Volume OF Distribution

The volume of distribution (V) is defined as: How many liters of plasma are needed to contain the whole dose given of the drug at the current plasma concentration of the drug.

(كم لتر من البلازما نحتاج لاحتواء كامل كمية الدواء (كامل كمية الجرعة) بنفس تركيز الدواء الحالى في البلازما) - Example : Suppose the drug dose we are giving contain 9 active units of that drug, it we have monitored the abundancy of that drug in the plasma and Sound that the whole body plasma contain only 3 active units of the drug (Meaning that the 6 other active units were distributed to the body different tissues) what would the Volume of distribution be assuming that the whole plasm volume in the body is equal to 2 Liters? • Ans: VD = 3x2 = 6 Liters Clarification -> the Whole body's plasma (2 Liters) contained $\frac{1}{3}$ the amount, so how many liters of plasma will be required to contain the whole 9 active units at the Same concentration? $\Rightarrow = \frac{2}{4} + \frac{2}{4} + \frac{2}{4} = 6$ Liters 3 + 3 + 3 = 9 active units

- After that example we should conclude that the Volume of Distribution is an Apperant volume and not a real one. That's why a drug with a very high distribution to body fissues (very low concentration of it left in the plasma) would have a volume of distribution that is larger than the whole body volume. (VD is a theoretical concept to measure drug distribution. don't relate or compare it to real body volumes) High drug concentration in the plasma -> Low VD Low drug concentration in the plasma -> High VD