

HEMOGLOBINOPATHIES

Professor Tariq Aladily
Department of Pathology
The University of Jordan
tnaladily@ju.edu.jo

- Register your attendance with your university number
- Make sure that the settings of your phone allow tracking location
- Go to settings > privacy >
- location > services >
- make sure that location
- services is ON

THALASSEMIA

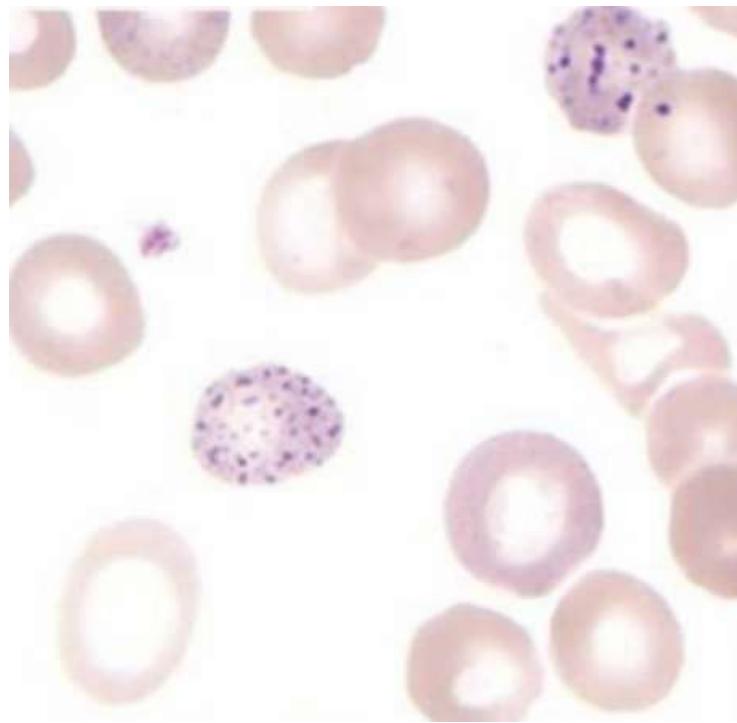
- Group of inherited disorders that result in decreased production of either α / β chains
- Amount of synthesized Hg is below normal \rightarrow *Microcytic hypochromic*
- The deficiency in one of globin chains results in a relative increase in the other one, excessive unpaired chains will cause instability and hemolysis *can be classified as hemolytic anemia but special types*
- Mode of inheritance: autosomal recessive
↳ silent carriers
- Common in Middle East, Africa and South East Asia
- Resistant to infection by malaria falciparum
↳ unknown exactly how
- Normal Hg types in adults: HgA, HgA2, HgF
 $\alpha_2\beta_2$ $\alpha_2\delta_2$ $\alpha_2\gamma_2$

GENETICS

- α -chain is encoded by 2 genes on **chromosome 16**
- Most mutations in α -thalassemia are deletion
- Deletion in 1,2 gene(s) results in a silent carrier
- Deletion of 4 genes results in hydrops fetalis
still birth or die shortly after birth
- Deletion of 3 genes results in Hemoglobin H disease (extra β -chains binds each other to a tetramer called Hg-H, extra γ -chains form Hg-Barts). Both have high affinity to oxygen
*-Excess β and γ
 β can bind together and form new type of Hgb that function in transporting O_2*

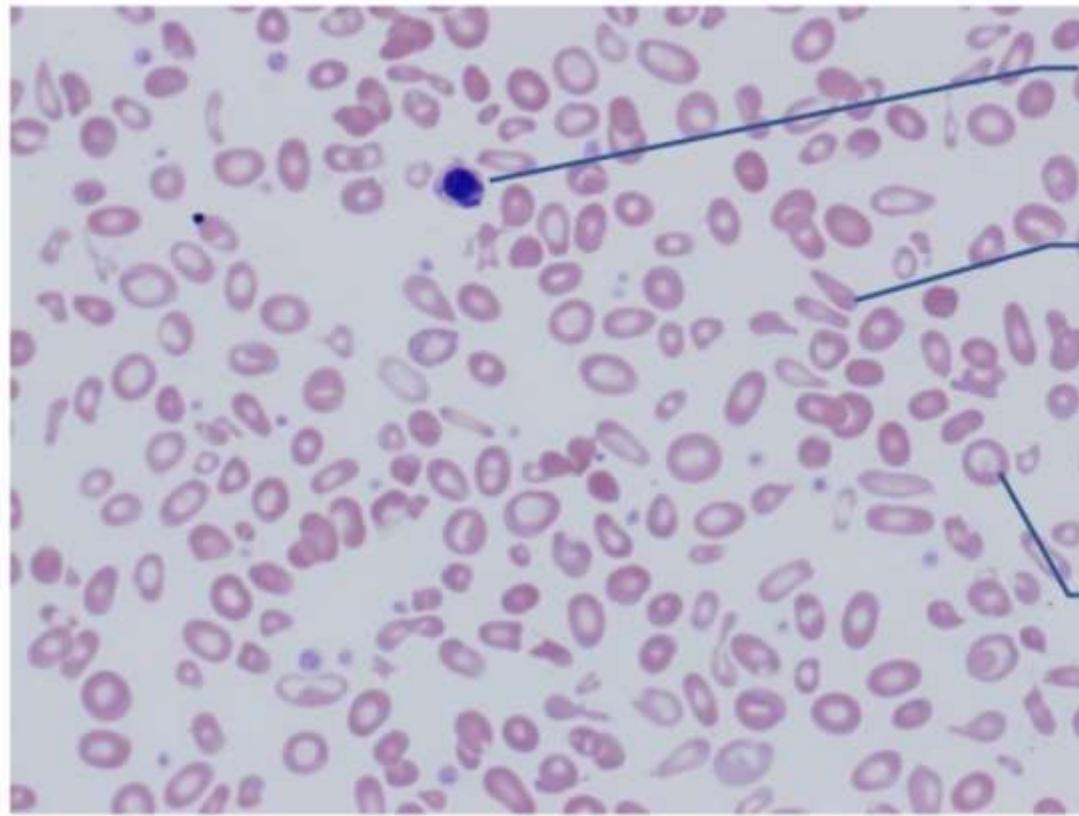
GENETICS

- B-chain is encoded by a single gene of chromosome 11
- Most mutations in β -thal are point mutations
- β^0 : no production of β -chain
- β^+ : decreased production of β -chain
- β/β^+ : silent carrier or mild anemia (thal-minor)
- β^+/β^+ : thalassemia intermedia
- β^0/β^0 or β^0/β^+ : thalassemia major (Cooley anemia)
 - ↳ HgF is high
 - life long severe anemia
need blood transfusion
- Extra α -chains remain uncoupled, causing hemolysis of RBCs in spleen and erythroid precursors in bone marrow
(ineffective erythropoiesis)
 - uncreatated RBCs die



MORPHOLOGY

- Hypochromic microcytic anemia
- Target cells seen also in IDA + SCD
- Basophilic stippling (ribosomes)
↳ small dots
- In thalassemia major:
 - Peripheral blood: + poikilocytosis, nucleated RBCs
↳ α chains
 - Bone marrow: ↑↑ normoblasts, filling BM spaces and expanding into bone, hemosiderosis


IDA and Thalassemia : both are microcytic hypochromic but in thalassemia Iron stores in bone marrow are increased due to : ① Increased transfusion
② Hepcidin $\downarrow \rightarrow \uparrow$ Iron absorption.

BASOPHILIC STIPPLING OF RBCS

Nucleated RBC

Poikilocytosis

Hypochromia

THALASSEMIA MAJOR BLOOD FILM

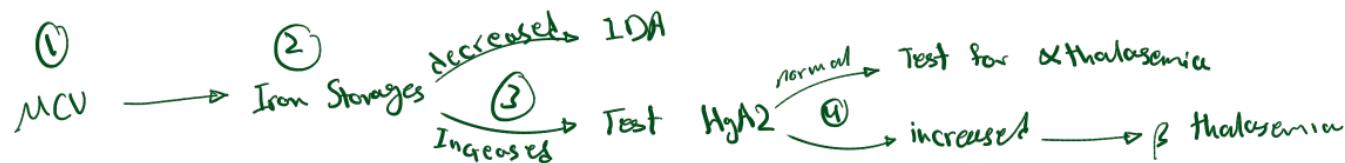
CLINICAL SYMPTOMS

mainly test the MCV
if low → it may be IDA
must make more testing
to be sure.

→ In blood test
will find that RBCs are little bit
smaller than normal
and hemoglobin is
less than normal

- Thalassemia traits are asymptomatic, normal life span, premarital test is important
- Thalassemia major: symptoms begin after age of 6 months, persistent symptoms of anemia, growth retardation, skeletal abnormalities, both are ameliorated by regular blood transfusion *Hepatosplenomegaly*
due to hypoxia in bone
Abnormal skull
- Systemic hemochromatosis and related organ damage occurs in 2nd or 3rd decade of life *heart and endocrine diseases*
- Thalassemia intermedia and HgH disease have moderate anemia, do not require regular blood transfusion

DIAGNOSIS


for β → easy
for α → harder

* In rare situations you may find cases with both thalassemia and IDA. very rare

* Can only test Fe → If it's low → It's just IDA.

- Hemoglobin electrophoresis test
- In all types of β -thal, there is increase in HgA2 and HgF percentages $\alpha_2 D_2$ $\alpha_2 \beta_2$
normally it's $< 3.5\%$ → If increased β thalassemia
- In β -thal major, HgA is absent or markedly decreased
- In HgH disease, HgH and Hg Barts bands appear
- In α -thal carrier and minor, no abnormality is found. Genetic testing is available

For pre marital testing:

SICKLE CELL ANEMIA

- Most common familial hemolytic anemia worldwide
- Common in Africa, Middle East, Saudi Arabia, African Americans
- Resistant to malaria falciparum infection
- Mode of inheritance: autosomal co-dominance
- Caused by single amino acid substitution (glutamic acid → valine) in β -chain
- In sickle cell disease (homozygous), Hg electrophoresis shows HgS and absent HgA
- In sickle cell carrier (heterozygous), Hg electrophoresis shows both HgA and HgS bands

HgA²
HgF] may be increased
almost same amount

PATHOGENESIS

- In deoxygenated case, HgS tends to polymerize in a longitudinal pattern, distorting cell shape and creating sickle shape
- The change is reversible by re-oxygenation, however, with repeated sicklings, cell membrane is damaged and the RBC is shrunken permanently with a sickle shape
- The presence of normal HgA (carrier) and increased HgF (newborn) inhibits HgS polymerization
- Increased HgS concentration inside RBC promotes sickling (dehydration, acidosis), while decreased HgS concentration prevents sickling (the presence of additional α -thalassemia)

* Rarely comorbidity of SCA and Thalassemia \rightarrow These symptom are less in α thalassemia \rightarrow lower α \rightarrow HgS is less (α_2S_2)

PATHOGENESIS

- Sickle-shaped RBCs take a longer time to pass through capillaries, non deformable
- Removed by macrophages in spleen (extravascular hemolysis)
- Also adhere to endothelial cells, may create a thrombus
↳ the more sever complication.

CLINICAL FEATURES

- Chronic moderate-severe hemolytic anemia, manifesting after the age of 6-months (dependent on fraction of sickled cells). The chronic course is interrupted by repeated sudden attacks of worsening anemia
- Vaso-occlusive crisis (independent on fraction of sickled cells), results in organ infarction. Commonly associated with systemic infection, inflammation, dehydration and acidosis.
 - *Intonation in digits very painful either heart, lung, bones of chest Brain*
- Hand-foot syndrome, acute chest syndrome, stroke, myocardial infarction, retinopathy, autosplenectomy
 - *sever pain + loss of function → most common cause of death*
- Aplastic-crisis: infection by Parvovirus B19, causing worsening anemia, self-limited
 - *Co-infect nucleated normoblasts*
 - *+ blood transfusion*
- Susceptibility for encapsulated bacteria (pneumococcus, salmonella)
 - *due to spleen removal*
- Sickle cell carrier: asymptomatic

LABORATORY FINDINGS

- Routine blood smear: presence of sickle cells, target cells
- Sickling test: adding hypoxic agent to RBCs promote sickling
- Hemoglobin electrophoresis
(↳ Terminal diagnosis for hemoglobin test.)
- In sickle cell trait,
Blood smear is normal

