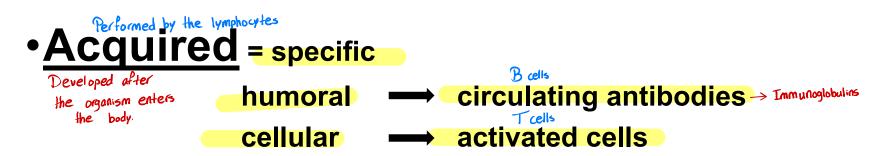


TEXTBOOK OF MEDICAL PHYSIOLOGY

THIRTEENTH EDITION



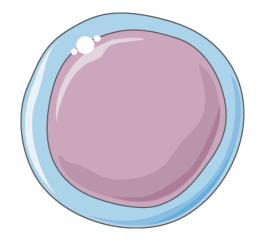
Resistance of the Body to Infection:

II. Immunity and Allergy; Innate Immunity
Ebaa M Alzayadneh, PhD
Associate Professor of Physiology

Immunity

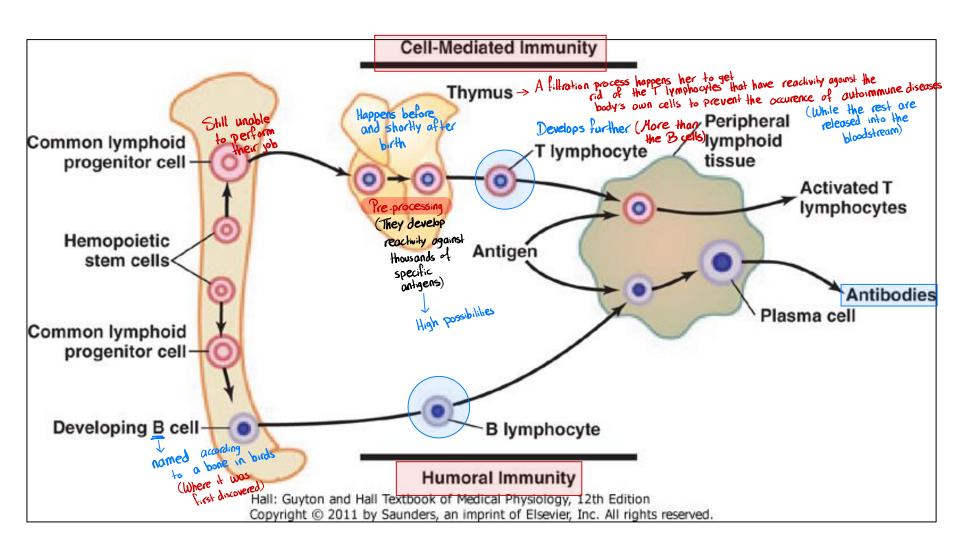
•Innate - inborn ability to resist damaging organisms and toxins: skin, gastric acids, tissue neutrophils and macrophages, complement, microbicidal and lytic chemicals in blood and blood cells

Acquired Immunity A must-have (Its absence at birth leads to death) Dysfunction


- Antibodies or activated cells that specifically target and destroy invading organisms and toxins
- Powerful: can neutralize 100,000 x lethal dose of some toxins eg. Botulinum and Tétanus toxins
- Two types of acquired immunity:
 - Humoral (B cell)
 - Cell-mediated (T cell)

Antigen

- A substance that can elicit an immune response
- Unique to each invading organism
- Usually proteins or large polysaccharides
- Most are large (MW > 8,000) and have recurring molecular groups on their surfaces
- The molecular structures that are specifically recognized in acquired immunity are called "epitopes"

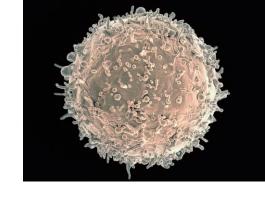

Main player in the acquired immunity

Lymphocytes

- Mediate acquired immunity
- Develop in lymphoid tissues Its orgin differs at different pregnancy stage and after birth
 - Tonsils / adenoids, Peyer's patches (GI), lymph nodes, spleen, thymus, marrow
- Are strategically positioned

Two types of lymphocytes

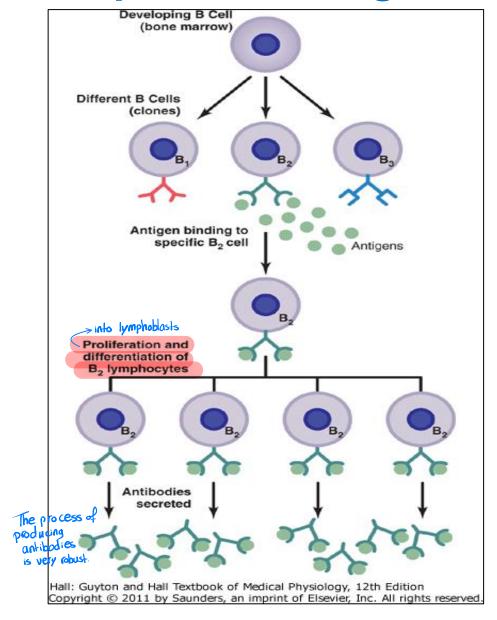
Maturation of T cells in the Thymus


Rapid expansion

Each clone is specific for a single antigen

Self-reactive clones are deleted (up to 90%) > Because it is a random process

Migrate to peripheral lymphoid organs


Much of the above occurs just before and shortly after birth

B cell Development

- Initial growth and differentiation in the liver (fetal) and bone marrow (after birth)
- Migrate to the peripheral lymphoid organs
- Each clone is specific for a single antigen
- Clonal development provides almost limitless antibody specificity
- Secreted antibodies destroy or neutralize molecules or organisms bearing their cognate antigen

B cell proliferation in response to antigen

Immunologic Specificity

- Each B or T cell clone is specific for a single epitope of a single antigen cross reactivity might occur (Where a single antigen activotes more than one type of B cells)
- The genes for B cell receptors (immuno-globulins) and T cell receptors have hundreds of "gene segments" that are used in varying combinations
- Permutations (arrangements) of these cassettes allow specificity for millions of distinct epitopes

Help Tand B cells recognize onligens.

Macrophages in lymphoid organs...

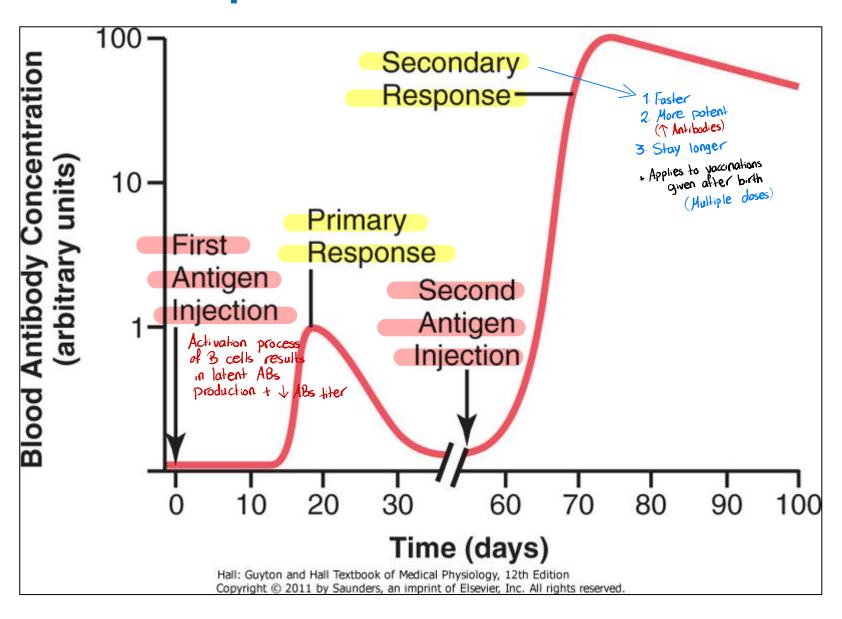
- ingest antigen and present antigenic peptides to "helper" T cells -> Responsible for shmulahag all types of immune cells.
- Secrete IL-1, other cytokines that promote lymphocyte growth and differentiation

Lymphocyte Activation

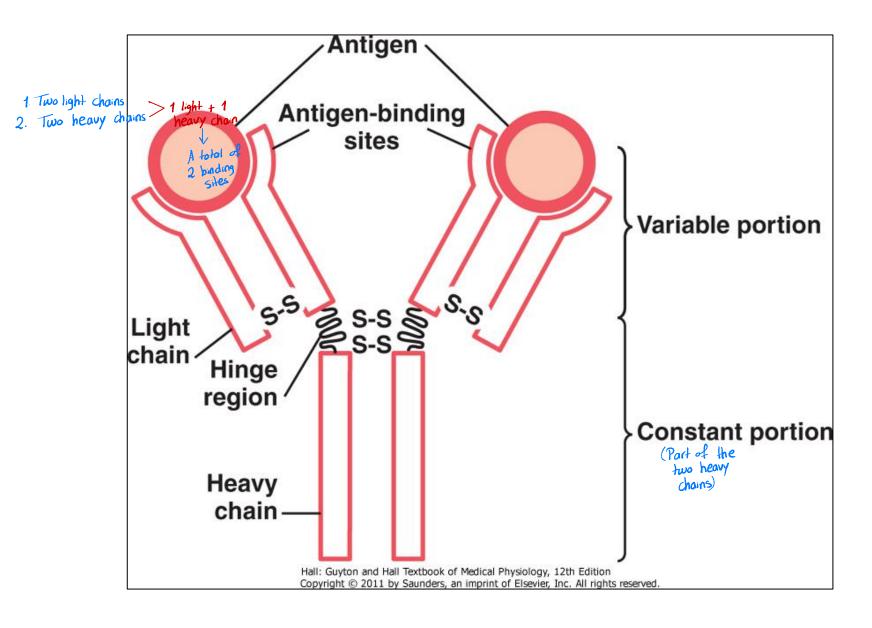
Strengthe he immur response

Helper T cells produce additional cytokines that stimulate B and T cell proliferation and differentiation

Both B and T cells require antigenic stimulation to proliferate


Antibody Production

- B cells bind intact antigen
- T cells bind presented antigenic peptides


Without helper T cells, the immune response won't be as strong

- B cells proliferate (with T cell help), developing lymphoblasts and plasmablasts
- Up to 500 antigen-specific progeny in 4 days, each producing as many as 2,000 lg molecules/sec
- Can persist for many weeks, if antigenic stimulation persists

Memory B cells and secondary responses

Structure of Immunoglobulins

Antibody Specificity

- Each antibody has a steric configuration specific to its antigen The longer the binding -> the stronger the activation and destruction are:
- Multiple prosthetic groups of each antigen interact with complementary structures of the antibody, through...
 - hydrophobic bonding
 - hydrogen bonding
 - ionic interactions
 - van der Waals forces
- Antibodies are at least bivalent

Antibody classes (isotypes)

- IgM (earliest produced, five pairs of heavy chains and light chains) important in the primary response
- IgG (75% of all immunoglobulins)
- IgA
- IgD
- IgE (critically involved in allergic reactions)
 - Immunoglobulins make up about 20% of all plasma proteins

Antibodies: mechanisms of action

Precipitation

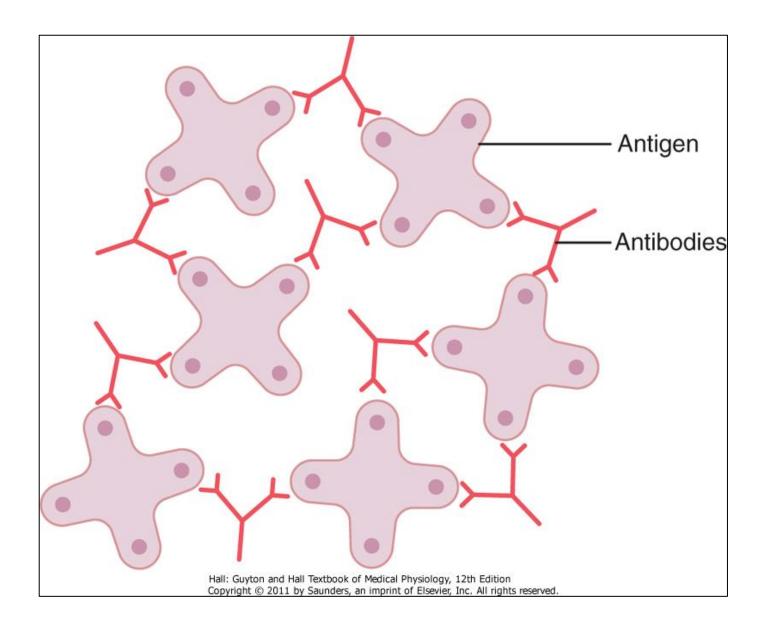
Neutralization > of ABs to block the binding toxins from harming the body.

Lysis

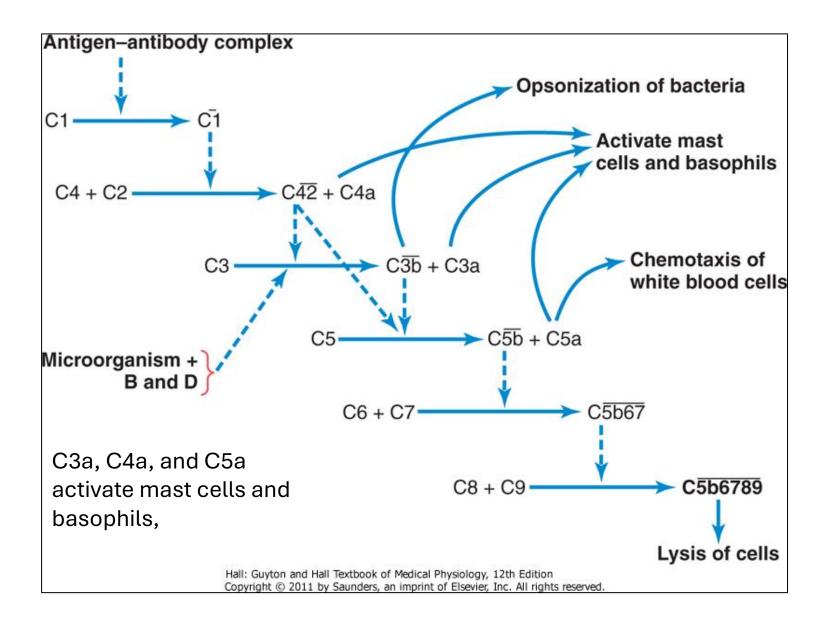
Complement activation

```
Opsonization Activation

Chemotaxis


Opsonization Activation

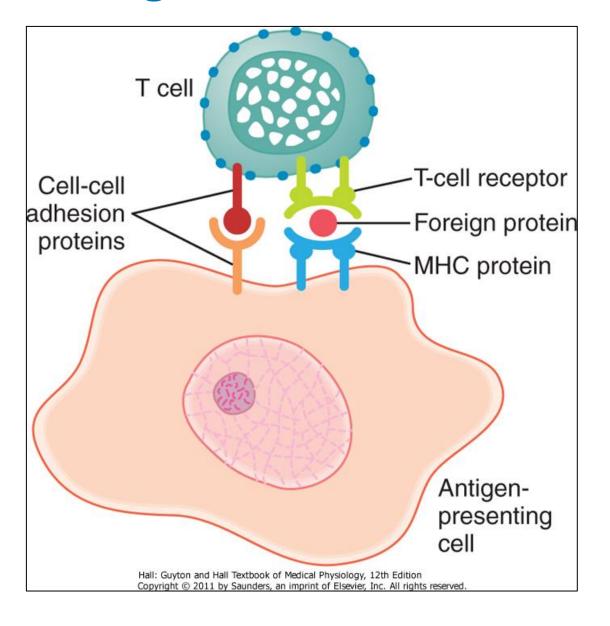
of other


cells eg.

most cells and
basophils > Robust inflammatory
reaction
```

Agglutination

The Complement System


T cell activation

- Binds to cognate antigen presented by antigen-presenting cell
- Rapid expansion of T helper (CD4) cells
- T helper cells produce cytokines
- Drives expansion of both T helper (CD4) and cytotoxic (CD8) T cells
- Both types of cells also generate clonal memory T cells

MHC Proteins

- B cell surface and secreted antibodies recognize intact antigen
- T cells only recognize antigen fragments that are presented by MHC molecules of antigen presenting cells...
 - macrophages
 - B lymphocytes
 - dendritic cells

Antigen Presentation

MHC Molecules

- Encoded by the Major Histocompatibility Complex
 - MHC I Present to cytotoxic T cells (CD8)
 - MHC II Present to helper T cells (CD4)
- Antigen in the context of MHC is recognized by as many as 100,000 T cell receptors per cell

Helper (CD4) T cells

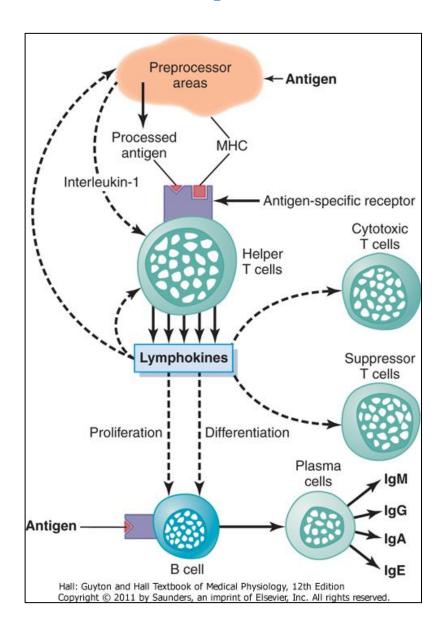
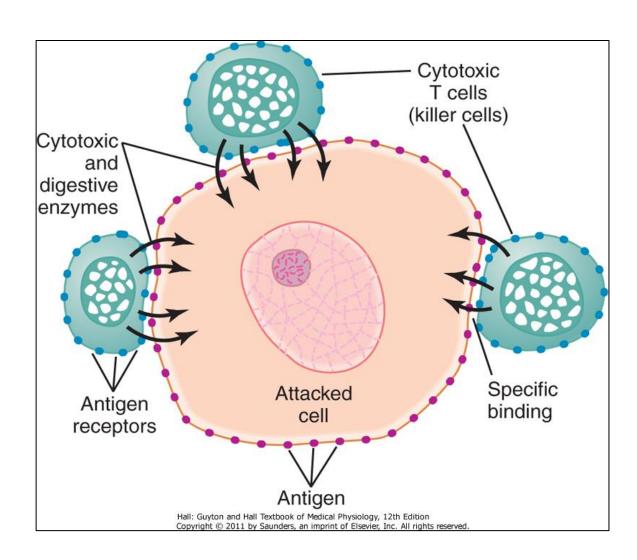

- ~ 75% of all T cells
- Regulate functions of other immunologic cells by producing cytokines...
 - Interleukin (IL-) 2, 3, 4, 5, 6, GM-CSF, Interferon-gamma

Table 35-1 Subsets of T-helper Cells

	T _H 1	T _H 2	T _H 17
Lymphokines that induce subset	IFN-γ, IL-12	II-4	TGF-β, II-1, II-6, IL-23
Major lymphokines/ factors produced	IFN-γ, II-2 TNF-α, GM-CSF	IL-4, IL-5, II-6, IL-10, II-13	II-17, IL-22
Major immune reactions	Macrophage activation, Stimulate IgG antibody production	Stimulate IgE production, Activation of mast cells and eosinophils	Recruitment of neutrophils and monocytes


T cell help for immune response

- Positive feedback for helper T cells (IL-2)
- Stimulation of cytotoxic T cells (IL-2, other cytokines)
- Stimulation of B cells (IL-4, 5, 6 (BCGFs))
- Macrophage accumulation, activation, enhanced killing

Killing by cytotoxic T cells

- Virus-infected cells
- Cancer cells
- Transplanted organs and tissues

Immunologic Tolerance

- Host defense employs powerful destructive mechanisms
- These must be directed at pathogens while protecting host tissues from damage
- "Tolerance" in acquired immunity is achieved mainly by clonal selection of T cells in the thymus and B cells in the bone marrow
 - clones that bind host antigens with high affinity are induced to undergo apoptosis, and are deleted

Failure of tolerance produces autoimmunity

- Rheumatic fever (cross-reactivity with streptococcal antigens)
- Post-streptococcal glomerulonephritis
- Myasthenia gravis (antibodies to acetylcholine receptors)
- Systemic lupus erythematosis (auto-immunity to multiple tissues)

Immunization

- Injecting killed organisms or their products...
 - typhoid, whooping cough, diphtheria, tetanus toxoid
- Infection with attenuated organisms...
 - Smallpox, yellow fever, polio, measles, herpes zoster, other viral diseases
- Passive immunity...
 - Infusing antibody or activated T cells from an immune individual (antibodies last 2-3 weeks)

Allergy and hypersensitivity

- T cell mediated (delayed)...
 - poison ivy, nickel allergies
 - usually cutaneous; can occur in lungs with airborne antigens
- IgE mediated (immediate)...
 - typical allergies
 - a single mast cell / basophil can bind 500,000 IgE molecules

Mast cell / basophil degranulation

- Histamine
- Proteases
- Leukotrienes
- Eosinophil and neutrophil chemotactic factors
- Heparin
- Platelet activating factor

Allergic manifestations

- Anaphylaxis
 - systemic, potentially fatal
 - widespread vasodilatation
 - ↑↑ capillary permeability, volume loss
 - leukotrienes → bronchospasm and wheezing <u>Treatment</u>: epinephrine and antihistamines
- Urticaria
 - localized vasodilatation and red flare
 - Increased permeability and swelling ("hives")
 Treatment: antihistamines

Allergic manifestations (cont'd)

Hay fever

- histamine mediated
- vascular dilatation in the nasal passages and sinuses (and eyes)
- leakage of fluid
- sneezing

Treatment: Anti-histamines, local corticosteroids

Asthma

- mediated largely by leukotrienes
- sustained bronchospasm

<u>Treatment</u>: β agonists, inhaled steroids, leukotriene receptor blockers; treat upper airway component