سب الله الرّحون الرّحيم

Medical Immunology

الهمامزة فيما كم سل مان فكررة و موجونين السيب فيها إن عاراته

Anas Abu-Humaidan M.D. Ph.D.

Lecture 6

Molecules of the immune system

Much of the interactions between cells of the immune system, and between the immune system and foreign introducers depend on the action of cell bound and secreted molecules.

In this lecture we will discuss some of those molecules.

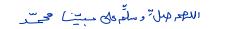
Soluble PRR Pattern Receptors Welecules
The complement

الحد لله عدد خلقه و رجما خسه و رجما خسه ورجما خسه

ے لا تسوا سَعوا لاِحوانكم العسلمين بلي ما اِلاِم فادى عن هراالعطر وهذا البرد

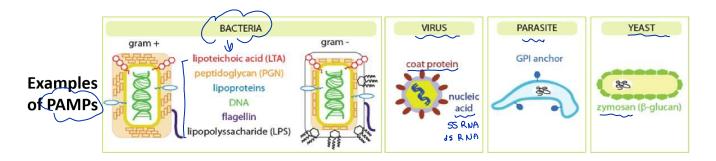
- The cells and soluble molecules of innate immunity either exist in a fully functional state before encounter with microbes or are rapidly activated by microbes
- The innate immune system recognizes molecular structures that are characteristic of microbial pathogens but not mammalian cells.
- The innate immune system recognizes microbial products that are often essential for survival of the microbes.
- The microbial substances that stimulate innate immunity are called pathogen-associated molecular patterns (PAMPs).
- Different classes of microbes (e.g., viruses, gram-negative bacteria, gram positive bacteria, fungi) express different PAMPs. 5LPS

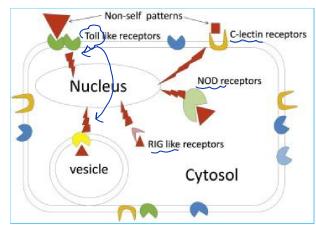
سران الله و مده ه سران الله العظيم


The innate immune system also recognizes endogenous molecules that are produced by or released from damaged and dying cells. These substances are called damage associated molecular patterns (DAMPs).

- DAMPs may be produced as a result of cell damage caused by infections, but they may also indicate sterile injury to cells caused by any of myriad reasons, such as chemical toxins, burns, trauma, or decreased blood supply.
- DAMPs are generally **not released** from cells dying by apoptosis. In some cases, healthy cells of the immune system are stimulated to produce and release DAMPs, which enhances an innate immune response to infections.

سبح آن الله و بعده سیان الله العظیم


TABLE 4–2 Examples of PAMPs and DAMPs				
Pathogen-Associated	l Molecular Patterns	Microbe Type		
Nucleic acids	ssRNA dsRNA CpG	Virus Virus Virus, bacteria		
Proteins	Pilin Flagellin	Bacteria Bacteria		
Cell wall lipids	LPS Lipoteichoic acid	Gram-negative bacteria Gram-positive bacteria		
Carbohydrates	Mannan Dectin glucans	Fungi, bacteria Fungi		
Damage-Associated Molecular Patterns				
Stress-induced proteins	HSPs			
Crystals	Monosodium urate			
Nuclear proteins	HMGB1			
CpG, cytidine-guanine dinucleotide, dsRNA, double-stranded RNA; HMGB1, high-mobility group box 1; HSPs, heat shock proteins; LPS, lipopolysaccharide; ssRNA, single-stranded RNA.				



- Pattern recognition receptors (PRRs) play a crucial role in the proper function of the innate immune system. PRRs are germline-encoded host sensors, which detect molecules typical for the pathogens.
- They are proteins expressed, mainly, by cells of the innate immune system, such as dendritic cells, macrophages, monocytes, neutrophils and epithelial cells, to identify two classes of molecules: **PAMPs** and **DAMPs**.
- PRR can be **cell bound** or **soluble**.
- Cell bound PRR can be found on different compartments of the cell. (membrane, cytosol)

ou plasma mondrene de la paol x piso de la propies de la paol x piso della piso de la paol x piso de l

Examples of cellular PRR

Examples of soluble PRR are:

- Natural antibodies
- complement proteins

سیدان الله و دون ه سیان الله العظیم

Molecules of the immune system / cell bound PRR

Cell-Associated Pattern Recognition Receptors	Location	Specific Examples	PAMP/DAMP Ligands
Toll-like receptors (TLRs)	Plasma membrane and endosomal membranes of dendritic cells, phagocytes, B cells endothelial cells, and many other cell types	TLRs 1-9	Various microbial molecules including bacterial LPS and peptidoglycans, viral nucleic acids
NOD-like receptors (NLRs)	Cytoplasm of phagocytes epithelial cells, and other cells	NOD1/2 NALP family (inflammasomes)	Bacterial cell wall peptidoglycans Flagellin, muramyl dipeptide, LPS; urate crystals; products of damaged cells
RIG-like receptors (RLRs)	Cytoplasm of phagocytes and other cells	RIG-1, MDA-5	Viral RNA
C-type lectin–like receptors	Plasma membranes of phagocytes	Mannose receptor	Microbial surface carbohydrates with terminal mannose and fructose
8=8		Dectin	Glucans present in fungal cell walls
Scavenger receptors	Plasma membranes of phagocytes	CD36	Microbial diacylglycerides
N-Formyl met-leu-phe receptors	Plasma membranes of phagocytes	FPR and FPRL1	Peptides containing N-formylmethionyl residues

سران الله و دون هم سران الله العظم

Molecules of the immune system / Soluble PRR

		13
5-1300°	3 3 3	المي
5-13 dr		28

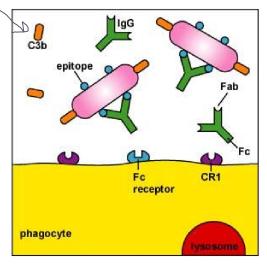
Soluble Recognition Molecules	Location	Specific Examples	PAMP Ligands
Pentraxins	Plasma	C-reactive protein	Microbial phosphorylcholine and phosphatidylethanolamine
Collectins	Plasma	Mannose-binding lectin	Carbohydrates with terminal mannose and fructose
	Alveoli	Surfactant proteins SP-A and SP-D	Various microbial structures
Ficolins	Plasma	Ficolin	N-Acetylglucosamine and lipoteichoic acid components of the cell walls of gram-positive bacteria
Complement	Plasma	C3	Microbial surfaces
Natural antibodies	Plasma	lgM	Phosphorylcholine on bacterial membranes and apoptotic cell membranes

سرح ان الله و بدی ه

سران الله العظيم

Molecules of the immune system / Soluble PRR

لاإله إلَّا الله رحده من شريك به


- سه العلائد وله الحيد و هو على كل شيخ حك ير
- These molecules provide early defense against pathogens that are present outside host cells at some part of their life cycle. The soluble effector molecules function in two major ways:
- ➤ By binding to microbes, they act as **opsonins** and enhance the ability of macrophages, neutrophils, and dendritic cells to phagocytose the microbes. This is because the phagocytic cells express membrane receptors specific for the opsonins.
- After binding to microbes, soluble mediators of innate immunity promote inflammatory responses that bring more phagocytes to sites of infections, and they may also directly kill microbes

Molecules of the immune system / Soluble PRR/ Opsonization

- **Opsonization** is the molecular mechanism whereby molecules, microbes, or apoptotic cells are chemically modified to have a stronger attraction to the cell surface receptors on phagocytes and NK cells.
- Opsonins include antibodies and complement proteins.

Page 12 of 24

Molecules of the immune system / Soluble PRR/ Natural antibodies

- There are subsets of B cells that produce antibodies with only a limited number of specificities without overt exposure to foreign antigens, and these are called natural antibodies. (different from adaptive immunity antibodies).
- They recognize common molecular patterns on microbes or stressed and dying cells.
- Natural antibodies are usually specific for carbohydrate or lipid molecules but not proteins, and most are IgM antibodies, one of several structural classes of Ig molecules.

Molecules of the immune system / Soluble PRR/ Pentraxins

- The pentraxin family, which is a phylogenetically old group of structurally related pentameric proteins.
 Prominent members of this family include the short pentraxins C-reactive protein (CRP) and serum amyloid P (SAP) and the long pentraxin PTX3.
- Both CRP and SAP bind to a few PAMPs and DAMPs, and can bind C1q and initiate the classical pathway.
- Plasma concentrations of CRP are very low in healthy individuals but can increase up to 1000-fold during infections and in response to other inflammatory stimuli.
- CRP PC PC ridge helix

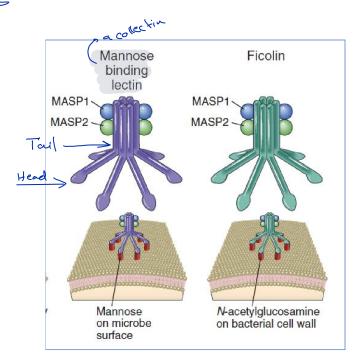
سحان الله و بعده

 Some of those proteins that increase in concentration following inflammation are called [⋆]
 acute phase reactants / acute phase proteins.

CRP, SAP, PTX3

نی شرح اکثر عنا عوجوجہ کے مصر سلاید ۱۹

Molecules of the immune system / Soluble PRR/ Collectins and Ficolins


• The **collectins** are a family of trimeric or hexameric proteins, each subunit of which contains a collagen-like tail connected by a neck region to a calcium-dependent (C-type) lectin head.

collection Collagen fail lection Head

• MBL, which is a soluble pattern recognition receptor that binds carbohydrates with terminal mannose and fucose, activates the lectin pathway of complement activation.

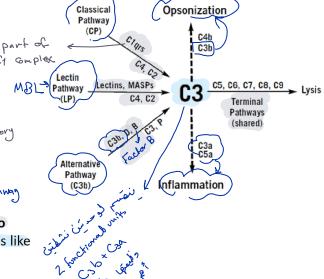
• Ficolins are plasma proteins that are

structurally similar to collectins, possessing a
collagen-like domain, but instead of a C-type
lectin domain, they have a fibrinogen-type
carbohydrate recognition domain.

سران الله و بعده سران الله العظيم

Molecules of the immune system / Acute-phase proteins

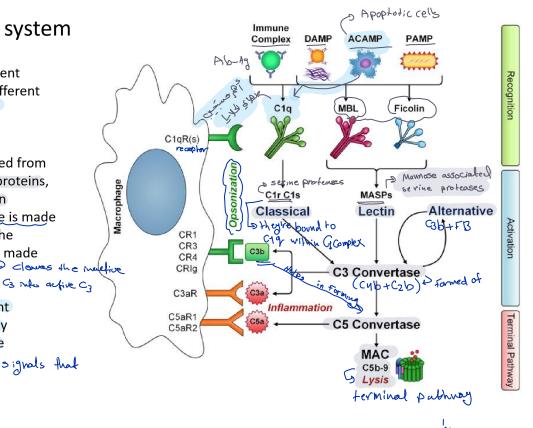
لاحول ولاصِّيّ 5 لركّ باللّه العليّ العظيم


- Acute-phase proteins (APPs) are a class of proteins whose plasma concentrations increase in response to inflammation. This response is called the acutephase reaction.
 - In response to **injury** or **infection**, local inflammatory cells (neutrophil granulocytes and macrophages) secrete a number of **cytokines** into the bloodstream, most notable of which are the interleukins **IL1**, and **IL6**, and **TNFα**. The **liver** responds by producing a large number of **acute-phase reactants**.
- Measurement of acute-phase proteins, especially
 C-reactive protein, is a useful marker of inflammation in medical clinical pathology.

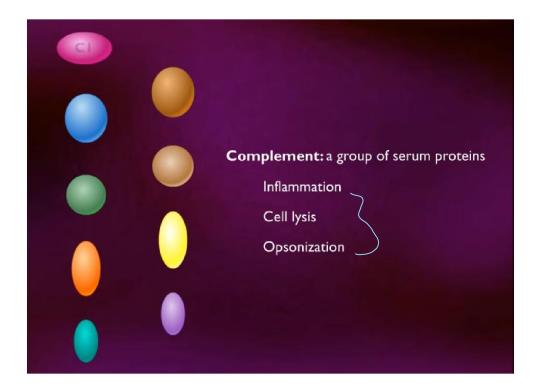
The complement system

اللجعم فهل وسلم على مبين محسد

- The complement system is a group of proteins that circulate the blood in inactive form until a pattern is sensed with proteins like (C1q, Lectins) which leads to a series of reactions of protein cleavage and activation.
- Complement has the following functions:
- Opsonization of the pathogen (or a dead cell) to ease phagocytosis (C3b, C4b).
- Figure 3 Generation of anaphylatoxins (C3a and C5a) to draw in leukocytes and potentiate the immune reponse. Pro in flammatory
- Formation of a pore in the bacterial cell wall called MAC (membrane attack complex, C5b-9). Through the forming pathway
- Complement deficiencies lead to increased susceptibility to infections. And is also associated with autoimmune diseases like systemic lupus erythematosus (SLE), indicating a role for complement in maintaining homeostasis.



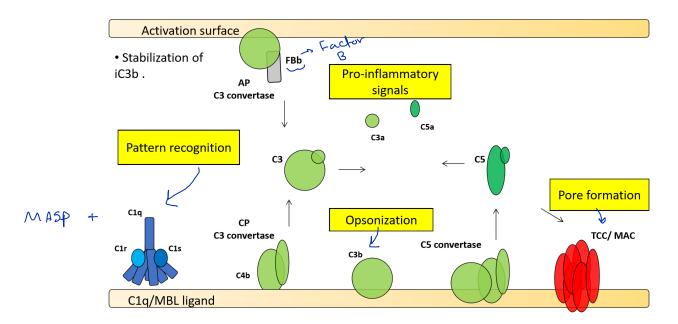
250 John Collins


The complement system

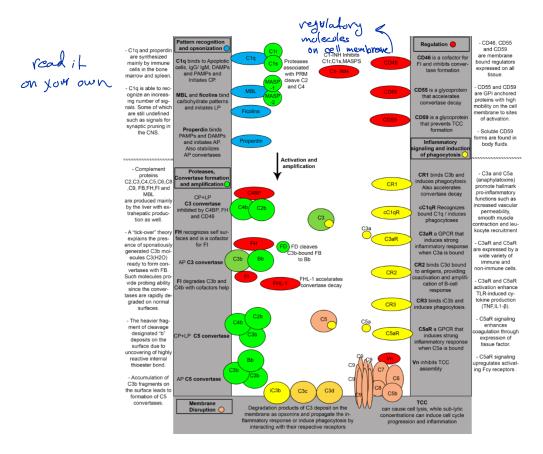
- 3 pathways of complement activation depend on different PRR but converge at C3 activation.
- A C3 convertase is formed from activated complement proteins,
 In the classical and lectin pathways, C3 convertase is made from C2bC4b, while in the alternative pathway, it's made from C3bFb.
- Each step of complement activation is regulated by soluable and cell surface proteins. regulatory signals that

are so Imp

سبحان الله العطيم


لاحول و لامَق ق ل لَّذَ اللَّهُ العَلِيَّ العَظَّيم

سیدان الله و بعده سیان الله العظیم Page 20 of 24


Complement activation

لایه (لا الله رحده لا شرائ به العالم و مولی کل شیخ و مولی

Lecture-6.-The-complement-system

Page 21 of 24

ن چ تی کون

Sea urchins present around 500 million years ago have 2 components with significant homology to vertebrate C3 and factor B (Bf), calledSpC3 and SpBf, respectively.

Those components found in body fluid

Those components found in body fluid can be induced in response to immune challenge and are thought to represent a primitive alternative pathway.

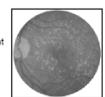
Lamprey is an early vertebrate that lacks immunoglobulins and thus a classical pathway

pathway.
An orthologue of C1q (LC1q) that acts as a GlcNAc-specific lectin is expressed in lamprey.

LC1q does not have components to bind to immunoglobulins and could represent a predecessor to the classical pathway

Higher vertebrates including Mammals, Aves and Amphibia share a very similar set of complement genes, with sporadic absence of some genes like C2 and C9 in chicken or the amphibian C1 inhibitor in frogs. اللهم مهل وسلم على سبتن محسد

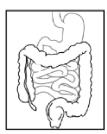
اللاعر عبل وسلم على مبتينا محسد



- Deposition of activation fragments including TCC in breast cancer tissue, but not benign lesions.
- Upregulation of complement regulatory proteins in several solid tumors.
- Increased levels of activation fragments including TCC in serum of oral carcinoma patients compared to healthy subjects.

Acute macular degeneration (AMD)

- Genetic variations in certain complement proteins like factor H confers risk to develop AMD.
- Drusen in AMD (subretinal pigment epithelial deposits) contain complement activation fragments.
 - Increased levels of activation fragments in plasma of AMD patients compared to controls.

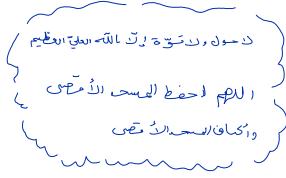


Ischemia/ reperfusion (I/R) injury

- Local deposition of complement fragments and release of anaphylatoxins following I/R.
- Complement inhibition decreases necrotic damage following myocardial infarction in pig models.
- Factor B knockout mice have less functional and morphological renal damage following I/R.

Inflammatory bowel disease

- Increased secretion of C3 and C4 in Crohn's patients intestine, including non-lesional parts.
- Abnormal complement activity in relatives of Crohn's patients.
- Increased levels of complement regulator CD55 in stool of ulcerative colitis patients correlates with disease activity.



Further reading:

• Cellular and Molecular Immunology. 7th Edition.. Chapter 4. Innate immunity

CELL-ASSOCIATED PATTERN RECOGNITION RECEPTORS OF INNATE IMMUNITY
SOLUBLE RECOGNITION AND EFFECTOR MOLECULES OF INNATE IMMUNITY

