HLS Final Summary

Anti-Platelets > Prophylactically used in cases of MI, unstable angina, TIA.

- 1. Aspirin → Blocks Cyclooxygenase → inhibits conversion of Arachidonic Acid (AA) to Thromboxane A2.
 - **Uses:** Baby aspirin (Antiplatelet), Analgesic, Antipyretic, Antiinflammatory.
 - Side effects: hemorrhagic stroke, GIT bleeding.
- 2. Clopidogrel → Blocks P2Y12 (ADP) Receptor on platelets → Platelet inhibition (GPIIb/IIIa receptor will not be active/present to bind with fibrinogen and eventually platelets will not aggregate)
 - He belongs to a family of drugs which have Clop or grel suffix in their names. Let's try it and see (:
 - a. <u>Clopidogrel</u>: Metabolized (activated by <u>CYP2C19</u>). Make sure patient is not a slow metabolizer before giving it, as this drug needs activation (found in the form of a prodrug). Rarely → <u>bleeding</u>
 - A loading dose of Clopidogrel is given 6 hours before coronary stent to prevent thrombosis
 - b. Prasugrel, more easily activated in the body than Clopidogrel, it's given when patient doesn't respond to Clopidogrel (Slow metabolizer).
 - SE: Hypertension, hypotension, afibrillation, bradycardia
 - c. Ticagrel or, not a prodrug (doesn't need activation in the body as it's already activated). SE: Dyspnea
 - d. Ti**clop**idine, not used anymore (Thrombotic Thrombocytopenic Purpura "TTP"), leukopenia
 - e. Cangrelor: Given IV in an active form. Useful in Emergencies. SE: Bleeding 1
 - Can be used in sullin cases (Putting a stent in 2 hrs)
- 3. Abciximab → Blocks GPIIb/IIIa receptors on platelets → no platelet aggregation.
 - He belongs to a family of drugs which have fib suffix in their names. With an exception to one: abciximab
 - a. Given intravenous (IV) Risk of bleeding is higher. All Inhibit bridging of platelet by fibrinogen
 - b. Abciximab: humanized monoclonal antibody directed against GPIIb/IIIa
 - c. Eptifibatide & Tirofiban: inhibit ligand binding to Ilb/Illa receptor by their occupancy of the receptor.
- 4. Dipyridamole/ Cilostazol → blocks PDE3 Enzyme → levels of cAMP will increase → platelets are inhibited.
 - inhibits phosphodiesterase→ ↑ cAMP→ potentiates effects of prostacyclin→ platelet inhibition.
 - dipyridamole is also a coronary vasodilator (any vasodilator in the body may → Headache)
 - Indications
 - a. with aspirin for prophylaxis in angina.
 - b. with warfarin to inhibit embolization from prosthetic heart valves.

Anticoagulants → Treat cases of thrombosis in Afib, DVT/PE, Post-surgery.

- 1. **Unfractionated Heparin:** inhibits the activated factors (2,9,10,11,12)
 - Prevents further thrombus growth, allowing the body's own thrombolytic system to dissolve clot.
 - Activates antithrombin III (AT III) → Dual inhibition: inhibits mainly both factor IIa & factor Xa
 - a. Other factors that are inhibited as well: factors IXa, XIa & XIIa
 - Route of administration: IV/SC given for DVT/PE for 5-7 days
 - Response to drug is unpredictable & has a narrow therapeutic index
 - ⇒ That's why UFH must be monitored using aPTT
 - Side effects: Allergy (animal source), Alopecia, bleeding, osteoporosis, hyperkalemia, Heparin Induced
 Thrombocytopenia (HIT) → check platelet levels before and at days 3 & 5.
 - Antidote: protamine sulphate
- 2. **LMWH:** Enoxaparin, dalteparin, tenzaparin & ardeparin
 - Activates antithrombin III (AT III) → inhibits mainly factor Xa
 - Excretion: Kidneys
 - No need to monitor aPTT unless patient is obese/pregnant or has renal disease.
 - SE: bruising/hematoma at injection site, Bleeding, HIT
 - Antidote: protamine sulphate

3. Warfarin (derived from Coumarin)

- It Blocks carboxylation of factors 1972 (10,9,7,2) "procoagulants" as well as the proteins C and S "anticoagulants"
 - a. By inhibiting Vitamin K epoxide reductase (which normally reduces Vitamin K)
- Full therapeutic effect is not achieved until existing factor II is cleared (t1/2: 60 hours)
 - a. That's why patient is bridged on heparin for 4-5 days until INR becomes between 2-3.
- > 99% is bound to plasma albumin → small volume of distribution, long half life. 100% bioavailability.
- Drug interactions with warfarin are either:
 - a. Pharmacokinetics (CYP2C9-related): examples: <u>Azapropazone</u> which displaces warfarin from plasma protein & inhibits its metabolism (warfarin levels in plasma ↑). <u>Allopurinol</u> & <u>Amiodarone</u>, too inhibit warfarin's metabolism increasing the risk of bleeding.
 - CYP2C9 enzyme induction → warfarin levels will go down (as more is metabolized)
 - CYP2C9 enzyme inhibition → warfarin levels will go up (as less is metabolized)
 - b. Pharmacodynamics (Vitamin K-related)
- Side effects: Abnormal bone formation and hemorrhage in fetus, Bleeding, Cholesterol microembolisation (purple toe syndrome), Venous thrombosis (reduced protein C synthesis)
- Absolute contraindicated in pregnancy
- The best oral agent to use for anticoagulation in a mechanical prosthetic heart valve.
- Antidote: Vitamin K

4. Dabigatran: Direct thrombin (factor IIa) inhibitor (one of the Direct Oral Anticoagulants "DOACs")

- Given orally
- Response is almost the same in all people (no variation in response as in warfarin) → monitoring isn't required unless bleeding occurs.
- Side effects: Gl upset (most common), Dyspepsia, Bleeding, Esophagitis
- The only type of hemorrhage that's more in Dabigatran than warfarin is (GI hemorrhage)x
 - a. The reason is thought to be related to tartaric acid which reduces gastric pH (make it more acidic)
 - To avoid these complications → give PPI or H2 blocker → Increase gastric pH (make it less acidic)
- Drug interactions
 - a. P-Gp (p-glycoprotein) inducers → Less dabigatran will enter the blood → thrombosis may result.
 - b. Amiodarone, P-Gp inhibitors → more Dabigatran will enter the blood → bleeding may occur
- Contraindications:
 - a. Active pathological bleeding
 - b. Anticoagulation in a patient with mechanical prosthetic heart valves → more likely bleeding & thrombosis
- Antidote: Idarucizumab

5. Rivaroxaban, Apixaban: Factor Xa inhibitor (Direct Oral Anticoagulants "DOACs")

- Given orally
- CYP3A4 is responsible for its metabolism.
- CYP3A4/P-glycoprotein inhibitors → High levels of rivaroxaban → bleeding
- Warning: Patients undergoing spinal anesthesia or puncture are at → Higher risk of hematoma & paralysis
- Antidote: Andexanet

6. Fondaparinux: Factor Xa inhibitor (injectable)

- Given subcutaneously
- Used in cases of Heparin Induced Thrombocytopenia (HIT)
- Antidote: no known antidote

7. Thrombolytics (streptokinase, urokinase, t-PA, <u>alteplase</u>, <u>tenecteplase</u>, <u>reteplase</u>) → activate plasminogen → fibrinolysis

- Given IV → Multiple Pulmonary Emboli, Central deep venous thrombosis (superior vena caval syndrome), Acute MI, stroke (within 6 hrs)
- Given Intra-arterially → Peripheral Vascular Disease.
- We always want to activate the plasminogen which is only present in the clot (and the not the circulating one)
- Streptokinase, Anistreplase & urokinase → Higher risk of bleeding as they activate both clot-bound and circulating plasminogen
- T-PA: endogenous direct plasminogen activator (fibrinolysis is confined to formed thrombi) → less risk of bleeding
- Alteplase: most widely used (recombinant t-PA)
- Reteplase: less fibrin selective than t-PA
- Tenecteplase: most selective to plasminogen found in the clot and has longer half-life.
- As the clot dissolves, concentration of thrombin ↑ locally→ ↑ platelet aggregation & ↑ formation of new thrombi → Give
 an antiplatelet or anticoagulant to prevent thrombosis
- Side effects: Bleeding, Hypotension, Reperfusion Arrhythmia, Hypersensitivity

Lecture 5+6: Cancer Treatment

- Introduction: a common side effect between anti-cancer drugs
 - a. Bone marrow suppression (may need to use a colony stimulating factor either GM-CSF or G-CSF)
 - Low WBC = leukopenia
 - Low RBCs = Anemia → give these patient Erythropoietin (EPO) to stimulate BM to increase RBC synthesis.
 - b. Alopecia (hair loss)
 - c. Nausea, Vomiting & Diarrhea

. Why do we use Combination chemotherapy?

 Synergistic action, to Minimize side effects, To Attack leukemic cells in different phases of mitosis & delay the onset of resistance of the malignant cells.

1. Acute Lymphocytic Leukemia (ALL)

What drugs can we use in ALL?

- Induction phase (4-6 weeks → to achieve remission)
 - a. Vincristine: Cell cycle specific (affects M-phase of cell cycle)
 - MOA: inhibit tubular polymerization → prevent spindle formation → mitotic arrest in metaphase
 - SE: Constipation, Neuropathy (nerve irritation → numbness/tingling in hands/feet.
 - b. Glucocorticoid:
 - MOA: inhibitory effects on lymphocyte proliferation and are used in treating lymphomas and leukemias
 - SE:" HIGGGH HOMIE": HTN, Immunosuppression, Go crazy (mood changes), Glaucoma, Growth retardation, Hyperglycemia, Hair growth (hirsutism), Osteoporosis, Muscle weakness, increased appetite & Edema.
 - c. L-Asparaginase:
 - MOA: this enzyme <u>hydrolyzes</u> serum asparagine to nonfunctional aspartic acid and ammonia, depriving tumor cells of asparagine, resulting in decreased protein synthesis and apoptosis in cancer cells.
 - Decreased Insulin production → Hyperglycemia
 - Decreased albumin → edema or ascites
 - Decreased activation of Vitamin K dependent factors (10,9,7,2) & protein C,S & antithrombin III
 - Coagulopathy may occur → Thrombosis/bleeding may occur.
 - SE: Nausea, Vomiting, Anorexia, Cramps, Malaise, weight loss, Hepatotoxicity (not used in liver diseases), Tumor lysis Syndrome → hyperkalemia, hyperphosphatemia, hypocalcemia & low urine output
- Consolidation phase
 - a. Methotrexate + Mercaptopurine
 - b. High Dose Asparaginase over an extended period
 - c. Reinduction treatment (less common)
- Maintenance phase (Females: lasts for 2 years, Males: lasts for 3 years)
 - a. Weekly methotrexate + Daily mercaptopurine
- CNS Prophylaxis (meningeal Leukemia is frequently)
 - a. Intrathecal → Cytarabine, steroids & methotrexate
 - b. Adults → High dose systemic chemotherapy (Cytarabine, L-asparaginase & methotrexate)

2. Acute Myeloid Leukemia (AML)

What drugs can we use in AML?

- Induction phase (2 cycles of cytarabine + daunorubicin +/- thioguanine) give remissions in 70-90%
- "7+3" induction regimen: 7 days of cytarabine & 3 days of Daunorubicin
 - a. Cytarabine: Cell cycle specific (affects S-phase of cell cycle)
 - MOA: antimetabolite chemotherapy agent . It kills cancer cells by stopping them from making and repairing DNA that they need to grow and multiply.
 - SE: Dizziness .
 - b. Daunorubicin (topoisomerase poisonous)
 - MOA: cytotoxic anthracycline antibiotic which damages DNA by intercalating between base pairs
 resulting in uncoiling of the helix, ultimately inhibiting DNA synthesis and DNA-dependent RNA
 synthesis.
 - SE: Cardiotoxicity
 - c. Thioguanine:
 - MOA: A purine analogue which inhibits purine metabolism, thus blocking DNA, RNA and subsequent protein synthesis
- Consolidation Phase: Following induction into Complete Remission
 - a. 3-4 cycles of high dose cytosine arabinoside (HiDAC) administered approximately every 5-6 weeks
 - OR Bone marrow transplant (because high rate of recurrence).
- Common side effects:
 - a. Fatigue (tiredness) during and after treatment –
 - b. Soreness at the injection site (if you are having injections under the skin) .
 - c. Temporary amenorrhea

3. Chronic Myeloid Leukemia (CML):

Main point CML has Philadelphia chromosome or Philadelphia translocation; This translocation results in the Bcr-Abl fusion protein → tyrosine kinase overactivation

Options of management:

- a. Imatinib → inhibits tyrosine kinase → best to start with as it has less side effects
- b. Dasatinib/nilatinib → if patient developed mutations to imatinib → more cardiovascular side effects including thrombosis and pleural effusion. More diarrhea and skin rash
- c. Ponatinib → if patient developed T315I