

Summary of Diseases Mentioned in lecture (7,8,9):

> **Muscular Dystrophy** (related to actin filaments):

- Duchenne Muscular Dystrophy (DMD): Caused by a <u>lack of</u> <u>functional</u> dystrophin, leading to progressive muscle degeneration,.
 - This DNA mutation is called "frameshift mutation".
- Becker Muscular Dystrophy (BMD): A milder form, caused by partially functional dystrophin (dystrophin is shorter than normal).

> Alzheimer's Disease (linked to microtubules):

- Related to tau protein in microtubules (it's a regulatory protein-MAP), which aggregates in neurons, contributing to cell death and dementia.
- Mutants in certain kinesin proteins can reduce the ability of neurons to move essential organellesleading to neurodegeneration such as Alzheimer's Disease
- Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig's disease, (connected to kinesin(microtubules) & neurofilaments (intermediate filaments)):
 - caused by different factors like mutations in lamin A (the IFs nuclear skeleton protein) OR because of abnormalities in microtubule motor protein (kinesin). ALSO, it can be caused by defective neurofilaments.
- > **Epidermolysis Bullosa Simplex** (related to intermediate filaments):
 - Caused by **keratin gene mutations**, resulting in fragile skin that blisters easily under mechanical stress.

Charcot-Marie-Tooth Disease:

 Linked to mutations in lamin A (an intermediate filament) and kinesin (a microtubule motor protein), causing peripheral neuropathies.

* Summary of Small G-protein mentioned in all lectures:

Small G Protein	Function	Location
Rab	Determines vesicle membrane targets and ensures correct vesicular fusion	Vesicles (attached to vesicular membranes)
Ran	Regulates nuclear import/export via importin and exportin proteins	Nucleus and cytoplasm
Ras	Controls cell proliferation and differentiation through signaling pathways	Plasma membrane (at signaling sites)
Rac	Facilitates lamellipodia formation, aiding in cell movement and motility	Plasma membrane (leading edge of cells)
Rho	Promotes stress fiber formation and cell contraction	Plasma membrane (around actin filaments)
Cdc42	Initiates filopodia formation, aiding in cell directionality	Plasma membrane (cell periphery)
Rab27A	Involved in melanosome transport, as seen in Griscelli syndrome	Vesicles (specific to melanocyte function)