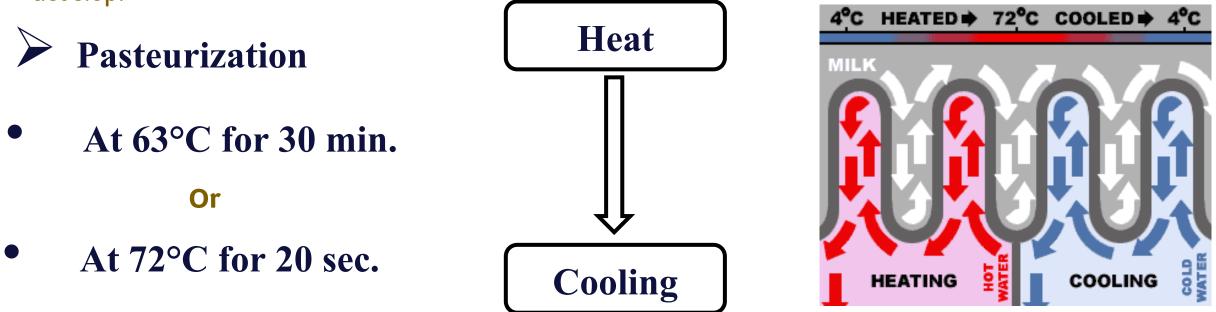
Again

<u>Removal</u> of most (if not all) pathogenic

organisms except bacterial spores.

2) Radiation

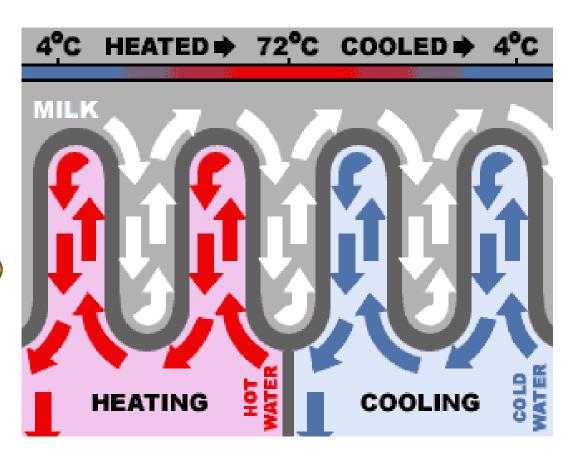
Physical methods for disinfection


1- Moist heat

1) Moist heat below 100°C

(Pasteurization)

 It is a disinfection process, not a sterilization process; therefor some pathogens may still develop.


- The pasteurization process must be followed by rapid cooling; if high temperatures are maintained, it will create an appropriate environment for thermophilic bacteria to grow.
- In the past, factories that processed milk and juice used pasteurization to protect against contamination. However, it is no longer considered effective because the process can take two to three days. Today, they are using autoclaving, which will be discussed in the next lecture. 29

1) Moist heat below 100^OC

• **Pasteurization** A disinfectant as it can get rid of some bacteria but not all.

Not sterilizing, Kills:

- O M. Tuberculosis
- O **B. abortus** Brucellosis (الحمى المالطية)
- O Salmonella Typhoid fever
- O C. burnetti Q fever

Physical methods for disinfection

Moist heat

2) Moist heat at 100°C

(Boiling)

1) Moist heat at 100^OC

• Boiling (100°C) for 20 min.

Use cases:

- **O** Kills all vegetative bacteria
- **O** In emergency

The boiling method was used in hospitals in the past, but today it is only employed in emergencies.
It is important to note that the 20-minute countdown begins only after the water starts boiling.

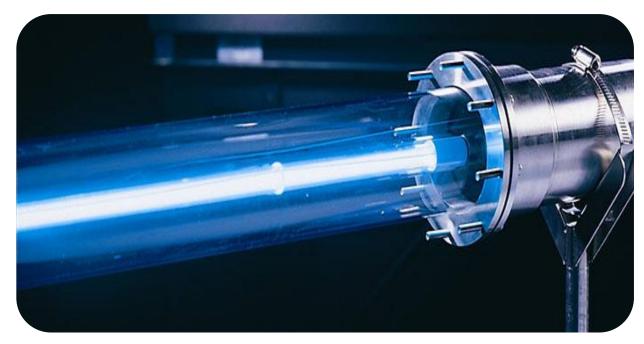
1) Moist heat at 100^OC

• Boiling (100°C) for 20 min.

Equipment to be boiled:

- **O** Glass Syringes
- **O** Surgical instruments

Physical methods for disinfection

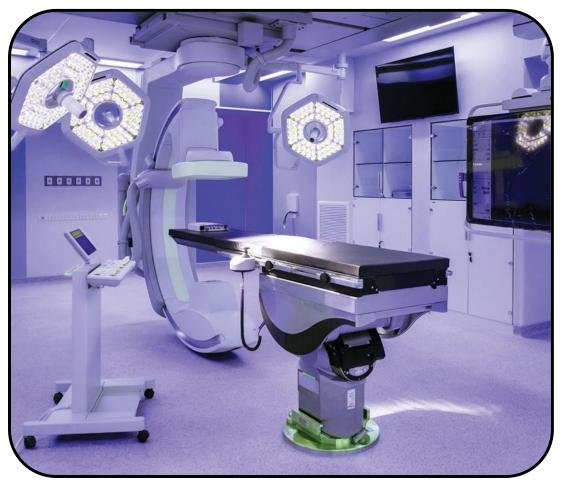

Radiation

Ultraviolet rays

Radiation

O Ultraviolet rays

Artificially by mercury
 lamps



Radiation

• Ultraviolet rays

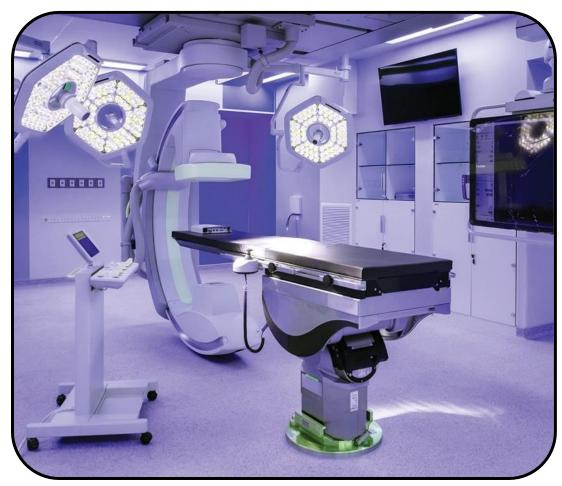
O Bactericidal Advantage

O Carcinogen Disadvantage

Radiation

• Ultraviolet rays

- O **Operation room** Applied only after all personnel have left the room.
- **O** Drug filling cubicles


O Safety cabinets

Radiation

• Ultraviolet rays

- It is disinfection, not sterilization, due to limitations:
 - **O** Low penetration
 - **O** Surface disinfectant

Objectives

Chemical agents for disinfection

Low level disinfectants

Intermediate level disinfectants

High level disinfectants

Chemical agents for disinfection & Antiseptics

Why is there resistance to antibiotics and usually no resistant for chemical disinfectants?

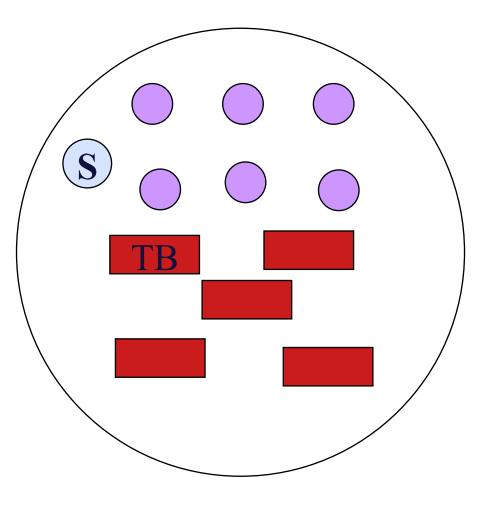
Chemical agents for disinfection & Antiseptics

Because Chemical disinfectants have a combination of actions

while each antibiotic has a single target like: ribosomes, cell membrane or nucleic acids.

- Oxidation
- Denaturation
 - **Breaks DNA**
- Cell membrane &cell wall damage

Chemical agents for disinfection & Antiseptics


I) Low level disinfectants

I) Low level disinfectants

Kills MOST

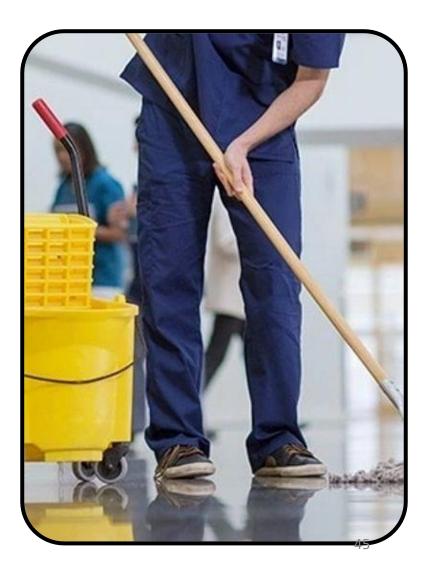
microbes, EXCEPT TB & bacterial

Spores

I) Low level disinfectants

1) Quaternary Ammonium Compounds

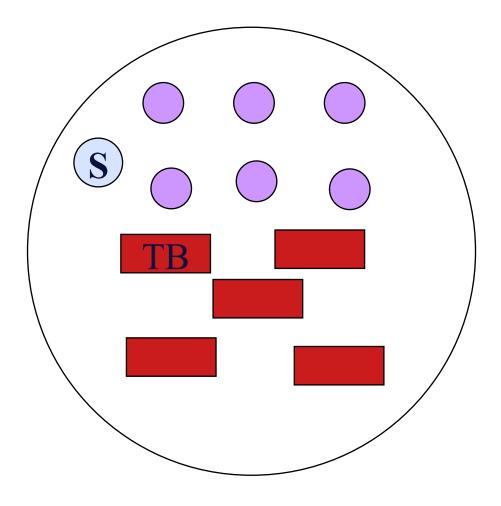
O Benzethonium Chloride


O Benzalkonium chloride

I) Low level disinfectants

Disinfection of:-

- **O** Floors
- **O Blood spills**


Chemical agents for disinfection or Antiseptics

II) Intermediate level disinfectants

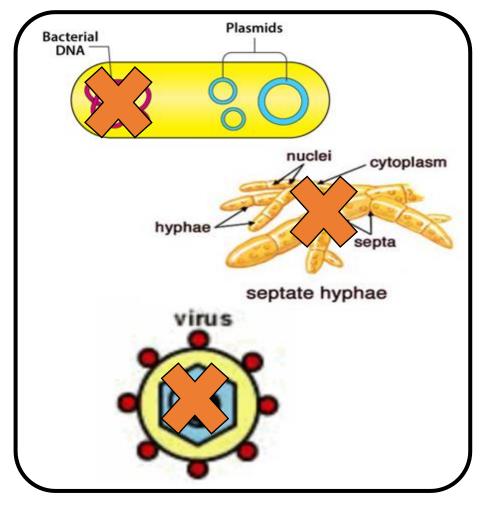
Kills most (all)

Microbes, EXCEPT <u>bacterial Spores</u>

Chemical agents for disinfection or Antiseptics

II) Intermediate level disinfectants

1) Alcohols

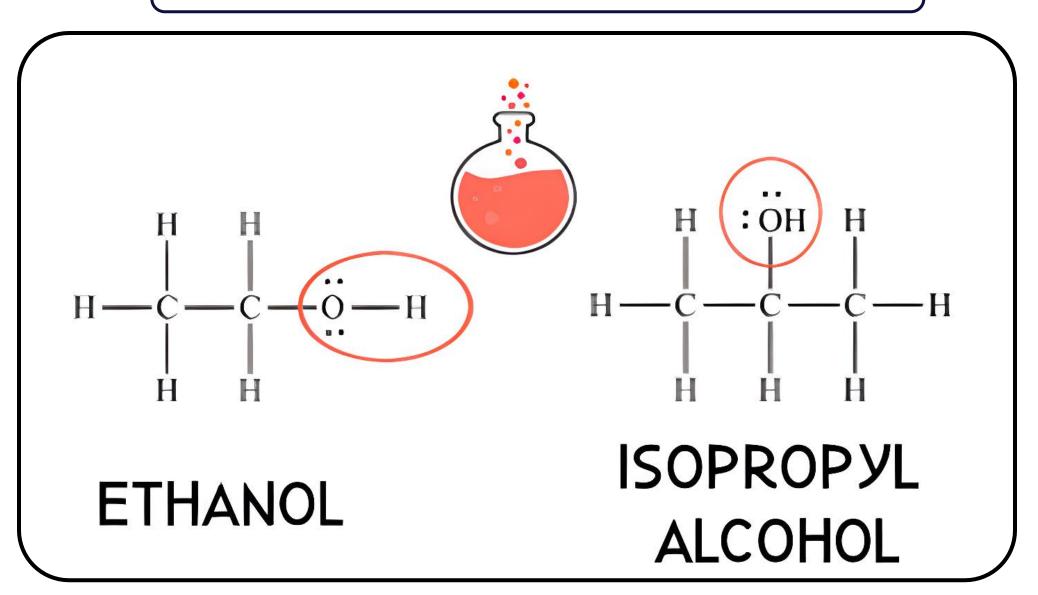

1) Alcohols

Alcohol 70%

It's more efficient at 70% because when it's diluted by water its penetration ability increases, while 100% concentrated alcohol shocks the bacteria initially making it rapidly resistant, so 100% alcohol fails to kill microbes effectively.

O Bactericidal

- O Fungicidal
- **O** Viricidal (Enveloped)


1) Alcohols

Kill microbes by:-

- **O** Denaturation
- O Membrane damage
- **O** Disruption of lipid containing

1) Alcohols

O Ethanol(Ethyl alcohol)

Isopropanol(Isopropyl alcohol)

O Used as:-

• Antiseptics

• Hand sanitizers

• Methanol

(Methyl alcohol)

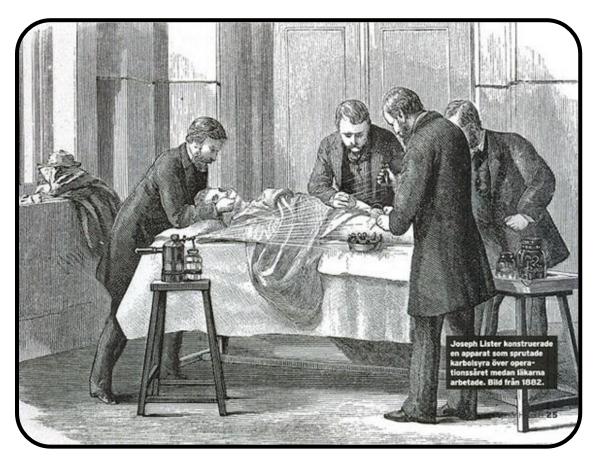
By only sniffing methanol, plenty of damage happens, including:

O Blindness

- O Damage in brain
- O Death

Chemical agents for disinfection or Antiseptics

II) Intermediate level disinfectants


2) Phenols

2) Phenols

First used in the operation room by

<u>Lister</u> in 1867.

Do NOT memorize this year.

Phenol derivatives

- Cresol (Lysol)
- Chloroxylenol

Phenol kill derivatives

- Denaturation
- Membrane damage

• Disinfectants

O Floors

O Culture spills

If any culture dish fell off and got contaminated.

Chemical agents for disinfection or Antiseptics

II) Intermediate level disinfectants

O Biguanides

3) Chlorhexidine

• **Biguanides**

O Chlorhexidine

O Antiseptic (Mouth washing)

Chemical agents for disinfection or Antiseptics

II) Intermediate level disinfectants

4) Halogens

- **Chlorines** Will be discussed later in the high-level disinfectants category, but it's put here only because it's from the halogen family.
- Iodines
- Fluorine

O Kill microbes by

- **O** Oxidation
- **O** Denaturation

O Iodines

• Tincture Iodine

(2% Iodine + 2.4% sodium iodide in 50% ethanol)

Skin antiseptics

Betadine Stronger than Tincture Iodine.

(Povidone + Iodine)

Chemical agents for disinfection or Antiseptics

II) Intermediate level disinfectants

4) Heavy metals

4) Heavy metals

- Copper
- Nickle
- Zinc

Antimicrobial activity

4) Heavy metals

kill microbes by:-

- Denaturation
- Inhibition enzymatic activity

4) Heavy metals

Toxic to human & animal in excessive concentration

(Argyria)

A blue discoloration on the patient hands and face as an effect of high concentrations of heavy metals.

- Copper
- Nickle
- Zinc

(Doorknobs)

Some modern hospitals utilize these heavy metals to manufacture doorknobs in order to decrease contamination and control infections.

O Silver

(Drinking water was stored

in silver jugs)

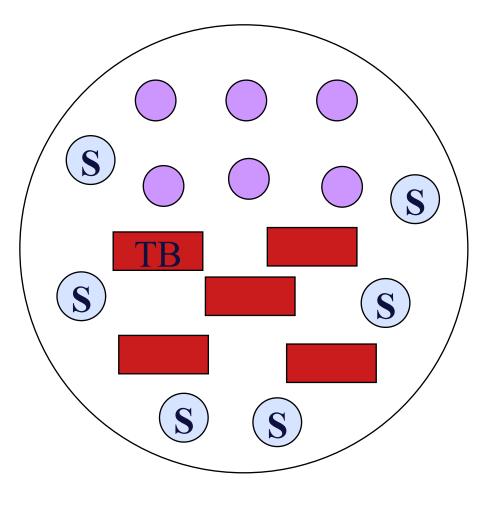
O Silver nitrate drops

If a pregnant woman is infected with gonorrhea, the newborn can become infected during birth, leading to a condition called **ophthalmia neonatorum**. While silver nitrate drops were once used for prevention, this condition is now typically treated and prevented with antibiotic eye ointments, such as erythromycin.

ophthalmia neonatorum

O Zinic (Zinic oxide)

- Calamine lotion To relieve the itching for chickenpox patients.
- Baby powder


Chemical agents for disinfection or Antiseptics

III) High level disinfectant

High level disinfectant

• Kills all microbes except large numbers of bacterial spores

Equivalent to sterilants while dealing with low numbers of bacterial spores as it can handle it.

1) Chlorine

It is considered a high-level disinfectant.

• Water

• Swimming pool

1) Chlorine

Sodium Hypochlorite(Chlorine+ Sodium + Oxygen)

O Disinfectant in homes & hospitals

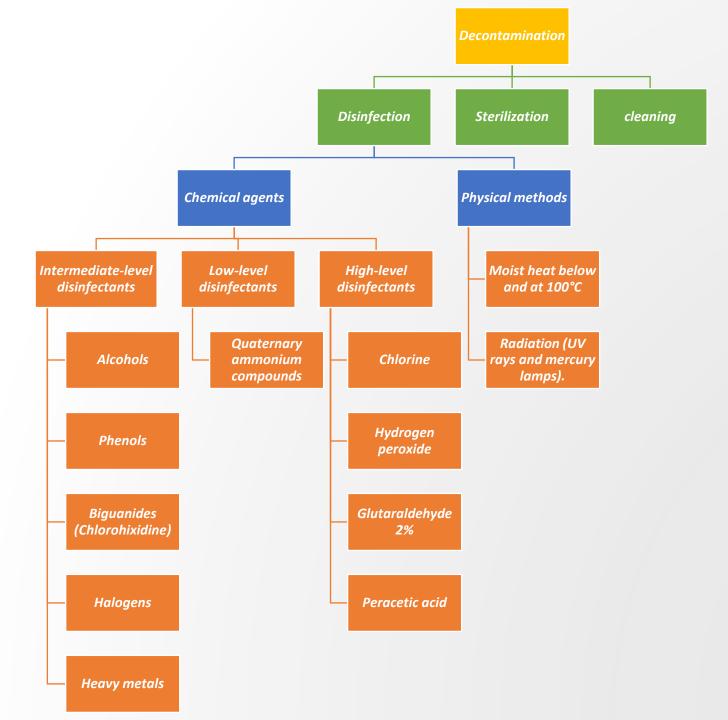
Disadvantages:

- I. Bleaching effect (ruining colors).
- II. Corrosive (if we use it for metals).

2) Hydrogen peroxide

O Antiseptic

3) Glutaraldehyde 2% and 4) Peracetic acid



O Needs ~10 hours It depends on the contact time:

~20 minutes is considered a high-level disinfectant.

~10 hours is considered a sterilant.

Level	Agent	Effect	Use Cases
Low-Level	Quaternary Ammonium Compounds: 1.Benzalkonium Chloride, 2.Benzethonium Chloride	Kills most microbes except Mycobacterium tuberculosis and spores	Disinfection of floors, blood spills
Intermediate-Level	Alcohols (70% Ethanol, Isopropanol)	Bactericidal, fungicidal, virucidal (enveloped viruses)	Hand sanitizers, antiseptics
	Phenols (Chloroxylenol, Cresol)	Membrane damage, protein denaturation	Disinfection of floors, culture spills
	Chlorhexidine (Biguanides)	Antiseptic	Mouthwash
	Halogens (Fluoride, Iodine)	Oxidation, denaturation	Skin antiseptics, Toothpaste
	Heavy Metals (Copper, Zinc)	Enzyme inhibition, protein denaturation	Doorknobs, calamine lotion, baby powder
High-Level	Chlorine (Sodium Hypochlorite)	Kills all microbes except large numbers Of bacterial spores	Water treatment, hospital disinfection
	Hydrogen Peroxide		Antiseptic
	Glutaraldehyde (2%) and Peracetic Acid	Disinfectant, sterilant (based on contact time)	High-level disinfectant, sterilant

For any feedback, scan the code or click on it.

Corrections from previous versions:

Versions	Slide # and Place of Error	Before Correction	After Correction
V0 → V1			Added slide 83 (the table)
V1 → V2	 Slide 83's table Slide 84's diagram 	 Unclear format Moist heat below, at and above 100°C 	 Changed the format for better visualization. Moist heat below and at 100°C; <u>moist heat above 100°C</u> <u>is considered a sterilizing</u> <u>agent.</u>
V2 → V3	15	Image about phenol (low-level) Associated text in gray	Removed the image and the associated text
∨3 → ∨4	82	~20 minutes is considered a normal disinfectant. ~10 hours is considered a high-level disinfectant or sterilant.	~20 minutes is considered a high-level disinfectant. ~10 hours is considered a sterilant.

Additional Resources:

رسالة من الفريق العلمي:

اللهم يسترنا لليسرى وجنبنا العسرى واغفر لنا في الآخرة والأولى.