

Clinical Perspective Physiology/Hemostasis

Ebaa M Alzayadneh, PhD Associate Professor of Physiology

Causes of Excessive Bleeding

- Any clotting factor deficiency
 Most commonly:
- Hepatocellular disease
- Vitamin K deficiency
- Hemophilia
- Low platelet count (thrombocytopenia)

Clinical Perspective Vitamin K Deficiency

- Essential to carboxylate glutamic acid in five important clotting factors:
 - prothrombin and factors VII, IX, X, and protein C (1972)
- In this process vitamin K is oxidized and inactivated
- Vitamin K epoxide reductase complex 1 (VKOR c1) reduces vitamin K and reactivates it

Vitamin K

- Produced in the intestine by bacteria
- Fat-soluble: malabsorption of fats can lead to deficiency
- Lack of bile production or delivery can cause fat malabsorption and vitamin K deficiency
- In patients with liver or biliary disease, vitamin K can be injected 4-8 hours before surgery

Hemophilia

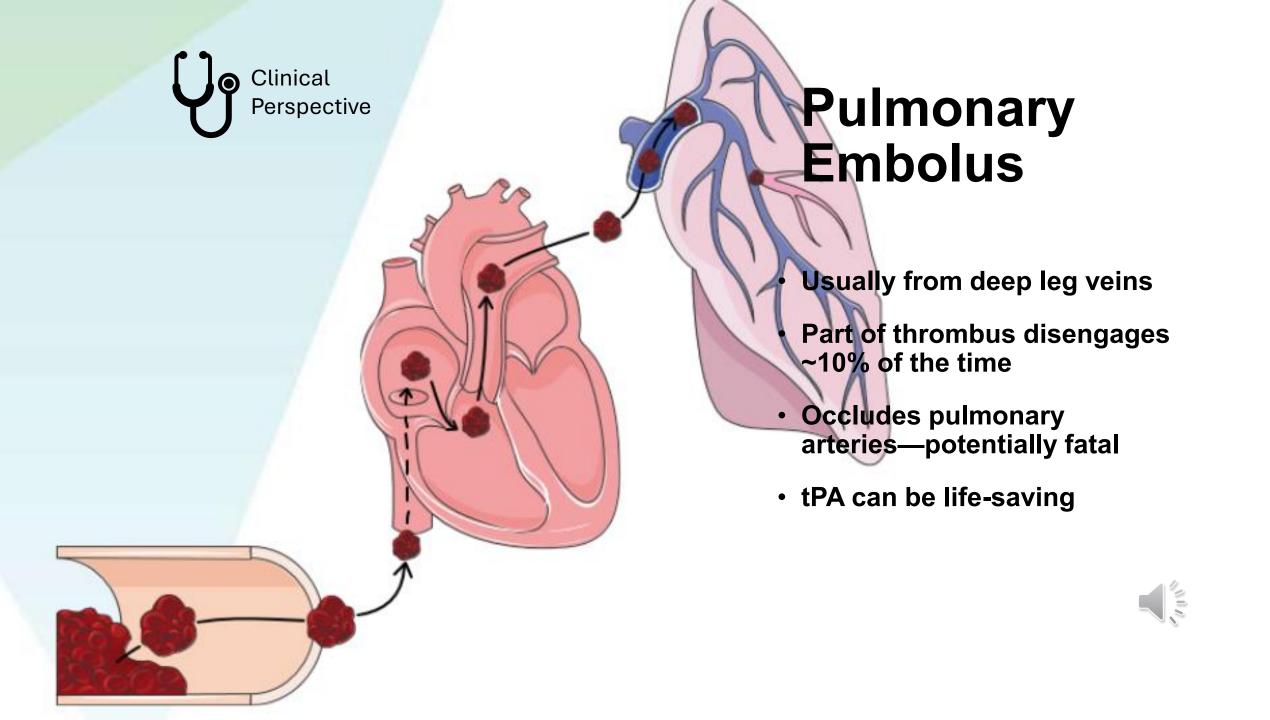
- Hemophilia A Deficiency of factor VIII
 - 85% of hemophilia cases
 - 1 / 10,000 males
- Hemophilia B Deficiency of factor IX
 - 15% of cases
 - About 1 / 60,000 males
- Both impair Intrinsic Pathway activation
- Both genes are on the X chromosome (males only get one copy)
- Clinically: Bleeding after minor trauma

Factor VIII Deficiency

- Factor VIII has a partener...Von willbrand factor
- Deficiency of factor VIII causes hemophilia
 A
 - → treat bleeding with factor VIII replacement
- Deficiency of Von willbrand factor causes von Willebrand disease (resembles decreased platelet function)

Thrombocytopenia

- Low numbers of platelets
- Bleeding from small venules or capillaries
- Petechaiae, thrombocytopenic purpura
- Often idiopathic
 - < 50,000 platelets / µL usually modest bleeding
 - < 10,000 platelets / µL life-threatening
- Treated with platelet infusions
 - → effective for 1 4 days each time



Clinical Perspective

Thrombi and Emboli

- An abnormal clot is a thrombus
- When it floats it's an embolus
- Caused by...
 - Endothelial roughening (e.g. atherosclerosis)
 - Slow flow (e.g. prolonged air travel)
- Treatment...
 - tPA
 - Embolectomy

Disseminated Intravascular Coagulation (DIC)

- Occurs in the setting of massive tissue damage or sepsis
- Wide-spread coagulation in small vessels, circulatory shock
- Manifested as bleeding from multiple sites because of depletion of clotting factors

Clinically Useful Anticoagulants

Heparin

- Binds, potentiates antithrombin III
- Works rapidly, generally used acutely

Coumarins

- Inhibit VKOR c1
- Deplete active vitamin K → deplete active prothrombin, factors VII, IX, X
- Slower acting (days); used chronically
- Over-anticoagulation Treat with FFP and vitamin K

In vitro Anti-coagulation

- Siliconized containers prevent activation of factor XII and platelets
- Heparin used in blood collection, heart-lung and kidney machines
- Calcium chelators (citrate, EDTA) used in blood collection, blood storage

Blood Coagulation Tests

Bleeding

Bleeding Time (from small cut)

- normally 1 6 minutes
- evaluates platelet function and capillary integrity.
- Platelets adhere to the damaged endothelium and aggregate to form a temporary plug.

Clotting

Clotting time

- Invert tube every 30 seconds
- Normally 6 10 minutes
- Not reproducible, generally not used

Bleeding time

- A <u>bleeding time</u> is used to evaluate the second phase of hemostasis, which involves adherence of the platelets to the injured vessel, platelet activation and aggregation (formation of a plug).
- ✓ The time measures how long it takes for a platelet plug to form.
- ✓ It increases when the platelets count is low (thrombocytopenia), platelet function is abnormal or with the use of aspirin .
- Disadvantages: Insensitive, Invasive & operator dependent.
- Advantages: good test to evaluate the platelet's function and structural abnormalities.

The Duke method

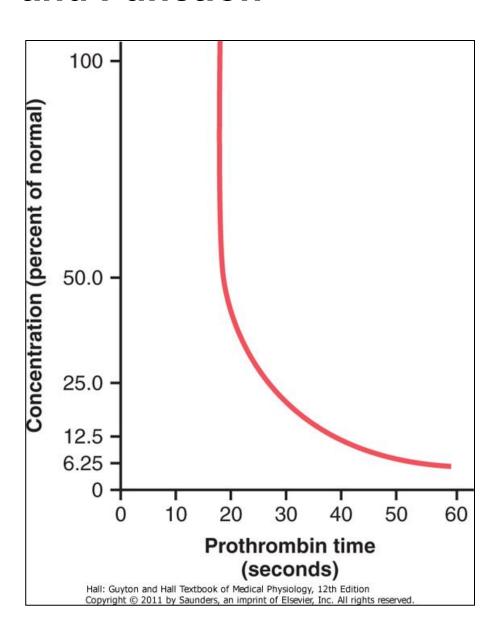
- 1. Clean the tip of the finger or the ear lobe with alcohol.
- 2. Puncture the skin with a special lancet. The wound should be 3–4 mm deep.
- 3. Wipe the blood drop by a filter paper every 30 seconds
- Repeat until no more blood is absorbed by the filter paper. Which indicates a platelet plug has formed
- Multiply the number of blood drops by 30 seconds
 - Or divide the number of spots of blood by 2 and that will give you the bleeding time in minutes.
 - Normal value: is less than 5 minutes

Clotting time

- It measures the time required for a blood sample to coagulate in vitro. Clotting time depends on the availability of coagulation factors.
- Many techniques are used the one we use in our lab depends on using non-hepranized capillary tubes
- Clotting time is prolonged in conditions like hemophilia, vitamin K deficiency, liver diseases, and warfarin overdose.

Common Clotting tests

- Clotting is mainly assessed by:
- •Prothrombin Time (PT): Measures the extrinsic pathway and common pathway (factors I, II, V, VII, X).
- •mixing a sample of the patient's blood with a reagent that contains tissue factor and calcium.
- •Partial Thromboplastin Time (PTT): Measures the intrinsic pathway and common pathway (factors I, II, V, VIII, IX, X, XI, XII).
- Calcium and activating substances are added to the plasma to begin the intrinsic pathway of the coagulation cascade. The activating substances such as kaolin, which activates the contact-dependent factor XII (hydrated aluminum silicate), and cephalin, which substitutes for platelet phospholipids.



Prothrombin Time

- Add excess calcium and tissue factor to oxylated blood, measure time to clot
- Assesses Extrinsic and Common Pathways
- Usually about 12 seconds
- Tissue factor batches have to be standardized (activity expressed as "International Sensitivity Index (ISI)")

Prothrombin Concentration and Function

International Normalized Ratio (INR)

$$INR = \left(\frac{PT_{test}}{PT_{normal}}\right)^{ISI}$$

- Normal INR: 0.9 1.3
- Therapeutic range: 2.0 3.0

Tests of Other Clotting Factors

- Mix the patient's plasma with a large excess of all needed components except the factor being tested
- Compare time to coagulation with that for pooled plasma of healthy volunteers

Summary: Bleeding and Clotting Tests

Test Name	Assesses	Physiological Basis	Normal Range
Bleeding Time	Primary hemostasis	Platelet adhesion and aggregation	Less than 5 minutes (duke method)
Prothrombin Time (PT)	Extrinsic & common pathways	Tissue factor activation of clotting cascade	~11–13.5 seconds
Partial Thromboplastin Time (PTT)	Intrinsic & common pathways	Contact activation of clotting cascade	~25–35 seconds

