

REGULATION OF METABOLISM

A) General Concepts

- Catabolic and anabolic pathways are regulated in a way such that usually no opposite pathways are "turned on" at the same time; otherwise, energy can be wasted in an inefficient way.
- A reaction is said to be reversible if it can be driven both ways by the same enzyme.
- Enzymes that catalyze irreversible steps (usually ratedetermining steps) are highly regulated.
- Most regulators are allosteric.
- Pathways have cross-talks where one pathway influences the activity of another.
- Pathways can be linear, cyclic or spiral.
- ATP synthesis can be substituted by non-shivering thermogenesis by release of the proton gradient without passing through complex V (ATP synthase).
- ♦ NAD⁺/NADH & ADP/ATP ratios are crucial in many pathways.

B) Regulation of the Citric Acid Cycle

Regulator	Act/Inh	Enzyme	Step	Details	
Low O ₂	Inh	-	-	Indirect (ETC)	
Citrate	Inh	Citrate Synthase	1	Product Inhibition	
Oxaloacetate	Act	Citrate Synthase	1	Creates site for	
				acetyl-CoA	
ATP	Inh	Citrate Synthase	1	High onorgy state	
		Isocitrate DH	3	High energy state	
Fluoroacetate	Inh	Aconitase	2	Rat poison	
Ca ²⁺ ions	Act	Isocitrate DH	3	Need energy	
		a-KG DHC	4		
NADH	Inh	Isocitrate DH	3	Low NAD⁺	
		a-KG DHC	4		
ADP	Act	Isocitrate DH	3	Low energy state	
Succinyl-CoA	Inh	α-KG DHC	4	Product Inhibition	
GTP	Inh	α-KG DHC	4	High energy state	
Arsenite (As ³⁺)	Inh	a-KG DHC	4	Lipoic acid Inh	
Malonate	Inh	Succinate DH	6	Used in MI cases	

TCA cycle intermediates' concentrations are relatively stable.

- Citrate synthase is not allosteric, but ATP is an allosteric inhibitor of it.
- The rate-limiting step in Kreb's cycle is catalyzed by Isocitrate DH (step 3).
- Steps with highly negative ΔG are highly regulated:
 - Citrate formation (step 1)
 - Isocitrate oxidative decarboxylation (step 3, highest regulation)
 - α-ketoglutarate oxidative decarboxylation (step 4)
- All the previous are physiologic regulators except:
 - Fluoroacetate (non-competitive inhibitor of aconitase)
 - > Arsenite (non-competitive inhibitor of α -KG DHC (specifically E₂))
 - Malonate (competitive inhibitor of succinate DH)

C) Regulation of the Electron Transport Chain

- For the normal function of complex V (ATP synthase) which is the terminal complex in the ETC, the following are needed:
 - 1. ADP (to be phosphorylated); it is the **most important** factor and is referred to as respiratory control or acceptor control.
 - 2. P_i (for phosphorylating ADP)
 - 3. O₂ (final e⁻ acceptor; complex IV); its consumption depends on [ADP]
- The ETC also needs NADH and/or FADH₂ as electron donors supplied from other metabolic pathways; they feed complexes I & II with electrons.
- Uncoupling proteins (UCPs) removes the PMF without ATP synthesis:
 - O UCP1 (thermogenin) → brown adipose tissue → directly activated by fatty acids → non-shivering thermogenesis (in case of hypothermia).
 - UCP2 → most cells; UCP3 → Skeletal Ms; UCP4 & UCP5 → Brain
- > 2,4-dinitrophenol (DNP) & other acidic aromatic compounds:
 - o Uncoupling agents as well; transport protons into the matrix
 - o FDA banned due to harmful effects

The table below lists non-physiologic inhibitors of the ETC and OxPhos:

Inhibitor	Acts on	Details
Rotenone		
(insecticide) &	Complex I	_
Amytal (sedative)		
Antimycin A	Complex III	Blocks the transfer of e ⁻ to Cyt C
1. Cyanide (CN ⁻)		
2. Azide (N ₃ ⁻)	Complex IV	Blocks the transfer of e^{-} to O_2
3. CO		
Cyanoglycosides		
(in edible plant pits)	Complex IV	Cyanogenic \rightarrow CN ⁻ acts
e.g. amygdalin	Complex IV	(same as above)
(misnomer 17)		
Oligomycin	Complex V	Prevents passage of H ⁺ (no OxPhos)

D) Regulation of Glycolysis

Step 1

Hexokinase (HK): relatively stable rate with [glucose]

Glucokinase (GK): more active at higher "well-fed" [glucose]

GLUT-4: opens with insulin stimulation, increasing [glucose] inside

GKRP: inactivates GK (into the nucleus) and the interaction:

- Sequestration into the nucleus is induced by fructose-6-P
- Dissociation and activation of GK is induced by glucose

Step 3 (Phosphofructokinase ⇔ rate-limiting step)

Regulator	Act/Inh	Details
Fructose-2,6-BP	Act	See details below the table
AMP	Act	Low energy state
ATP	Inh	High energy state
Citrate	Inh	Active TCA cycle $ ightarrow$ high energy state
H⁺	Inh	PMF \rightarrow OxPhos \rightarrow high energy state

The **bifunctional enzyme** alternates between 2 states:

- 1. Active kinase (the dephosphorylated form):
 - \circ Insulin-induced form
 - fructose-6-P → fructose-2,6-BP
 - active glycolysis (inactive gluconeogenesis)
- 2. Active phosphatase (the phosphorylated form):
 - Glucagon-induced form
 - fructose-2,6-BP → fructose-6-P
 - o inactive glycolysis (active gluconeogenesis)

Step 10 (Pyruvate kinase)

Regulator	Act/Inh	Details
Fructose-1,6-BP	Act	Feedforward activation
ATP	Inh	High energy state
Alanine	Inh	Pyruvate (direct product) availability

Glucagon causes the phosphorylation (inactivation) of PK

Non-physiologic inhibitors

- > Fluoride: inhibits enolase (step 9) \rightarrow reduces dental carries
- → Arsenate (As⁵⁺): binds to G3P → cannot bind P_i → no ATP

E) Regulation of the Pyruvate DH Complex

Allosteric inhibitors:

> NADH and acetyl-CoA (direct products) inhibit the PDHC

Regulatory enzymes (tightly bound to the PDHC):

- PDH kinase: inactivates the complex by phosphorylation
 - \circ Activated by ATP, acetyl-CoA, and NADH
 - o Inhibited by pyruvate
- PDH phosphatase: activates the complex by dephosphorylation
 O Activated by Ca²⁺

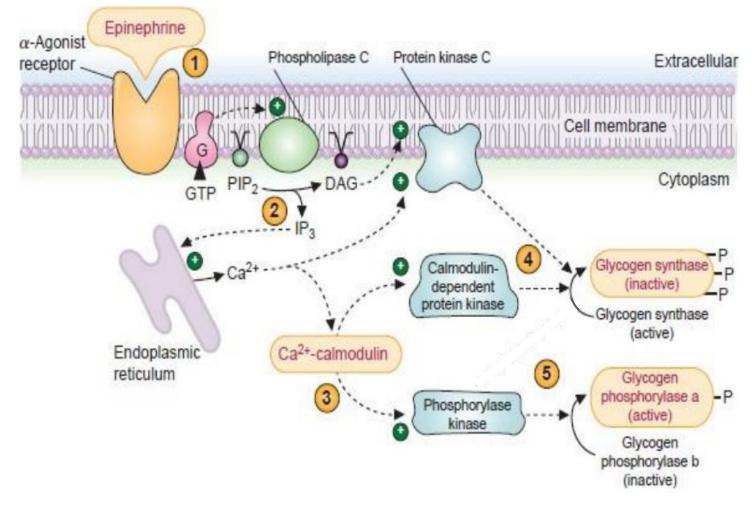
Arsenite (As³⁺) poisoning – non-physiologic:

> As³⁺ binds lipoic acid (in E2) deactivating it (like in α -KG DHC)

F) Regulation of Glycogen Metabolism

Glycogenesis (same in both muscles and the liver):

- Glycogen synthase allosteric activators:
 - Glucose-6-P (high conc. in well fed states)


Glycogenolysis:

- Glycogen phosphorylase:
 - Allosteric inhibitors:
 - Glucose-6-P
 - ATP
 - Glucose (only in the liver)
 - \circ Allosteric activators (only in muscles):
 - Ca²⁺ & AMP

Hormonal regulation:

- a) Glucagon and Epinephrine ightarrow glycogenolysis
- b) Insulin ightarrow glycogenesis
 - Glucagon (in the liver)
 - Epinephrine (in both muscles and the liver)
 - - PKA phosphorylates glycogen phosphorylate kinase which then phosphorylates glycogen phosphorylate (activates it)
 - $\circ\,$ PKA phosphorylates glycogen synthase (inactivates it)
 - Insulin:
 - Activates phosphodiesterase (cAMP → AMP)
 - This counters both effects of PKA
 - Activates protein phosphatase 1 (PP1)
 - Dephosphorylation of both glycogen phosphorylase kinase & glycogen phosphorylase (inactivating them)

Epinephrine also has a special cascade (the figure):

- All these mechanisms above in the figure lead to the activation of glycogenolysis and the inactivation of glycogenesis.
- > AMP is also a direct activator of glycogen phosphorylase.
- The degree of phosphorylation intensifies the effect whether it is activation or deactivation.

G) Regulation of Gluconeogenesis

Opposite of Glycolysis:

- 1) **Glucagon** (by the "GPCR $\rightarrow \rightarrow$ cAMP \rightarrow PKA" pathway):
 - Activates the phosphatase part of the bifunctional enzyme which decreases the levels of fructose-2,3-BP
 - This leads to the inhibition of PFK-1 (no glycolysis)
 - This also activates fructose-1,6-bisphosphatase which reverses step 3 of glycolysis → gluconeogenesis
 - > Inhibition of pyruvate kinase (by phosphorylation)

2) Allosteric regulators:

- Fructose-1,6-bisphosphatase:
 - Fructose-2,6-bisphosphate and AMP are inhibitors
 - o Citrate is an activator

Specific regulation:

- Glucagon increases the transcription of PEP-carboxykinase
- The availability of substrates (pyruvate precursors)
- Synthesis of gluconeogenic enzymes, increasing their concentrations, and decreasing their degradation.
- Step 1 (catalyzed by pyruvate carboxylase):
 - Allosterically activated by acetyl-CoA
 - Allosterically inhibited by ADP
- Step 2 (catalyzed by PEP-carboxykinase):
 - o Allosterically inhibited by ADP