

If the damaging stimulus is removed -> injured cells can return to normal

≻cell swells (ER swells and mitochondria also) Because of failure of cell's ion pumps(especially Na+/K+ pump)

> presence of membrane blebs

> fatty change abnormal accumulation of fat droplets within the cytoplasm of cells Histological example:- Normal hepatocytes appear pinkish, abnormal hepatocytes with hydropic change appear w

>plasma membrane alterations (blebbing, bluntina)

>mitochondrial change (swelling and densities): ≻dilation of ER

≻nuclear clumping of chromatin.(nucleus is still intact inside the cell)

≻Cytoplasmic myelin figures

Necrosis

Rapid, uncontrollable and severe disturbances

- > mitochondrial dysfunction (No ATP production
- at all)
- >loss of plasma membrane & intracellular
- membranes
- > cellular enzymes leak out (cardiac enzymes & liver enzymes)
- > loss of DNA & chromatin structure
- > local inflammation
- > Increased cytoplasmic eosinophilia.
- > Marked dilatation of ER . mitochondria.
- > Mitochondrial densities.
- > More myelin figures.(because of damage of membranes)

Nuclear changes:

· Pvknosis: shrinkage and increased basophilia:

Necrosis

- · Karyorrhexis :fragmentation;
- · Karvolysis: basophilia fades(degradation of nuclear material)

Necroptosis

Apoptosis

- (clean cell suicide) > Less severe injury.
- > Regulated by genes and
- signaling pathways
- > Precisely Controlled.
- > Can be manipulated.
- > In healthy tissues.

Irreversible cell injury

Membrane damage

Table 2.1 Features of Necrosis and Apoptosis

Feature	Necrosis	Apoptosis
Cell size	Enlarged (swelling)	Reduced (shrinkage)
Nucleus	Pyknosis, karyorrhexis, karyolysis	Fragmentation into nucleosome-size fragments
Plasma membrane	Disrupted Desited organelies	Intact: altered structure, especially orientation of lipids
Cellular contents	Enzymatic digestion: may leak out of cell	Intact; may be released in apoptotic bodies
Adjacent inflammation	Frequent	No
Physiologic or pathologic role	Usually pathologic (culmination of irreversible cell injury)	Often physiologic, means of eliminating unwanted cells; may be pathologic after some forms of cell injury, especially DNA damage

Cell death

Coagulative necrosis

≻Necrotic tissue that remains firm cell shape and organ structure are preserved by coagulation of proteins ≻Enzyme dysfunction. ≻ the nucleus disappears

≻Characteristic of ischemic infarction of any organ **except** the brain ≻Leukocyte lysosomal enzymes && phagocytosis required for clearance. ≻Area of infarcted tissue is often wedge-shaped (pointing to focus

ofvascular occlusion) and pale

Liquefactive necrosis

> Necrotic tissue that becomes liquefied ≻Focal infections by Bacterial and fungal organisms. ... Producing Pus ≻Center liquefies and digested tissue is removed by phagocytosis >CNS infarcts

Gangrenous necrosís

≻Coagulative necrosis (dry gangrene) > Characteristic of ischemia of lower limb and GI tract > If superimposed infection of dead tissues occurs. then liquefactive necrosis ensues(wet gangrene).

Caseous necrosís

- > Cheese like
- > Tissue architecture is
- >Usually enclosed by
- collection of macrophages. (granuloma)
- > Most often seen in TB(tuberculosis)

Fat necrosis

>Occurs in acute pancreatitis > Due to release of pancreatic lipases > Focal fat destruction > Released FA's combine with Ca2+ (saponification) to produce the whitish chalky appearance > Shadows of necrotic fat cells

Fibrinoid necrosis

≻Necrotic damage to blood vessel wall > Leaking of proteins (including fibrin) into vessel wall results in bright pink staining of the wall microscopically > Characteristic of malignant hypertension and vasculitis

not preserved > Acellular center