Hemoglobinopathies

Types of Hereditary Hemoglobin Disorders

Туре	Description
1. Quantitative abnormalities	• Abnormalities in the relative amounts of α and β subunits. \rightarrow Thalassemias.
2. Qualitative abnormalities	 Structural variants caused by mutations altering amino acid sequence of globin chain. → >800 variants identified.
3. Hereditary persistence of fetal hemoglobin (HPFH)	• Impairment of the switch from γ -globin $\rightarrow \beta$ -globin after birth. • Fetal Hb $(\alpha_2\gamma_2)$ has higher O_2 affinity than adult Hb $(\alpha_2\beta_2)$. • Persistence of HbF \rightarrow mild or no symptoms.

Thalassemias Overview

| Definition |

Most common single-gene disorder (either α or β). Caused by reduced synthesis of α or β chains \rightarrow imbalanced α : β ratio.

| Main consequences |

 Imbalance in chain production → precipitation of excess unpaired chains → RBC destruction → anemia.

| Types |

 α -Thalassemia: reduced α -chain synthesis.

β-Thalassemia: reduced β-chain synthesis.

Alpha-Thalassemia

| Definition |

Reduced or absent synthesis of α -globin chains. Mainly due to deletion mutations that inactivate α -globin genes.

| Genetic basis |

- 4 α-globin genes total (2 per chromosome 16).
- Severity depends on number of genes deleted (1–4).

| Mechanism |

 \downarrow α -chain synthesis \rightarrow excess β or y chains \rightarrow formation of unstable tetramers (β_4 or γ_4).

| Pathophysiology |

Unstable Hb (HbH or Hb Bart's) \rightarrow high O₂ affinity \rightarrow poor O₂ release \rightarrow tissue hypoxia \rightarrow hemolysis.

Subtypes of $\alpha ext{-Thalassemia}$

Subtype	Genes Deleted	Main Hb Formed	Clinical Features
αº-Thalassemia (Hydrops fetalis / Hb Bart's)	4/4	Hb Bart's (γ₄)	 Very high O₂ affinity (cannot release O₂). Severe anemia, edema (hydrops fetalis). Stillbirth or death soon after birth.
α ⁺⁺⁺ -Thalassemia (HbH disease)	3/4	HbH (β₄)	 β-chain tetramers with high O₂ affinity, unstable → Heinz bodies. Mild-moderate (sometimes severe) hemolytic anemia. May need transfusions; not fatal.
α ⁺⁺ -Thalassemia trait	2/4	_	• Mild microcytic anemia. • Clinically mild.
α+-Thalassemia (Silent carrier)	1/4	_	• No symptoms, clinically silent.

Summary of α-Thalassemia Severity

Deleted genes	Туре	Main Hb formed	Severity
4	αº (Hydrops fetalis)	Hb Bart's (γ₄)	Lethal
3	α ⁺⁺⁺ (HbH disease)	HbH (β ₄)	Mild-moderate anemia
2	α ⁺⁺ (Trait)	-	Mild microcytic anemia
1	α+ (Silent carrier)	_	Asymptomatic

| Definition |

Reduced (β^+) or absent (β^0) synthesis of β -globin chains. Caused mainly by point mutations in β -globin gene on chromosome 11.

| Mechanism |

 \downarrow β -chain \rightarrow excess α -chain \rightarrow precipitation \rightarrow RBC membrane damage \rightarrow hemolysis.

| Main mutation type |

Point mutations (not deletions).

| Result |

Imbalanced $\alpha:\beta$ chain ratio \rightarrow ineffective erythropoiesis and anemia.

// Types of β-Thalassemia

Туре	Genetic basis	Clinical severity
β°-Thalassemia	No β-chain synthesis	Severe
β⁺-Thalassemia	Reduced β-chain synthesis	Mild-moderate
β-Thalassemia major (Cooley's anemia)	Both β genes defective	Severe anemia; requires lifelong transfusion
β-Thalassemia intermedia	Partial β production	Moderate anemia; occasional transfusion
β-Thalassemia minor (trait)	One gene defective	Mild microcytic anemia; often asymptomatic

Pathophysiology of β-Thalassemia

Defect	Effect
↓ β synthesis	\rightarrow Excess α -chains precipitate in RBCs.
Precipitated α-chains	→ Damage RBC membrane → intramedullary destruction.
Ineffective erythropoiesis	→ Bone marrow expansion (especially in skull/face).
Compensatory mechanisms	\rightarrow Extramedullary hematopoiesis \rightarrow splenomegaly.
Iron overload	→ From transfusions + ↑ absorption → hemosiderosis.
Clinical findings	Anemia, bone deformities, hepatosplenomegaly, growth retardation.

4 Comparison: α-Thalassemia vs β-Thalassemia

Feature	α-Thalassemia	β-Thalassemia
Defective chain	α-chain	β-chain
Mutation type	Deletion	Point mutation
Excess unpaired chain	β or $\gamma \rightarrow$ form β_4,γ_4	α-chains precipitate
Major Hb abnormality	Hb Bart's or HbH	↓ HbA, ↑ HbA₂, ↑ HbF
Severity depends on	Number of genes deleted	β^{o} vs β^{+} mutation
Main mutation location	Chromosome 16 (a gene cluster)	Chromosome 11 (β gene)
Pathophysiology	Unstable tetramers	Ineffective erythropoiesis
Mutation effect	Quantitative defect	Quantitative defect

Qualitative Abnormalities (Structural Variants)

| Definition |

Structural variants of Hb caused by point mutations that alter amino acid sequence → change in solubility, stability, or O₂ affinity.

| Categories |

- A. Mutations in surface residues
- B. Mutations in internal residues
- C. Mutations at α1-β2 contacts
- D. Mutations stabilizing methemoglobin

| Total variants |

> 800 hemoglobin variants known.

A.

Mutations in Surface Residues – Hemoglobin C (HbC)

| Mutation |

β6 Glutamic acid → Lysine

| Effect |

Replacement of negatively charged residue by positive \rightarrow promotes Hb crystallization.

| Clinical features |

Mild chronic hemolytic anemia (less severe than sickle cell).

| Heterozygotes (HbA/HbC) |

Usually asymptomatic.

```
B.
Mutations in Internal Residues – Hemoglobin E (HbE)
| Mutation |
β26 Glutamic acid → Lysine
| Effect |
Occurs near splice site \rightarrow abnormal splicing \rightarrow \downarrow \beta-chain synthesis.
| Nature of defect |
Both qualitative and quantitative (like mild thalassemia).
| Clinical |
Mild anemia, common in Southeast Asia.
C.
Mutations at α1-β2 Contacts – Hemoglobin S (HbS)
| Mutation |
β6 Glutamic acid → Valine
| Effect |
Valine (nonpolar) interacts hydrophobically with adjacent Hb \rightarrow polymerization in deoxy
state.
| Result |
RBCs deform (sickle shape) → vaso-occlusion, hemolysis, ischemia.
D.
Mutations Stabilizing Methemoglobin - Hemoglobin M
| Mutation site |
Near heme pocket (e.g., His \rightarrow Tyr).
| Effect |
Stabilizes Fe<sup>3+</sup> (ferric state) \rightarrow cannot bind O<sub>2</sub>.
| Clinical |
```

Methemoglobinemia → cyanosis, usually mild symptoms.

√ Sickle Cell Disease (HbS)

| Genetic mutation |

Point mutation in β-globin gene: Glu6Val (Valine replaces Glutamic acid).

| Mechanism |

• Valine forms hydrophobic patch → polymerization of deoxy-HbS → sickled RBCs.

| Factors promoting sickling |

 \downarrow O₂, dehydration, high Hb concentration, low pH.

| Reversibility |

Sickling is initially reversible with oxygenation, but repeated cycles cause membrane damage → irreversible sickle cells.

| Clinical features |

• Hemolytic anemia• Painful vaso-occlusive crises• Splenic infarction → autosplenectomy• Increased risk of infection by encapsulated bacteria• Bone and organ infarctions

| Sickle cell trait (HbA/HbS) |

Heterozygous; mostly asymptomatic; protection against Plasmodium falciparum malaria.

| Sickle cell disease (HbS/HbS) |

Homozygous; severe anemia, chronic crises, organ damage.

| Treatment |

- Transfusions, folic acid, infection control• Bone marrow transplantation (curative in some).

• Hereditary Persistence of Fetal Hemoglobin (HPFH)

| Definition |

Genetic condition with continued synthesis of y-globin after birth.

| Mechanism |

Mutation in β -globin gene cluster \rightarrow failed switch from $\gamma \rightarrow \beta$ production.

| Effect |

Elevated HbF $(\alpha_2\gamma_2)$ levels in adults.

| Clinical significance |

- Benign; usually asymptomatic.
- In β -thalassemia or sickle cell \rightarrow HbF presence lessens symptoms (because HbF inhibits polymerization of HbS).