

PATHOLOGY OF BLOOD AND LYMPHATIC SYSTEM

Dr. Tariq Al-Adaily, MD

Associate Professor

Department of Pathology

The University of Jordan

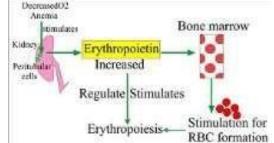
Email: TNALADILY@ju.edu.jo

School of Medicine

ANEMIA

The best of the second

DEFINITION


- ☐ Reduction of oxygen carrying capacity of blood secondary to decrease in red cell mass
- ☐ Leads to tissue hypoxia
- Practically, measure by Hemoglobin concentration, and Hematocrit Numeric diagnose

ANEMIA AND ERYTHROPOIETIN

- □Anemia triggers production of erythropoietin → Our kidneys detect systemic hypoxia → EPO production
- □Causes compensatory erythroid hyperplasia in bone marrow (BM)
- □In acute anemia, production can increase by 5x or more in healthy people
- □ In severe cases, causes extramedullary hematopoiesis in secondary hematopoietic organs (spleen, liver and lymph nodes) → Extramedullary Hematopoiesis
- Exceptions: anemia of renal failure, anemia of chronic inflammation

CLASSIFICATION ACCORDING TO CAUSE

- 1) Blood loss
- 2) Diminished RBC production by nutritional deficiency
- Iron deficiency anemia
- Anemia of chronicinflammation
- Megaloblastic anemia
- Aplastic anemia
- Pure red cellaplasia
- · Myelophthisic anemia
- Myelodysplastic syndrome
- · Anemia of renalfailure
- Anemia ofhypothyroidism

3) Increased destruction

(hemolytic anemia) RBGs die

- □Extrinsic factors (infection, antibody, mechanical)
- □Intrinsic RBC abnormalities:
- 1)Hereditary (membrane, enzyme, Hgabnormalities)
- 2)Acquired (Paroxysmal nocturnal hematuria)

CLASSIFICATION ACCORDING TO MORPHOLOGY BLOOD FILM Not according to the

```
BLOOD FILM Not according to the
                        determine the cause
                                          Blood test (No need to
□Size: normo, micro, macrocytic (
Color: normo, hypochromic (MCH) Central pallor Permits light only takes 1/3 of
□ Shape: an isopoikelo cytosis (spherocytes, sickle, schistiocytes)
 (RBC distribution width)
□Hypochromic microcytic anemia usually reflects impaired Hg
  synthesis eg. 1100 deficiency
                                              A very early disease
Macrocytic anemia reflects stem cell disease and maturation
          cannot mature
            into normal
               RBCs
```

RBC INDICES □Can be directly measured, or automated □ Slight variation is present between Sex, age, race, mobility status have effect Reticulocyte count: helps differentiate hemolytic anemia (high) from aregenerative anemia (low) impensate for ne early death Units Men Women ure RBCs Dysfunctional Hemoglobin (Hb) 13.2-16.7 11.9-15.0 g/dL 38-48 35-44 Hematocrit (Hct) Red cell count ×106/µL 4.2-5.6 3.8-5.0 0.5-1.5 0.5-1.5 Reticulocyte count Mean cell volume (MCV) fL 81-97 81-97 Mean cell Hb (MCH) 28 - 3428-34 33-35 33-35 Mean cell Hb concentration (MCHC) Red cell distribution width 11.5-14.8

*Reference ranges vary among laboratories. The reference ranges for the laboratory providing the result should always be used in interpreting a laboratory test.

CLINICAL FEATURES OF ANEMIA

Dizziness (hypotension) × Polycythemia (Hypertension)

□ Fatigue
□ Best seen in fingernals, tongue and oral cavity
□ Pallor × Plethora in Polycythemia
□ Headache

Adaptive changes:
□ Tachycardia → To help deliver 02 to the body
□ Tachypnea
□ Increased redcell 2,3-diphosphoglycerate

If the patient has heart or lung diseases, symptoms will be worse

CLINICAL SYMPTOMS IN SPECIAL TYPES OF ANEMIA

Chronic hemolytic anemia: jaundice, pigmented gall bladder stones, redurine

moglobin -> Bilirubin -> Bile

Hemolytic black, small, multiple
Anemia

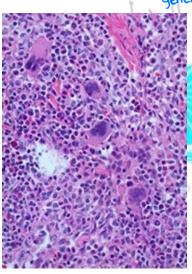
Hemoglobin -> Bilirubin -> Bile

Hemolytic I Deposited in tissues

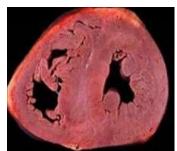
Vallow Discoloration (Taundice)

Faculty of Medicine

CLINICAL SYMPTOMS IN SPECIAL TYPES OF ANEMIA


Due to persistent anemia

□ Extramedullary hematopoiesis: splenomegaly, hepatomegaly


Thatassemia major and sickle cell anemia: growth retardation, by the deets and farehead by blood fransfusions to he are to he endocrine glands) \(\text{EPO} \rightarrow \text{Persistent anemia}\)

(Because it is a genetic condition)

ANEMIA OF ACUTE BLOOD LOSS

□Symptoms are related to decreased intravascular volume,
□ If loss is > 20% of blood volume, patient might have hypovolemic shock and death That is why it is considered a serious condition.
□Body responds by shifting fluid from interstitial to intravascular space, causing dilutional anemia and worse hypoxia (stays 2-3 days)
□Erythropoietin secretion is stimulated, activating BM erythropoiesis (needs 5-7days)
□In internal hemorrhage, iron is restored from extravasated RBCs and used again in erythropoiesis
□In external and GIT hemorrhage, iron is lost, which complicates anemia
□ The anemia is normochromic normocytic, with reticulocytosis→↑BM achuity

ANEMIA OF CHRONIC BLOOD LOSS

Occurs when the rate of RBC loss exceeds regeneration

Mostly occurs in gastrointestinal diseases, also in excessive menstruation

Results in iron depletion deficiency, anemia appears hypochromic and microcytic, lowreticulocytes

→ BM Activity

e.g. ulcers, cancer hemorrhoids, excessive menstruation

GI

