Yacoub Irshaid MD, PhD, ABCP Department of Pharmacology

- Drugs that mimic the actions of epinephrine (adrenaline) or norepinephrine (noradrenaline).
- These neurotransmitters are also called catecholamines.
- Norepinephrine is released by sympathetic nerves upon nerve stimulation, while epinephrine is released by the adrenal medulla in response to a variety of stimuli such as stress.

Mode of Action:

- 1. Direct stimulation of adrenoceptors.
- 2. Displacement of stored catecholamines from the adrenergic nerve endings (amphetamine, tyramine).
- 3. Inhibition of catecholamine reuptake (cocaine, tricyclic antidepressants).

Туре	Tissue	Actions
α,	Most vascular smooth muscle (innervated)	Contraction
	Pupillary dilator muscle	Contraction (dilates pupil)
	Pilomotor smooth muscle	Erects hair
	Prostate	Contraction
	Heart	Increases force of contraction
α2	Postsynaptic CNS neurons	Probably multiple
	Platelets	Aggregation
	Adrenergic and cholinergic nerve terminals	Inhibits transmitter release
	Some vascular smooth muscle	Contraction
	Fat cells	Inhibits lipolysis

4

β ₁	Heart, juxtaglomerular cells	Increases force and rate of contraction; increases renin release
β ₂	Respiratory, uterine, and vascular smooth muscle	Promotes smooth muscle relaxation
	Skeletal muscle	Promotes potassium uptake
	Human liver	Activates glycogenolysis
β ₃	Bladder	Relaxes detrusor muscle
	Fat cells	Activates lipolysis
D ₁	Smooth muscle	Dilates renal blood vessels
D ₂	Nerve endings	Modulates transmitter release

Alpha agonists				
Phenylephrine, methoxamine	$\alpha_1 > \alpha_2 >>>> \beta$			
Clonidine, methylnorepinephrine	$\alpha_2 > \alpha_1 >>>> \beta$			
Mixed alpha and beta agonists				
Norepinephrine	$\alpha_1 = \alpha_2; \beta_1 >> \beta_2$			
Epinephrine	$\alpha_1 = \alpha_2; \beta_1 = \beta_2$			
Beta agonists				
Dobutamine ¹	$\beta_1 > \beta_2 >>> \alpha$			
Isoproterenol	$\beta_1 = \beta_2 >>> \alpha$			
Albuterol, terbutaline, metaproterenol, ritodrine	$\beta_2 >> \beta_1 >>> \alpha$			
Dopamine agonists				
Dopamine	$D_1 = D_2 >> \beta >> \alpha$			
Fenoldopam	$D_1 >> D_2$			

- **Pharmacodynamics:**
- 1. Cardiovascular system:
- A. Blood vessels:
- Catecholamines are important in the regulation of peripheral vascular resistance and venous capacitance.

- α-Receptors contract vascular smooth muscle, constrict arterioles and thus, increase arterial resistance.
- β₂-Receptors relax vascular smooth muscle, dilates arterioles and thus, reduces arterial resistance.

Normal

Constricted

Dilated

8

- Skin and splanchnic vessels have predominantly α -receptors \rightarrow constriction.
- Skeletal muscle blood vessels have predominantly β -receptors \rightarrow dilation.
- Dopamine D₁ receptors promote vasodilation of renal resistance vessels (arterioles).
- Vasoconstriction reduces blood flow, while vasodilation increases blood flow.

- **B. Heart:**
- Effects on the heart are predominantly mediated through β_1 receptors.
- Increase pacemaker activity → increase heart rate = "positive chronotropic effect".
- Conduction velocity in the atrioventricular (AV) node is increased "positive dromotropic effect".

- AV node refractory period is decreased.
- Myocardial contractility is increased = "positive inotropic effect".
- Sympathomimetics that stimulate β₁receptors in the heart, increase cardiac output and thus, systolic blood pressure.
- Cardiac output is also increased by an increase in venous return to the heart.

- Diastolic blood pressure is related to systemic vascular resistance and is increased by vasoconstrictors and reduced by vasodilators.
- α-agonists increase peripheral arterial resistance → rise in diastolic blood pressure.
- β₂-agonists decrease peripheral vascular resistance and thus diastolic blood pressure.

2. Respiratory tract:

A. Bronchial smooth muscles relax in response to β_2 -receptor stimulation \rightarrow bronchodilation.

B. Blood vessels of upper respiratory tract mucosa constrict in response to α -receptor stimulation \rightarrow decongestion.

- **3. Genitourinary tract:**
- β₂-receptors mediate relaxation of the pregnant human uterus.
- The urinary bladder base, urethral sphincter and prostate contain α-receptors that mediate contraction and urinary retention.
- The thermoregulatory eccrine sweat glands are sympathetic cholinergic (muscarinic).

4. Exocrine glands:

 The apocrine sweat glands located in the palms of the hands respond to adrenoceptor stimulants with increased sweat production. This is non-thermoregulatory sweating associated with psychologic stress.

5. Metabolic effects:

- β₃-receptor stimulation increases lipolysis with release of fatty acids and glycerol.
- α_2 -receptor stimulation inhibits lipolysis.
- β-receptor stimulation enhances glycogenolysis in the liver leading to increased glucose release into the circulation.
- β₂-receptor stimulation promote uptake of potassium into cells.

- **6. Effects on endocrine function:**
- β-receptor stimulation increases insulin release by pancreas.
- α_2 -receptor stimulation inhibits insulin release.
- β₁-receptor stimulation increases renin secretion.
- αα₂-receptor stimulation inhibits renin secretion.

Specific Sympathomimetics

1. Catecholamines:

Epinephrine, norepinephrine, dopamine, fenoldopam & dobutamine.

2. Noncatecholamines:

Phenylephrine, amphetamine, methamphetamine, methylphenidate & others.

Epinephrine

- Stimulates all adrenoceptors (α_1 , α_2 , β_1 , β_2).
- Very potent vasoconstrictor and cardiac stimulant.
- Positive inotropic and chronotropic actions on the heart (β₁).
- Vasoconstrictor in many vascular beds (α₁), and vasodilator in skeletal muscle blood vessels (β₂) → increase blood flow during exercise.

Norepinephrine

• Similar to epinephrine except it has no significant effect on β_2 receptors.

Dopamine

- Activates D₁ receptors and produce vasodilation, which is specially clinically important in renal vascular bed → increase renal blood flow.
- Activates β_1 receptors in the heart.
- At high concentration, it activates vascular α receptors leading to vasoconstriction including the renal vascular bed.

Fenoldopam

- Is a selective D₁ receptor agonist causing peripheral vasodilation.
- Very useful intravenously in treating severe hypertension.

Dobutamine

- Is a selective β_1 agonist.
- It increases cardiac output (positive inotropic action).

β_2 -Selective Agents

- Important in treatment of bronchial asthma (salbutamol, terbutaline, salmetrol, metaproterenol).
- Uterine relaxation in premature labor (Ritodrine).

Phenylephrine

- It is a relatively pure α_1 agonist.
- Causes contraction of smooth muscle of blood vessels and others.

Tyramine

- Found in high concentration in wine, fermented food such as cheese.
- It is readily metabolized by MAO in the liver, and is inactive when taken orally.
- It produces indirect sympathomimetic action by releasing catecholamines from sympathetic nerve terminals → hypertension.
- Patients taking MAO inhibitors should avoid tyramine-rich food to avoid hypertensive crisis.