Dr. Rakan Haddad	
#DST	G.D.
	DOPAMINE
sympathomimetics	SCIENTIFIC TEAM
overview: Sympathomimetics are drugs that mimic the effects of ca	
orepinephrine. They stimulate adrenergic receptors to produce vario	
articularly in the cardiovascular system, and are used in various	medical conditions.
catecholamines:	
Cey neurotransmitters include:	
pinephrine	
4orepinephrine	
popamine	
enoldopam enoldopam	
obutamine	
10de of Action:	
irect stimulation of adrenoceptors.	
isplacement of stored catecholamines from adrenergic nerve endin	las
(e.g., amphetamine, tyramine).	
nhibition of catecholamine reuptake	
e.g., cocaine, tricyclic antidepressants).	
harmacodynamics:	
ardíovascular System:	
regulation of peripheral vascular resistance and venous capacitanc	se through catechol amines
ffects on blood vessels and heart function mediated by specific rec	eptor interactions.
teart:	
redominantly mediated through β1 receptors.	
ositive chronotropic effect: increases heart rate.	
ositive dromotropic effect: increases conduction velocity in the AV	node.
specific Sympathomimetics:	
atecholamines:	
nclude epinephrine, norepinephrine, dopamine,	
enoldopam, dobutamíne.	
Ioncatecholamines:	
nclude phenylephrine, amphetamine, methamphetamine,	
cethylphenidate, and others.	
netabolic Effects:	
rfluence on glucose metabolism and lipolysis.	
ncrease in metabolic rate and energy expenditure.	
ffects on Endocrine Function:	
rodulation of hormone release, including insulin and glucagon.	

What happens to bronchial smooth muscles when $\beta2$ -receptors are stimulated?	What is the effect of β2-receptor stimulation on the pregnant human uterus?	
A. Bronchial smooth muscles remain unchanged, with no effect on airflow.	A. Contraction of the uterine muscles	
B. Bronchial smooth muscles contract, leading to bronchoconstriction.	B. Stimulation of uterine contractions	
C. Bronchial smooth muscles thicken, reducing airway diameter.	C. Relaxation of the uterus	
D. Bronchial smooth muscles relax, leading to bronchodilation.	D. Increased uterine tone	
What metabolic effects result from β3-receptor stimulation?	Which neurotransmitters are also known as catecholamines?	
A. Increased glycogenolysis in the liver	A. Glutamate and GABA	
B. Enhanced insulin release from the pancreas	B. Serotonin and dopamine	
C. Increased potassium uptake into cells	C. Acetylcholine and norepinephrine	
D. Increased lipolysis and fatty acid release	D. Epinephrine, norepinephrine, dopamine	
nat is the primary action of epinephrine on adrenoceptors? What is one mode of action for sympathomimetics?		
A. Primarily acts on $\beta 2$ receptors to cause vasodilation in all blood vessels	A. Direct stimulation of adrenoceptors	
B. Only stimulates all receptors, causing vasoconstriction without cardiac effects	B. Direct inhibition of adrenoceptors	
C. Stimulates all adrenoceptors, increasing heart rate and vasoconstriction	C. Inhibition of acetylcholine release	
D. Inhibits adrenoceptors, leading to decreased heart rate	D. Stimulation of serotonin receptors	